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Abstract: Carbon nanostructures including carbon black, carbon nanotubes, graphite or graphene
have attracted a tremendous interest as fillers for elastomeric compounds. The preparation methods
of nanocomposites that have a strong impact on the state of filler dispersion and thus on the properties
of the resulting composites, are briefly described. At a same filler loading, considerable improvement
in stiffness is imparted to the host polymeric matrix by the carbon nanomaterials with regard to that
provided by the conventional carbon black particles. It is mainly attributed to the high aspect ratio of
the nanostructures rather than to strong polymer-filler interactions. The orienting capability of the
anisotropic fillers under strain as well the formation of a filler network, have to be taken into account
to explain the high level of reinforcements. A comparison of the efficiency of the different carbon
nanostructures is carried out through their mechanical and electrical properties but no clear picture
can be obtained since the composite properties are strongly affected by the state of filler dispersion.
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1. Introduction

Elastomers that consists of polymeric chains with a high degree of flexibility and mobility, exhibit
rubber-like elasticity if the chains are joined into a network structure [1]. They can undergo large
deformations and they have very good damping characteristics making them well suited in energy
dissipation. Rubberlike materials find applications in many sectors ranging from automobile tyres
and conveyor belts, hoses, adhesives, aircraft industry, etc. The rubberlike elasticity is observed above
the glass transition temperature Tg and above the melting point, Tm for crystalline polymers. Natural
rubber undergoes strain-induced crystallization that accounts for the large increase in modulus at
high deformation because the crystallites act as additional cross-links in the network. From this point
of view, strain-induced crystallization can be considered as an auto-reinforcement of the elastomer.
Those elastomers that cannot undergo strain-induced crystallization, are generally compounded with
additives consisting of fillers like carbon black or silica in order to increase the modulus, tensile
strength and wear resistance of the rubber material [2–5]. However, high loading levels of conventional
fillers (often above 40 phr, “phr” = parts per 100 parts of rubber by weight) are required to achieve the
desired properties.

Over the past few years, nanofillers have been extensively used in rubber nanocomposites on
account of their small size and the corresponding increase in the surface area allowing significant
improvement in the matrix properties at low filler loadings. The state of filler dispersion and orientation
in the matrix, their size and aspect ratio as well as the interactions with the polymer chains, have been
shown to be crucial parameters that determine the reinforcing ability of these nanoparticles.
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Isodimensional nanofillers (SiO2 or TiO2) are spherical particles that can be generated in situ
through a sol-gel process in the polymer. This process has proved to be a simple and efficient approach
for the synthesis of composites where the reinforcing phase is finally dispersed within the polymer
matrix which is a basic requirement for achieving optimum reinforcement [6–8].

Among the nanometer-scale reinforcing particles, layered silicates have attracted a tremendous
interest due to the considerable property improvements that could result if an exfoliated structure is
obtained with a full separation of the clay layers leading to a large interfacial contact area with the
polymer [9].

The past ten years have seen an increased interest for rod-shaped nanofillers and essentially for
carbon nanotubes. The recognition of their unique properties has stimulated a huge interest in their use
as advanced filler in composite materials [10,11]. In particular, their superior mechanical, thermal and
electrical properties are expected to provide much higher property improvement than other nanofillers.
For example, as conductive inclusions in polymeric matrices, carbon nanotubes shift the percolation
threshold to much lower loading values than traditional carbon black particles.

Besides carbon nanotubes, there is a great interest in graphitic nanostructures including graphite
intercalation compounds, expanded graphite, graphite nanoplatelets, graphene and graphene oxide.
Their use as reinforcing fillers for elastomeric materials holds great promise as a particular class of
nanocomposites if the layered structure of graphite, similar to that of layered silicate, is exfoliated and
if the separated nanosheets are well dispersed in the polymeric matrix [12–16].

The focus of this paper is to highlight the state of knowledge in the carbon nanostructures,
the properties, challenges and potential applications of elastomeric matrices filled with these
carbon nanomaterials.

2. Basic Issues on Carbon Nanomaterials

Graphite, abundant in nature and thus cost effective as a raw material, is composed of stacked
parallel two-dimensional graphene layers consisting of a hexagonal arrangement of sp2 carbons.
The layered structure of graphite exhibits a three-dimensional order in which adjacent graphene sheets,
separated by 0.337 nm, are held together by weak van der Waals forces.

The layered structure of graphite allows, as for silicate clay minerals, intercalation of chemical
species such as acides or alkali metals leading to graphite intercalation compounds [17]. Graphite
can be intercalated by a mixture of sulfuric acid and nitric acid, the latter being used as an oxidizing
agent. The intercalated graphite can be expanded or exfoliated by rapid heating forming vermicular
or wormlike structures that can be submitted to ultrasonication to achieve graphites with smaller
thicknesses. Graphite nanoplatelets (GNPs) with thicknesses down to 2–10 nm have been obtained
by reintercalating with an alkali metal (potassium metal), graphite that has been already intercalated
and exfoliated with a mixture of nitric and sulfuric acid [18]. The potassium-intercalated compound is
treated with ethanol that was found to be an effective exfoliating agent. Exfoliation in ethanol produces
potassium ethoxide and hydrogen gas that helps the separation of the graphite layers to form GNPs.

Individual graphene sheets can be obtained from graphene oxide (GO) formed by chemical
oxidation of graphite followed by exfoliation. GO bears various oxygen-containing functional groups
(OH and epoxide groups on the basal plane and carbonyl and carboxylic acid groups at the sheet edges).
These oxygen functionalities have been expected to ensure more compatibility and better interfacial
adhesion with organic polymers. Unfortunately, in silicone/GO composites, hydrogen-bonding
interaction between GO sheets has been shown to be stronger than attractive interaction between GO
and the polymer chains [19,20]. Moreover, the Raman spectra of GO is quite similar to that of carbon
black (CB) thus showing that the oxidation process generates structural defects. These structural
defects disrupt the conjugated electronic structure of graphite yielding a material of low conductivity
and not suitable for the synthesis of conducting composites. Chemical reduction of GO sheets carried
out with reducing agents like hydrazine leads to a partial recovery of the conductivity probably
ascribed to a restoration of the graphitic network of sp2 bonds.
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Wrapping a graphene sheet into a seamless cylinder leads to the formation of single-walled
carbon nanotubes (SWCNTs) while multiwall carbon nanotubes (MWCNTs) consist of multiple layers
of graphene arranged in concentric cylinders with an interlayer distance close to the distance between
graphene layers in graphite and typical diameters in the range 1–50 nm and lengths ranging from
micrometers to millimeters and even centimeters.

3. Manufacturing Techniques of Rubber Nanocomposites

Most preparation methods of nanocomposites aimed at achieving throughout the polymer matrix,
a homogeneous and uniform filler dispersion. The state of filler dispersion is well known to play
a major role on the final properties of the material and also to be influenced by the nature of the
polymer-filler interactions. Besides the fillers, the rubber needs to be compounded with several other
additives including curing agents, antioxidants, processing aids and coupling agents. The curing
process that leads to the formation of a crosslink network may be affected by the presence of filler.
Melt mixing, solution blending and in situ polymerization are the most commonly reported techniques
in the literature for the preparation of carbon-based elastomeric composites.

In melt intercalation, compounding takes place in the molten state, by using conventional mixing
devices (internal mixer, extruder, two-roll mill). This technique that does not require any solvent,
is favoured by industry but may lead to a poor dispersion on account of the high viscosity of the
composite that increases with filler fractions. Higher shear mixing often used to overcome the viscosity
of the medium, may damage the filler structure which is detrimental to the composite properties.

Solution mixing is one of the most widely reported technique in academic researches for the
processing of polymer nanocomposites because it ensures a better dispersion of the filler in the
elastomeric matrix than melt processing. This technique cannot be applied in industry on account of
the large quantities of solvents needed for the fabrication of the composites. It involves the dispersion of
the filler particles in a suitable solvent by magnetic stirring, high shear mixing or sonication. The filler
dispersion is then mixed with the rubber already in solution with all the additives for vulcanization.
The two solutions are mixed together and the cross-linking process and film formation can be achieved
after total removal of the solvent. But some carbon-based materials can be directly dispersed in
polymers that are fluid at room temperature like low molecular weight poly(dimethylsiloxanes) before
proceeding to the curing reaction [21]. A polymer latex instead of a polymer solution has been used
for the synthesis of rubber-clay nanocomposites by co-coagulating the rubber latex and a clay aqueous
suspension [22–24]. The composites prepared by the latex route have been shown to display a fine
dispersed phase structure and good mechanical properties. Nevertheless, Wu et al. [24] mention the
presence of non-exfoliated layer aggregates resulting from re-aggregation of exfoliated clay layers
during the process of co-coagulating. The layers of graphene-based materials are expected like in
layered silicates, to be separated from each other in water and to be mixed uniformly with the rubber
latex particles. The latex mixing and co-coagulation process has been applied by Zhan et al. [25] then
by Potts et al. [26] for the preparation of reduced graphene oxide/natural rubber nanocomposites.

In situ polymerization that involves polymerization of the monomer previously mixed with
the filler particles, generally leads to good level of dispersion of the inorganic material and good
interactions between the two phases. Waterborne polyurethane polymerized in the presence of
functionalized graphene sheets have been shown to give nanocomposites with higher reinforced
properties than those made by a simple mixing method [27]. Paszkiewicz et al. [28] also show
that graphene oxide was well exfoliated into individual sheets in composites fabricated through in
situ polymerization.

The three different methods: melt compounding, solution blending and in situ polymerization,
have been compared, for the synthesis of polyurethane filled with carbon sheets exfoliated from
graphite oxide via two different processes: chemical modification and thermal exfoliation [29]. It is
demonstrated that exfoliated carbon sheets can be better dispersed in polymers using solvent aided
blending, thus enhancing solid properties more effectively but economical and environment limitation
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makes the solvent-based processes less desirable. According to the authors, melt blending can be done
rapidly and economically with conventional polymer extrusion processes despite the poor level of
filler dispersion.

It has to be mentioned that other approaches intended to modify the filler surface, have been
developed in order to reduce the tendency of carbon-based particles to assemble into agglomerates.
Chemical bonding between the filler and the polymer chains enhances interfacial interactions between
the two components but disrupts the delocalized π-electron system and affects the electrical properties.
The use of surfactants acting as a non-covalent treatment has been shown to be an effective way to ensure
homogeneous and stable dispersion throughout a solvent and in composite host materials [30,31].
This non-covalent modification of the carbon species is of great advantage because no disruption
of the sp2 graphene structure occurs and the filler properties are preserved contrary to covalent
functionalization. But Dyke and Tour [32] explain that in the case of carbon nanotubes, exfoliation
of the bundles must occur previous to surface treatment in order to obtain individual tubes because
the outermost nanotubes in a bundle are probably more treated than the innermost tubes. In that
case, the nanotubes remain predominantly bundled after the surfactant treatment. This statement
has been confirmed for MWCNT/polystyrene (PS) composites prepared in the absence and presence
of a surfactant added before the sonication process [33]. A transmission electron microscopy (TEM)
analysis reveals the formation of ropes made of several nanotubes entangled together upon application
of a surfactant while an almost random distribution with some remaining agglomerates nevertheless,
is observed without any treatment (Figure 1). This points out that the adsorption of the surfactant
by the carbon species should occur after the dispersion process in order to get a surfactant- and
polymer-stabilized system.
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Figure 1. TEM images of PS/1 wt % MWCNTs composite processed without (a) and with
surfactant (b,c). The scale bars are respectively 100, 500 and 100 nm.

Incorporating simultaneously mixtures of two different fillers has been shown to improve the
state of dispersion and promotes the formation of a continuous hybrid filler network resulting in
better mechanical properties and, in the case of mixtures of carbon-based particles, in better electrical
conductivity than composites filled with any single filler [34,35]. Figure 2 displays a TEM image
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of a styrene-butadiene rubber (SBR) filled with a dual loading (5 phr of CB + 5 phr of MWCNTs)
in which carbon nanotubes are seen to connect CB aggregates. The double filling method was also
used by Zhan et al. [36] who prepared CB and CNTs filled nanural rubber (NR) composites through
an ultrasonic assisted mixing process then by Galimberti et al. [13,14,37] who add minor amounts
of nanofillers (MWCNTs, nano graphite or organoclay) to a polyisoprene heavily filled with CB
(60 phr). In all cases, the authors report synergistic effects between the two different types of fillers
and initial modulus values much larger than those calculated by simple addition of the two initial
moduli of the composites containing only a unique filler. An interesting application of the use of
hybrid filler is the incorporation of small amounts of CNTs in a high silica-filled rubber in order
to bring to nonconductive systems, some electrical conductivity required for the development of
antistatic materials [38]. A synergistic enhancement of the percolation threshold has been reported by
Sagalianov et al. [39] in hybrid polymeric nanocomposites based on carbon nanotubes and graphite
nanoplatelets. More recently, carbon nanofibers were incorporated into CB-silica composites in order
obtain conductive thin coatings by reducing the carbon-black content [40].
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4. Tensile Properties

The first consequence of the incorporation of hard filler particles in a soft polymeric medium is
the increase in the elastic modulus. Another contribution can arise from polymer-filler interactions
that leads to additional cross-links in the network structure. The increase in the effective degree of
cross-linking can be evaluated by equilibrium swelling by a solvent and by measurements of chain
orientation that has been shown to be sensitive to the chemical junctions and also to the number of
polymer-filler attachments [5,41]. In silica-filled poly(dimethylsiloxane) (PDMS) rubbers for example,
the interaction between the polymer and the filler is ensured by hydrogen bonds between the silanols
present on the silica surface and the oxygen atoms of the PDMS chains. In order to meet application
requirements and thus impart specific properties to the resulting material, the polymer-filler interface
can be tailored by using treated silica in which part of the silanols are deactivated to decrease the
interactions. The use of coupling agents in combination with silica, is commonly used in non-polar
polymers like hydrocarbon rubbers, in order to enhance the degree of adhesion between the polymer
and the filler [42]. Due to their structural characteristics –high aspect ratio and high specific surface
area that impacts the amount of interfacial area with the polymer- carbon nanostructures are expected
to impart if they are finely dispersed in the elastomeric matrix, significant enhancements in various
properties with regard to conventional fillers.

Hydrocarbon rubbers are commonly reinforced by CB and one specific feature brought by active
fillers is the increase in stress observed at high deformations (see Figure 3a the stress-strain curve
of the SBR/10 phr CB composite). The increase in stress at high elongations is attributed to limited
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chain extensibility observed for the composite on account of the increase in the effective degree of
cross-linking thus decreasing the apparent molecular weight between cross-links. This behavior that
reflects the polymer-filler interactions is somewhat the signature of reinforcement. The abrupt increase
in stress displayed by unfilled NR (Figure 3b) is ascribed to the strain-induced crystallization of
polymer chains that is an important characteristic of natural rubber due to its uniform microstructure.
The crystallization process starts at a lower deformation in the presence of carbon black which
may be regarded as resulting from a higher chain orientation in the direction of strain allowing the
conformational change required for the formation of the crystallites [43]. Chain orientation increases
with additional cross-links created by NR-CB interactions. On the other hand, polymer chains are
overstrained by strain amplification effects caused by the inclusion of undeformable filler particles [44].
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Figure 3. Stress-strain curves of SBR (a) and NR (b) composites filled with MWCNTs and CB (in red).

As seen in Figure 3 that displays the stress-strain curves of SBR and NR composites, considerable
improvement in stiffness, increasing with the filler loading, is imparted to both matrices by addition of
multiwall carbon nanotubes (MWCNTs) with much higher levels of reinforcement than those provided
by the conventional carbon black particles. But the CB-filled SBR sample exhibits an increase in stress
at high strains contrary to the unfilled SBR that does not exhibit strain-induced crystallization. The data
displayed in Figure 3 were obtained from classical tensile tests performed at room temperature on
a tensile Instron machine, model 5565 equipped with a 100 N load cell and a video extensometer.
The strips (length around 20 mm between the jaws, width around 5 mm, and thickness between
200 and 300 µm) were marked with two dots with a white marker for their recognition by the video
extensometer then stretched at a strain rate of 0.1 s−1. The nominal stress σ was calculated from
σ = f/A, where f is the elastic force and A is the undeformed cross-sectional area.

The stress-strain behavior of unfilled elastomeric networks has been reproduced by various
theoretical models [45–49]. A recent paper carried out a comparison of six different models in order to
determine which of them represents the actual behavior of their material [50]. It was concluded that
the Mooney-Rivlin model [45,46] is the most accurate model to account for the mechanical behavior of
Santoprene 101-73.

For the Mooney-Rivlin model, the nominal stress σ is given by:

σ = (2C1 + 2
C2

λ
)(λ − λ−2) (1)

where λ is the extension ratio (ratio of the final length of the sample along the direction of stretch to
that of the initial length before deformation) and 2C1 and 2C2 are constants independent of λ. 2C1 has
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been taken as an estimate of the high-deformation modulus (the phantom network model limit) and
(2C1 + 2C2) has been used as an estimate of the low-deformation modulus (the affine network model
limit) [1].

In a Mooney-Rivlin representation, the reduced stress, [σ*], defined by the quantity [σ*] = σ/
(λ − λ−2) is plotted against of 1/λ. Equation (1) was established for unfilled elastomers but it has been
widely used in filled elastomeric materials (see Reference [1] and all the papers of Mark et al. on filled
elastomers and [51]). Dannenberg [52] explains that Equation (1) should apply to a filled vulcanizate if
it can be assumed that the major function of the dispersed phase is to increase the effective strain of
the rubber phase.

Mooney-Rivlin plots for unfilled and filled materials are displayed on Figure 4. They are seen
to better visualize specific features of the stress-strain curves. The upturn in the modulus observed
at high deformations for the SBR/CB composite cannot be ascribed in this case to crystallization but
to limited chain extensibility of chain bridging filler particles thus demonstrating strong interactions
between carbon black and the elastomeric phase (Figure 4a). The absence of upturn in the modulus
at high elongations for the MWCNT/SBR composite denotes a weak polymer-filler interface and the
strong decrease in stress observed at low deformations is attributed to the destruction of the filler
network or at least of agglomerated filler structures. The Mooney-Rivlin plots of the NR/MWCNT
composites display, at least for the lowest filler loadings, upturns in the modulus occurring at a lower
extension ratio than that of NR/CB sample. According to the SBR results, the increase in stress at high
deformations observed for the NR composites, is only attributed to the strain-induced crystallization
of polymer chains. The question is to understand why the presence of fillers favors the crystallization
process. In the case of CB as well as for MWCNTs, orientational effects can explain the decrease
in strain values at the onset of crystallization. But an increase in chain orientation in the CB-filled
composites can be attributed to a decrease in the apparent molecular weight between chemical and
physical cross-links, in the case of MWCNTs, it probably arises from their strong ability to orientate
along the direction of stretch. Orientation of anisotropic fillers that can be evidenced by TEM or
AFM of stretched samples [33,53], is expected to affect the orientation of polymer chains as well and
consequently the mechanical properties of the composite.
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Figure 4. Mooney-Rivlin plots for SBR (a) and NR (b) composites filled with MWCNTs and CB (in red).
For purpose of clarity, only two composites are reported in (a).

Ozbas et al. [54] have compared the effect of functionalized graphene sheets (FGS) and that of
carbon black on the strain-induced crystallization of NR by coupled tensile tests and X-ray diffraction
experiments. It is shown that only 1 wt % FGS imparts higher modulus and strength than 16 wt %
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CB (Figure 5a) and induces crystallization at lower strain (ε = 1.25 for the FGS-NR sample and 1.75
for the CB-filled NR). The authors mention the significant contribution of the alignment of FGS upon
stretching to the mechanical properties of the nanocomposites. Small angle X-ray scattering shows
that FGS is aligned in the stretching direction, whereas CB does not show alignment or anisotropy
(Figure 5b). The ratio of the intensity at the equator (I90◦ ) to the intensity at the meridian (I0◦ ) becomes
larger during stretching for both FGS-filled SBR and NR samples indicating that FGS sheets are
oriented along the stretching direction, whereas anisotropy is not observed for CB (Figure 5c).
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Figure 5. Tensile tests for neat NR and NR filled with 1 and 4 wt % FGS, and 16 wt % CB (a). 2D SAXS
patterns (b) and ratio of the intensity at the equator (I90◦ ) to the intensity at the meridian (I0◦ ) versus
strain determined from SAXS measurements for SBR and NR filled with FGS and CB (c). The inset
represents the stretching and retraction data for 4 wt % FGS-filled SBR and NR. Reprinted from
Reference [54] with permission from The Journal of Polymer Science.

A comparative investigation on strain induced crystallization for graphene and carbon nanotubes
filled natural rubber composites was also carried out by Fu et al. [55] on composites prepared by
ultrasonically-assisted latex mixing. The incorporation of graphene is shown to result in a faster
strain-induced crystallization rate and a higher crystallinity compared to CNTs. The authors conclude
to stronger polymer-filler interactions in the graphene/NR composites than in CNTs/NR composites
on the basis of their swelling behavior. But a swelling restriction by solvents could also arise from
occluded rubber entrapped inside filler agglomerates. On the other hand, the small difference, reported
by the authors, between the swelling ratio of the two types of composites is not consistent with the
strong difference between their tensile properties thus showing that other parameters have to be taken
into account.

In an interesting paper of Scotti et al. [56], shape controlled spherical and rod-like silica
nanoparticles with different aspect ratios were synthesized by a sol-gel method in order to prepare
silica/SBR composites by the blending method. The authors studied the influence of the particle
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morphology on the reinforcing effect independently of the silica surface chemistry and considering
the aspect ratio as the only geometrical variance. The increase of the reinforcing effect of the rod-like
particles by increasing their aspect ratio is related to both the self-alignment of anisotropic particles
along the major axis direction and to their very large filler/polymer interface, compared to that of
spherical particles. It is demonstrated that the mechanical reinforcing effect is basically related to the
formation of a continuous percolative network of silica nanoparticles.

The percolative network, formed when filler aggregates join together either by direct contact
or via layers of polymer shell around them, occurs at very low concentrations with anisotropic filler
particles. It is responsible of the strong increase in the composite initial modulus (Figure 3) and of the
strong decrease at low strains of the reduced stress (Figure 4). Galimberti et al. [37] who also report a
detectable impact of carbon nanotubes on the initial modulus of filled poly(1,4-cis-isoprene), apply the
model of Huber and Vilgis [57] that predicts that the excess of initial modulus (E − E0)/E0, where E
and E0 are the initial modulus of the composite material with and without CNTs respectively, has a
linear dependence on the filler content below the percolation threshold and scales with a power low
for higher concentrations (Figure 6).
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The inclusion of rigid particles is quantitatively taken into account by the Guth model [58]
only based on the aspect ratio, f, and volume fraction, φ, of filler. It has been widely used to
estimate the change in modulus in filled elastomers, the quadratic term being added to account
for filler-filler interactions:

E = E0 (1 + 0.67fφ + 1.62 f2φ2) (2)

E and E0 are the moduli of the composite and the unfilled elastomer, respectively. The Guth
equation predicts a strong increase in modulus at high volume fractions of filler.

A strong deviation from Equation (2) is expected at volume fractions above that corresponding to
the formation of a filler network.

The data of Figure 3 reveal a complete change in the stress-strain behavior of the MWCNT-filled
rubbers with regard to the CB-filled samples, resulting in a significant increase of the stress at low
strains and a considerable drop of the elongation at break. This fact has also been mentioned by
Fritzche et al. [38] and by Rooj et al. [59].

The importance of the processing conditions on the properties of the final material is illustrated
in the work of Yang et al. [60] who studied composites of nitrile-butadiene rubber (NBR) filled with
expanded graphite (EG) prepared by latex compounding and also by direct blending. It was shown
that the tensile strength increases substantially with EG content for nanocomposites prepared by
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the latex compounding method (LCM) (Figure 7a). The NBR/EG (10 phr) composite exhibits, as in
Figure 3, a strong increase in stress at low strains, and a much higher reinforcement efficiency than
the composite prepared by blending and those reinforced with traditional fillers for rubbers such as
carbon black and silica (Figure 7b). The authors attribute the different tensile properties of NBR/EG
vulcanizates prepared by latex compounding and direct blending to the different dispersion quality
of graphite sheets. Additionally, polar groups on the EG surface (–OH and –COOH) are expected to
interact with the polar cyanide group (C

C 2017, 3, 10  10 of 22 

3, a strong increase in stress at low strains, and a much higher reinforcement efficiency than the 
composite prepared by blending and those reinforced with traditional fillers for rubbers such as 
carbon black and silica (Figure 7b). The authors attribute the different tensile properties of NBR/EG 
vulcanizates prepared by latex compounding and direct blending to the different dispersion quality 
of graphite sheets. Additionally, polar groups on the EG surface (–OH and –COOH) are expected to 
interact with the polar cyanide group (C ≣ N)  of the NBR macromolecular chains and form a strong 
interfacial adhesion. Interestingly, the ratio of the modulus at 100% elongation (σ 100%) of the 
NBR/EG (10 phr) sample prepared by latex compounding to that of the unfilled elastomer (σ0 100%), 
is of the same order of magnitude as that of the SBR and NR composites filled with 10 phr of 
MWCNTs (Figure 3). This ratio may be considered as a quantitative measure of the reinforcement 
effect. 

 

 
Figure 7. Stress-strain curves of nitrile-butadiene rubber (NBR) filled with different expanded 
graphite (EG) amounts (a) and comparison of reinforcement efficiency of different fillers at a same 
loading (10 phr) (b). Reprinted reference [60], with permission from Acta Materialia. 

All the above considerations lead to the belief that the reinforcement of rubber matrix in the 
presence of anisotropic filler particles depends mainly on the hydrodynamic effect arising from the 
inclusion of rigid particles, from their state of dispersion and their orientation under strain and from 
filler-filler interactions leading to the formation of a filler network. Almost all studies report a strong 
reduction of the strain at break most probably ascribed to the presence in the material, of remaining 
agglomerated structures that act as defects and failure points. 

Filled and crystallizing unfilled elastomers display a characteristic stress-strain behavior after a 
pre-stretching. If the sample is uniaxially stretched to a given strain, ε1, then released and stretched 
again to ε2, released and stretched to ε3…, reloading the sample leads to smaller stress values than 
those of initial loadings below the maximal strain values, thus exhibing the so-called stress-softening 
phenomenon known as the Mullins effect. Figure 8 gives an example of four successive stretching 

N) of the NBR macromolecular chains and form a strong
interfacial adhesion. Interestingly, the ratio of the modulus at 100% elongation (σ 100%) of the NBR/EG
(10 phr) sample prepared by latex compounding to that of the unfilled elastomer (σ0 100%), is of
the same order of magnitude as that of the SBR and NR composites filled with 10 phr of MWCNTs
(Figure 3). This ratio may be considered as a quantitative measure of the reinforcement effect.

C 2017, 3, 10  10 of 22 

3, a strong increase in stress at low strains, and a much higher reinforcement efficiency than the 
composite prepared by blending and those reinforced with traditional fillers for rubbers such as 
carbon black and silica (Figure 7b). The authors attribute the different tensile properties of NBR/EG 
vulcanizates prepared by latex compounding and direct blending to the different dispersion quality 
of graphite sheets. Additionally, polar groups on the EG surface (–OH and –COOH) are expected to 
interact with the polar cyanide group (C≣N) of the NBR macromolecular chains and form a strong 
interfacial adhesion. Interestingly, the ratio of the modulus at 100% elongation (σ 100%) of the 
NBR/EG (10 phr) sample prepared by latex compounding to that of the unfilled elastomer (σ0 100%), 
is of the same order of magnitude as that of the SBR and NR composites filled with 10 phr of 
MWCNTs (Figure 3). This ratio may be considered as a quantitative measure of the reinforcement 
effect. 

 

 
Figure 7. Stress-strain curves of nitrile-butadiene rubber (NBR) filled with different expanded 
graphite (EG) amounts (a) and comparison of reinforcement efficiency of different fillers at a same 
loading (10 phr) (b). Reprinted reference [60], with permission from Acta Materialia. 

All the above considerations lead to the belief that the reinforcement of rubber matrix in the 
presence of anisotropic filler particles depends mainly on the hydrodynamic effect arising from the 
inclusion of rigid particles, from their state of dispersion and their orientation under strain and from 
filler-filler interactions leading to the formation of a filler network. Almost all studies report a strong 
reduction of the strain at break most probably ascribed to the presence in the material, of remaining 
agglomerated structures that act as defects and failure points. 

Filled and crystallizing unfilled elastomers display a characteristic stress-strain behavior after a 
pre-stretching. If the sample is uniaxially stretched to a given strain, ε1, then released and stretched 
again to ε2, released and stretched to ε3…, reloading the sample leads to smaller stress values than 
those of initial loadings below the maximal strain values, thus exhibing the so-called stress-softening 
phenomenon known as the Mullins effect. Figure 8 gives an example of four successive stretching 

Figure 7. Stress-strain curves of nitrile-butadiene rubber (NBR) filled with different expanded graphite
(EG) amounts (a) and comparison of reinforcement efficiency of different fillers at a same loading
(10 phr) (b). Reprinted Reference [60], with permission from Acta Materialia.

All the above considerations lead to the belief that the reinforcement of rubber matrix in the
presence of anisotropic filler particles depends mainly on the hydrodynamic effect arising from the
inclusion of rigid particles, from their state of dispersion and their orientation under strain and from
filler-filler interactions leading to the formation of a filler network. Almost all studies report a strong
reduction of the strain at break most probably ascribed to the presence in the material, of remaining
agglomerated structures that act as defects and failure points.

Filled and crystallizing unfilled elastomers display a characteristic stress-strain behavior after a
pre-stretching. If the sample is uniaxially stretched to a given strain, ε1, then released and stretched
again to ε2, released and stretched to ε3 . . . , reloading the sample leads to smaller stress values than
those of initial loadings below the maximal strain values, thus exhibing the so-called stress-softening
phenomenon known as the Mullins effect. Figure 8 gives an example of four successive stretching
cycles (shown in different colors) performed at various deformations on a poly(dimethylsiloxane)
(PDMS) filled with 40 phr of silica.
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Several interpretations have been proposed to explain the stress-softening of rubbers from
breakage of both the filler clusters and the rubber-to-filler bonds, chain slippage process onto the filler
surface, strain amplification to chain disentanglements [44,51,61–69]. But despite the numerous studies
devoted to an understanding of the Mullins effect, there is still no general agreeement on the origin of
this effect probably because it may arise from different phenomena depending on the characteristics
of the polymer-filler system. The literature on the Mullins effect was reviewed by Clément et al. [70],
Diani et al. [71] and more recently by Harish et al. [72].
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On the basis of experiments based on atomic force microscopy under strain, Clément et al. [70]
showed that the Mullins effect is much more important with silica particles that has not undergone
any surface treatment, in other words in particles that give rise to strong interaction with the PDMS
chains. This points out the importance of the polymer-filler interface in systems with strong reactive
components. The Mullins effect, in conventional composites, has been attributed to the breakage or the
slippage, from the particle surface, of chains that attain their limit of extensibility by strain-amplification
effects. Strain-amplification effects depend on the local volume fraction of filler around the polymer
chains, in other words on the state of filler dispersion. On account of strain amplification phenomenon,
the rubber is much more deformed in regions of the sample of high volume fractions of filler and
consequently the chains reach their limit of extensibility at low strains and detach from the filler
surface thus causing the loss of elastic chains. The other regions of lower filler volume fraction
are not concerned at this stage of deformation but become affected at increasing strains. Atomic
force microscopy carried out on stretched composites gives evidence that the strain field is highly
heterogeneous, depending on the local concentration of filler and that the strain undergone by
elastomer chains can be very high locally, in the regions where distances between aggregates are
very short [73]. The overstraining effects make chains to reach their limit of extensibility at low
strains and detach from the filler surface resulting in a loss of elastic chains. It is worthwhile to
notice that equilibrium swelling measurements performed on networks pre-stretched at different
strains confirm the loss of elastic chains [74,75]. The concept of strain amplification was also used by
Maiti et al. [76] to analyze the Mullins softening in a silica-filled PDMS rubber material. The authors
assume that during the first loading curve, the soft part of the matrix is being pulled out of the hard
region thus progressively decreasing the relative fraction of the hard domain. The difference with the
work of Clément et al. [70] is the use of the spatially uniform strain amplification which is not correct
since inhomogeneous strain fields were demonstrated by atomic force microscopy. Dargazany and
Itskov [77,78] have proposed a micro-mechanical model for carbon-black fillers where damage of the
polymer network is considered as a consequence of chain sliding on or debonding from aggregates.
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Harish et al. [72] have developed a heterogeneous (or multiphase) constitutive model by
considering clustering and percolation behavior of filler particles. According to the authors, contrary
to crystallizing unfilled elastomers for which crystallization leads to distinctive physical and chemical
changes, in filled elastomers, filler breakage can be considered as one of the, if not primay, causes for
Mullins softening. The filled elastomeric material is hypothesized as a three-phase material consisting
of free rubber, bound rubber and filler aggregate phases but bound rubber properties are shown to not
significantly impact the material response.

A very recent study [79] uses strain-induced from mechanoluminescent cross-linkers in silica-filled
poly(dimethylsiloxane) to demonstrate that covalent bond scission occurs predominantly on the first
cycle to a particular strain, when the material displays the greatest hysteresis. The cross-linkers contain
dioxetanes that emit light upon force-induced bond scission.

Elastomers filled with carbon nanomaterials (carbon nanotubes, graphite nanoplatelets or
graphene oxide) have been shown to exhibit the Mullins stress-softening effect [10,35,53,80–84].
As mentioned in almost all studies, the important feature displayed by composites filled with carbon
nanomaterials is the high degree of permanent deformation with regard to carbon black or silica-filled
elastomers (Figure 9).
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carbon black (a) and Estane (ether based polyurethane elastomer) with 5 wt % MWCNTs (b). Reprinted
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Despite the fact that the existence of interactions between the graphene surface and the polymer
chains is still a subject of debate, the different interpretations discussed above for conventional
composites can be applied to explain the Mullins effect in samples filled with carbon nanomaterials.
Nevertheless, one has to take into account their geometry and especially their high aspect ratio making
them prone to get aligned when subjected to tension. Another significant effect of the strain is a
debundling of the agglomerates resulting in a pulling out of the gum entrapped inside the agglomerates
that reduces as mentioned in reference 76, the fraction of hard domains. This interpretation is supported
by the fact that the rupture of the sample in the second stretching occurs at a much higher value of
strain than that obtained in the first stretching curve [85].

5. Dynamic Mechanical Properties

As reported above, the filler-filler interactions cause the formation of a filler network that enhances
the modulus at low strains and is responsible of the strong decrease at low strains of the reduced
stress (Figure 4). The filler network is generally evidenced through the strain dependence of the
storage modulus G’ that exhibits a non-linear behavior called the “Payne effect” [86]. G’ displays a
characteristic amplitude dependence, decreasing from the value of the modulus at strains approaching
zero, G’0, to a plateau value G’∞ with increasing strain amplitude [87]. The amplitude of the Payne
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effect defined as (G’0 − G’∞) has been found to be affected by the specific surface area, concentration
and surface treatment of the filler particles as well as by the temperature. The Payne effect is obviously
linked to the state of dispersion of the filler particles in the polymer matrix. The use of coupling
agents in silica-filled hydrocarbon rubbers for example, decreases the amplitude of the Payne effect
by depressing filler-filler interactions [88]. In the case of an “ideal” dispersion as that obtained by the
generation of filler particles by the sol-gel process, no Payne effect is observed in the whole range of
shear strain range investigated (Figure 10).
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Figure 10. Strain dependence of the storage modulus of PDMS filled with various amounts of silica
particles generated in situ by the sol-gel process.

The drop in the elastic modulus has been mostly explained by a breakdown upon oscillatory
shear, of the filler network formed by direct particle contacts or via immobilized elastomeric layer
where the particle surface is recovered with adhering elastomeric molecules [89]. Nevertheless, it has
to be pointed out that a non-linear behavior can also be observed for filler volume fractions lower than
the percolation threshold [90] and from this point of view, below the percolation threshold, the Payne
effect can be explained by a disruption of the filler agglomerated structures.

A Payne effect has been reported for elastomers filled with different carbon materials. In Figure 11a
that compares the Payne effect in NR composites filled with CB and MWCNTs, it is shown that the
Payne effect strongly increases with the amount of filler and with the anisometry of the particles since
it is much more important with MWCNTs than with CB at a same filler loading.

Surprinsingly, in poly(1,4-cis-isoprene) filled with a nanographite with a high shape anisotropy,
a noticeable Payne effect is obtained for a filler content of 40 and 60 phr [13], which corresponds to much
higher volume fractions than those involved in NR/MWCNTs composites (see Figure 11a) despite the
high aspect ratio of nanographite, mentioned by the authors, expected to allow the formation of a filler
network at a very low filler loading. The comparative non-linear dynamic viscoelastic response of neat
NR and composites filled with CNTs alone and together with reduced graphene oxide, are shown in
Figure 11b. Graphene oxide (CG600 and CG20) was reduced thermally at two different temperatures
600 and 200 ◦C [91]. The experimental results were fitted to the Maier and Göritz model based on
filler-rubber interactions and on an adsorption mechanism of network chains on the surface of filler
particles [92]. The decrease of the dynamic storage modulus is attributed to a desorption of unstable
bonded chains. It was deduced that the decrease in storage modulus with shear amplitude indicates
an order of filler-rubber interaction as NR-CNT > NR-CG600 > NR-CG200 [91]. Nevertheless, it has to
be pointed out that the neat elastomer also displays a non-linear behavior contrary to what is expected
and observed in Figure 11a.

The results published in the literature do not allow to assess the influence of the nature of the
anisotropic carbon particles on the Payne effect since the non-linear dynamic behavior is strongly
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related to the state of dispersion. Agglomeration leads to an increase in the volume fraction
corresponding to the formation of a three-dimensional network structure that signicantly affects
the dynamic viscoelastic properties. At this point, it is interesting to mention that in the work of
Scotti et al. [56] dealing with shape controlled and rod-like nanoparticles with different aspect ratios in
SBR, the storage modulus at low strains, G’0, increases with the aspect ratio but the G’∞ values are
very similar for all the composites filled at a same filler loading. This means that the differences in
reinforcement are less effective once the network is broken down which was expected since the filler
synthesis has been targeted to obtain nanoparticles only different in shape.C 2017, 3, 10  14 of 22 
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Figure 11. Strain dependence of the storage modulus: at 25 ◦C of NR composites filled with CB and
MWCNTs (a); at 25 ◦C of NR composites filled with CNTs (5 phr) and with reduced graphene oxide
(2.5 phr) (CG600 and CG200) along with CNTs (2.5 phr) (b). Reprinted from Reference [91], with
permission from Soft Matter.

Temperature dependences of the storage modulus and of the loss factor, tand δ, are displayed in
Figure 12 for SBR/MWCNTs composites (a) and for NR composites filled with functionalized graphene
sheets (FGS) (b). For all the samples, the strong decrease in the storage modulus is associated with the
glass transition phenomenon of the elastomer chains. Below and above Tg, the value of E’ increases
with increasing nanotube loading but the increase in the rubbery region is much more important than
in the glassy state because it contains the contribution arising from the Payne effect [93]. Dynamic
mechanical results reported by Ozbas et al. [54] for NR composites show a much higher increase in the
storage modulus for NR filled with 4 wt % FGS (functionalized graphene sheets) than for a loading of
16 wt % CB even at four times lower volume fraction (Figure 12b) which confirms the results displayed
on Figure 11a. The authors believe that in the rubbery region, strain amplification combines with
the effect of immobilized rubber to give the 30- to 90-fold increases in the effective volume fraction.
Nevertheless, it is also shown that Tg is not substantially shifted by the addition of either FGS or
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CB. Two papers of Araby et al. [94,95] in which graphene platelets (GnPs) have been incorporated in
EPDM [94] and in SBR [95] observe an increase in the storage modulus by 2536% and 159% at 12 vol %
GnPs in EPDM and around 190% and 650% at 10.5 vol % in SBR in the glassy and rubbery regions,
respectively. These improvements are attributed to a high level of interaction between matrix chains
and GnPs. However, it should be mentioned that the filler contents used in these studies and expressed
in vol % are high while nanofillers, if well dispersed, are expected to impart to the host matrix strong
reinforcement at very low filler loading. Besides the impressive and unusual enhancement of the
storage modulus of the EPDM/GnPs (12 vol %), the authors mention an increase in Tg by 2.2% for the
5.7 vol % GnPs and an increase of 4 ◦C at 10.5 vol % GnPs in SBR, attributed to a decrease in the mobility
of elastomer chains attributed to good interfacial polymer-filler interaction [94,95]. Potts et al. [26] have
shown that for a 5 wt % reduced graphene oxide/NR nanocomposite, the storage modulus increases by
a factor of 3.4 and 2 at −100 ◦C, but by factors of 19.5 and 4.7 at 25 ◦C by solution treatment and two-roll
mill processing. Analysis of tan δ peaks showed little to no change in Tg with loading but the authors
mention that the shape and height of the peak change significantly with incorporation of GO platelets
which they attribute to favorable polymer-filler interactions. Wu et al. [96] also prepared a series of
NR/GO composites filled with different GO sizes through latex co-coagulation technology in order to
evaluate the effect of GO size on the mechanical properties of the resulting composites. The storage
modulus at 20 ◦C of neat NR and of the composites filled with 2 phr of GO having three different
sizes (92.68, 164.39 and 323.74 nm in the composites) are 1.01, 1.82, 1.71 and 1.52 MPa, respectively.
The enhancement of the storage modulus is modest with regard to that observed by Potts et al. [26].
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Figure 12. Temperature dependence of the storage modulus and tan δ of: (a) unfilled SBR and
composites filled with MWCNTs at different contents; (b) unfilled NR and composites filled with 4 wt %
FGS and 16 wt % CB. (a) Reprinted from Reference [93] with permission from KGK; (b) Reprinted from
Reference [54], with permission from The Journal of Polymer Science.
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All the studies reported above, point out some discrepancies and contradictory results due to the
fact that the composite properties are affected by several factors including the type of particles, the type
of polymer, the interfacial interactions and more significantly the filler dispersion that depends on the
processing techniques.

6. Electrical Properties under Strain

Measurements of resistivity under strain brings further insight into the physical processes
involved in deformation of filled elastomers. Carbon nanomaterials have largely demonstrated
their ability to provide, when incorporated into ordinarily insulating polymeric media, electrical
conduction at a much lower filler content than carbon black particles [12,16,35,97–104]. At a given
amount of conductive particles called the percolation threshold, a continuous network of filler is
formed across the matrix and the material undergoes a sudden transition from an insulator to a
conductor. The percolation threshold in various elastomers (NR, SBR and EPDM) filled with MWCNTs
has been found to be around 0.5 phr [102]. It has also been found to be 0.5 phr by Al-solamy et al. [105]
in acrylonitrile butadiene rubber filled with graphite nanoplatelets. In the review of Potts et al. [101],
the reported electrical percolation thresholds achieved with graphene-based nanocomposites do
not differ significantly from those observed for CNT/polymer composites. Sadasivuni et al. [12]
report more dispersed values of the percolation threshold for graphene and graphite derivative
elastomer nanocomposites.

Filler parameters such as particle size, structure, concentration, dispersion, orientation, are
key factors in determining the electrical properties of composites. Resistivity is also sensitive to a
mechanical deformation that changes the filler distribution. A typical strain dependence of volume
resistivity of a NR/MWCNTs (3phr) composite is shown in Figure 13. At the filler content of 3 phr,
the composite is above the percolation threshold, determined around 0.5 phr [102]. During the first
stretching to 100% strain (step 1), the resistivity increases gradually thus reflecting a decrease in the
filler contacts. This result may be regarded as arising from an alignment of filler structures in the
stretching direction. White et al. [103] have presented a three-dimensional simulation and calculation
of electrical conductivity above the percolation threshold for networks containing finite, conductive
cylinders as a function of axial orientation. It is shown that at a fixed volume fraction and aspect
ratio, the electrical conductivities exhibit a substantial drop with increasing axial alignment. As the
rods become highly aligned, the network structure is destroyed, causing the electrical conductivity to
decrease. The authors highlight the importance of axial orientation of conductive cylindrical particles
in a nonconductive matrix in determining the electrical conductivity and more generally in determining
composite properties.

Figure 13 shows that unloading gradually the sample leads to an uncrease in resistivity and after
total removal of the stress, the resistivity is much higher than that of the undeformed material thus
showing that the contacts are not reformed. A second stretch is totally reversible till the point where the
first and second stretching meet (step 2) then the resistivity increases again (step 3). A second unloading
from ε = 200% leads to a higher value of resistivity than that obtained in the first unloading cycle and
a third stretching still displays a decrease (step 4) then increase (step 5) in resistivity. The distance
between particles increases along the direction of stretch but the width and thickness are reduced but
increase upon unloading till zero stress causing a loss of contacts between conductive particles and an
increase in resistivity. Re-straining the sample brings again the particles in the cross-sectional area into
contact thus explaining the reversible portion of the curve in Figure 13 (steps 2 and 4).

In a study related to the resistivity behavior of carbon black-filled silicone rubber submitted
to cyclic loading experiments, Kost et al. [104] showed, from stress and relative electrical resistivity
relaxation experiments that upon complete retraction of the sample that follows stretching step, the
resistivity is higher than the original value of the unstrained virgin sample. According to the authors,
during cyclic tests, orientation effects are insignificant at low extensions (less than about 25%) where
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the formation and destruction of the carbon network is the dominant process. At higher strains,
orientation effects become important, causing a resistivity reduction.C 2017, 3, 10  17 of 22 
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Figure 13. Srain dependence of the electrical resistivity for natural rubber filled with 3 phr of MWCNTs.
Labels in red: resistivity during the retraction process. The other colors represent the different
loading cycles.

Elastomeric composites based on ethylene-propylene-diene monomer (EPDM) filled with
MWCNTs have also been shown to display a decrease in conductivity with increasing strain, a linear
relation being found between conductivity and deformations up to 10% strain [98]. Cyclic experiments
showed that the change in resistivity presents a reversible portion attributed to piezoresistivity and an
irreversible one attributed to damage.

De Focatiis et al. [81] have compared the resistivity-strain response of elastomers filled with CB
to materials filled with MWCNTs. In the CB-filled elastomers, the piezoresistive loading path was
relatively independent of prestrain, whereas the unloading path depended strongly on prestrain. In the
MWCNT-filled elastomers, the piezoresistive loading and unloading paths were relatively close to each
other. Cyclic experiments reveal that the resistivity was lower during loading than during unloading
in the CB-filled materials whereas the reverse was true for the MWCNT-filled elastomers. The authors
believe that the different behavior may be related to the very different aspect ratio of the filler particles.
The cyclic experiments were intended to explore the applicability by the materials as strain sensors by
looking for ranges of deformation where the electrical response was repeatable.

7. Conclusions

This review article has addressed recent research carried out on elastomers filled with carbon
nanomaterials such as carbon nanotubes, graphitic nanostructures, graphene and graphene oxide. At a
same filler loading, these nanomaterials impart to the rubbery matrices, a much higher increase in the
elastic modulus than that provided by the conventional carbon black particles. The improvements
are mainly related to the anisotropic character of the fillers and to their ability to orientate along the
direction of stretch as well as to the formation of a filler network achieved at a very low filler loading
on account of the high aspect ratio of the nanoparticles. The state of filler dispersion has also a large
influence on the physical performance of the elastomeric compound and the presence of agglomerated
structures explains the strong reduction in the strain at rupture in almost all reported studies dealing
with carbon nanomaterials. That points out the importance of the manufacturing techniques of
rubber nanocomposites that aim at keeping fillers at nanoscale in polymeric matrices. The interfacial
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interactions between the polymer chains and the filler particles that play a major role in conventional
composites are weaker with carbon nanomaterials than with carbon black as demonstrated by the
absence of upturn in the reduced stress at high elongations. The data presented in the literature do not
allow to compare the reinforcing efficiencies of the different carbon nanostructures since the composite
properties are strongly related to the state of filler dispersion. This type of evaluation can only be done
in the case of “ideal” dispersions.

One of the major attribute of the carbon nanomaterials with high aspect ratio is to provide
electrical conduction at a much lower filler loading than that provided by carbon black particles. But as
for other properties, the state of filler dispersion that depends on the processing conditions has a strong
effect on the electrical properties. According to the reported studies, the different carbon nanstructures
provide similar electrical property enhancements. Only more efficient mixing techniques in view of
better state of dispersion would allow an assessment of the role of filler morphology on electrical and
mechanical properties.
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properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in
situ polymerization. Eur. Polym. J. 2014, 50, 69–77. [CrossRef]

29. Kim, H.; Miura, Y.; Macosko, C.W. Graphene/polyurethane nanocomposites for improved gas barrier and
electrical conductivity. Chem. Mater. 2010, 22, 3441–3450. [CrossRef]

30. Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid
Interface Sci. 2006, 128–130, 37–46. [CrossRef] [PubMed]

31. Tkalya, E.E.; Ghislandi, M.; de With, G.; Koning, C.E. The use of surfactants for dispersing carbon nanotubes
and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 2012, 17, 225–232.
[CrossRef]

32. Dyke, C.A.; Tour, J.M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions.
Nano Lett. 2003, 3, 1215–1218. [CrossRef]

33. Bokobza, L.; Garnaud, G.; Beaunier, P.; Bruneel, J.-L. Vibrational and electrical investigations of a uniaxially
stretched polystyrene/carbon nanotube composite. Vib. Spectrosc. 2013, 67, 6–13. [CrossRef]

34. Bokobza, L.; Leroy, E.; Lalanne, V. Effect of filling mixtures of sepiolite and a surface modified fumed silica
on the mechanical and swelling behavior of a styrene-butadiene rubber. Eur. Polym. J. 2009, 45, 996–1001.
[CrossRef]

35. Bokobza, L.; Rahmani, M.; Belin, C.; Bruneel, J.-L.; El Bounia, N.-E. Blends of carbon blacks and multiwall
carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J. Polym. Sci. Part B Polym. Phys. 2008, 46,
1939–1951. [CrossRef]

36. Zhan, Y.H.; Liu, G.Q.; Xia, H.S.; Yan, N. Natural rubber/carbon black/carbon nanotubes composites prepared
through ultrasonic assisted latex mixing process. Plast. Rubber Compos. 2011, 40, 32–39. [CrossRef]

http://dx.doi.org/10.1039/b413029d
http://dx.doi.org/10.1016/j.polymer.2014.08.056
http://dx.doi.org/10.3390/c1010077
http://dx.doi.org/10.1016/j.vibspec.2014.07.009
http://dx.doi.org/10.1002/1097-4628(20001209)78:11&lt;1873::AID-APP40&gt;3.0.CO;2-8
http://dx.doi.org/10.1002/1097-4628(20001209)78:11&lt;1879::AID-APP50&gt;3.0.CO;2-1
http://dx.doi.org/10.1016/j.compscitech.2004.11.016
http://dx.doi.org/10.1002/mame.201000358
http://dx.doi.org/10.1021/ma300706k
http://dx.doi.org/10.1002/macp.200900157
http://dx.doi.org/10.1016/j.eurpolymj.2013.10.031
http://dx.doi.org/10.1021/cm100477v
http://dx.doi.org/10.1016/j.cis.2006.11.007
http://www.ncbi.nlm.nih.gov/pubmed/17222381
http://dx.doi.org/10.1016/j.cocis.2012.03.001
http://dx.doi.org/10.1021/nl034537x
http://dx.doi.org/10.1016/j.vibspec.2013.03.002
http://dx.doi.org/10.1016/j.eurpolymj.2008.12.028
http://dx.doi.org/10.1002/polb.21529
http://dx.doi.org/10.1179/174328911X12940139029284


C 2017, 3, 10 20 of 22

37. Galimberti, M.; Coombs, M.; Riccio, P.; Riccò, T.; Passera, S.; Pandini, S.; Conzatti, L.; Ravasio, A.; Tritto, I.
The role of CNTs in promoting hybrid filler networking and synergism with carbon black in the mechanical
behavior of filled polyisoprene. Macromol. Mater. Eng. 2013, 298, 241–251. [CrossRef]

38. Fritzsche, J.; Lorenz, H.; Klüppel, M. CNT based elastomer-hybrid-nanocomposites with promising
mechanical and electrical properties. Macromol. Mater. Eng. 2009, 294, 551–560. [CrossRef]

39. Sagalianov, I.; Vovchenko, L.; Matzui, L.; Lazarenko, O. Synergistic enhancement of the percolation
threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets.
Nanoscale Res. Lett. 2017, 12, 140. [CrossRef] [PubMed]

40. Enriquez, E.; de Frutos, J.; Fernandez, J.F.; de la Rubia, M.A. Conductive coatings with low carbon-black
content by adding carbon nanofibers. Compos. Sci. Technol. 2014, 93, 9–16. [CrossRef]

41. Bokobza, L. Filled elastomers: A new approach based on measurements of chain orientation. Polymer 2001,
42, 5415–5423. [CrossRef]

42. Wagner, M.P. Reinforcing silicas and silicates. Rubber Chem. Technol. 1976, 49, 703–774. [CrossRef]
43. Amram, B.; Bokobza, L.; Queslel, J.P.; Monnerie, L. Fourier-transform infra-red dichroism study of molecular

orientation in synthetic high cis-1,4-polyisoprene and in natural rubber. Polymer 1986, 27, 877–882. [CrossRef]
44. Bueche, F. Molecular basis for the Mullins effect. J. Appl. Polym. Sci. 1960, 4, 107–114. [CrossRef]
45. Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 1940, 11, 582–592. [CrossRef]
46. Rivlin, R.S.; Saunders, D.W. Large elastic deformations of isotropic materials. VII. Experiments on the

deformation of rubber. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1951, 243, 251–288. [CrossRef]
47. Flory, P.J.; Erman, B. Theory of elasticity of polymer networks. 3. Macromolecules 1982, 15, 800–806. [CrossRef]
48. Gent, A.N. A new constitutive relation for rubber. Rubber Chem. Technol. 1996, 69, 59–61. [CrossRef]
49. Boyce, M.C.; Arruda, E.M. Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 2000, 73,

504–523. [CrossRef]
50. Tobajas, R.; Ibartz, E.; Gracia, L. A comparative study of hyperelastic constitutive models to characterize

the behavior of a polymer used in automotive engines. Proc. 2nd Int. Electron. Conf. Mater. 2016, 2, A002.
[CrossRef]

51. Mullins, L.; Tobin, N.R. Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers.
Rubber Chem. Technol. 1957, 30, 555–571. [CrossRef]

52. Dannenberg, E.M. The effects of surface chemical interactions on the properties of filler-reinforced rubbers.
Rubber Chem. Technol. 1975, 48, 410–444. [CrossRef]

53. Bokobza, L.; Bresson, B.; Garnaud, G.; Zhang, J. Mechanical and AFM investogations of elastomers filled
with multiwall carbon nanotubes. Compos. Interfaces 2012, 19, 285–295. [CrossRef]

54. Ozbas, B.; Toki, S.; Hsiao, B.S.; Chu, B.; Register, R.A.; Aksay, I.A.; Prud’homme, R.K.; Adamson, D.H.
Strain-induced crystallization and mechanical properties of functionalzed graphene sheet-filled natural
rubber. J. Polym. Sci. Part B Poym. Phys. 2012, 50, 718–723. [CrossRef]

55. Fu, D.H.; Zhan, Y.H.; Yan, N.; Xia, H.S. A comparative investigation on strain induced crystallization for
graphene and carbon nanotubes filled natural rubber composites. eXPRESS Polym. Lett. 2015, 9, 597–607.
[CrossRef]

56. Scotti, R.; Conzatti, L.; D’Arienzo, M.; di Credico, B.; Giannini, L.; Hanel, T.; Stagnaro, P.; Susanna, A.;
Tadiello, L.; Morazzoni, F. Shape controlled spherical (0D) and rod-like (1D) silica nanoparticle morphology
on the filler reinforcing effect. Polymer 2014, 55, 1497–1506. [CrossRef]

57. Huber, G.; Vilgis, T.A. Universal properties of filled rubbers: Mechanisms for reinforcement on different
length scales. KGK Kautsch. Gummi Kunstoffe 1999, 52, 102–107.

58. Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20–25. [CrossRef]
59. Rooj, S.; Das, A.; Stöckelhuber, K.W.; Wießner, S.; Fischer, D.; Reuter, U.; Heinrich, G. Expanded organoclay

assisted dispersion and simultaneous structural alterations of multiwall carbon nanotube (MWCNT) clusters
in natural rubber. Compos. Sci. Technol. 2015, 107, 36–43. [CrossRef]

60. Yang, J.; Tian, M.; Jia, Q.-X.; Shi, J.-H.; Zhang, L.-Q.; Lim, S.-H.; Yu, Z.-Z.; Mai, Y.-W. Improved mechanical
anf fonctional properties of elastomer/graphite nanocomposites prepared by latex compounding. Acta Mater.
2007, 55, 6372–6382. [CrossRef]

61. Mullins, L. Effect of stretching on the properties of rubber. J. Rubber Res. 1947, 16, 275–289. [CrossRef]
62. Blanchard, A.F.; Parkinson, D. Breakage of carbon-rubber networks by applied stress. Ind. Eng. Chem. 1952,

44, 799–812. [CrossRef]

http://dx.doi.org/10.1002/mame.201200075
http://dx.doi.org/10.1002/mame.200900131
http://dx.doi.org/10.1186/s11671-017-1909-z
http://www.ncbi.nlm.nih.gov/pubmed/28235378
http://dx.doi.org/10.1016/j.compscitech.2013.12.021
http://dx.doi.org/10.1016/S0032-3861(00)00853-3
http://dx.doi.org/10.5254/1.3534979
http://dx.doi.org/10.1016/0032-3861(86)90298-3
http://dx.doi.org/10.1002/app.1960.070041017
http://dx.doi.org/10.1063/1.1712836
http://dx.doi.org/10.1098/rsta.1951.0004
http://dx.doi.org/10.1021/ma00231a022
http://dx.doi.org/10.5254/1.3538357
http://dx.doi.org/10.5254/1.3547602
http://dx.doi.org/10.3390/ecm-2-A002
http://dx.doi.org/10.5254/1.3542705
http://dx.doi.org/10.5254/1.3547460
http://dx.doi.org/10.1080/15685543.2012.712486
http://dx.doi.org/10.1002/polb.23060
http://dx.doi.org/10.3144/expresspolymlett.2015.56
http://dx.doi.org/10.1016/j.polymer.2014.01.025
http://dx.doi.org/10.1063/1.1707495
http://dx.doi.org/10.1016/j.compscitech.2014.11.018
http://dx.doi.org/10.1016/j.actamat.2007.07.043
http://dx.doi.org/10.5254/1.3546914
http://dx.doi.org/10.1021/ie50508a034


C 2017, 3, 10 21 of 22

63. Bueche, F. Mullins effect and rubber-filler interaction. J. Appl. Polym. Sci. 1961, 5, 271–281. [CrossRef]
64. Dannenberg, E.M.; Brennan, J.J. Strain energy as a criterion for stress softening in carbon-black-dilled

vulcanizates. Rubber Chem. Technol. 1966, 39, 597–608. [CrossRef]
65. Boonstra, B.B. Reinforcement of Elastomers; Kraus, G., Ed.; Wiley Interscience: New York, NY, USA, 1965;

Chapter 6.
66. Kraus, G.; Childers, C.W.; Rollmann, K.W. Stress softening in carbon black-reinforced vulcanizates. J. Appl.

Polym. Sci. 1966, 10, 229–244. [CrossRef]
67. Mullins, L. Softening of rubber by deformation. Rubber Chem. Technol. 1969, 42, 339–362. [CrossRef]
68. Harwood, J.A.C.; Payne, A.R.; Whittaker, R.E. Stress-softening and reinforcement of rubber. J. Macromol. Sci.

Part B Phys. 1971, 5, 473–486. [CrossRef]
69. Kilian, H.G.; Strauß, M.; Hamm, W. Universal properties in filler-loaded rubbers. Rubber Chem. Technol. 1994,

67, 1–16. [CrossRef]
70. Clément, F.; Bokobza, L.; Monnerie, L. On the Mullins effect in silica-filled polydimethylsiloxane networks.

Rubber Chem. Technol. 2001, 74, 846–870. [CrossRef]
71. Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601–612. [CrossRef]
72. Harish, A.B.; Wriggers, P.; Jungk, J.; Hojdis, N.; Recker, C. Mesoscale constitutive modeling of

non-crystallizing filled elastomers. Comput. Mech. 2016, 57, 653–677. [CrossRef]
73. Lapra, A.; Clément, F.; Bokobza, L.; Monnerie, L. Straining effects in silica-filled elastomers investigated by

atomic force microscopy: From macroscopic stretching to nanoscale strainfield. Rubber Chem. Technol. 2003,
76, 60–81. [CrossRef]

74. Bokobza, L.; Gaulliard, V.; Ladouce, L. Silica reinforcement of styrene-butadiene rubbers. Kautsch. Gummi
Kunststoffe 2001, 54, 177–180.

75. Bokobza, L.; Rapoport, O. Reinforcement of natural rubber. J. Appl. Polym. Sci. 2002, 85, 2301–2316.
[CrossRef]

76. Maiti, A.; Small, W.; Gee, R.H.; Weisgraber, T.H.; Chinn, S.C.; Wilson, T.S.; Maxwell, R.S. Mullins effect in a
filled elastomer under uniaxial tension. Phys. Rev. E 2014, 89, 012602. [CrossRef] [PubMed]

77. Dargazany, R.; Itskov, M. A network evolution model for the anisotropic Mullins effect in carbon black filled
rubbers. Int. J. Solids Struct. 2009, 46, 2967–2977. [CrossRef]

78. Dargazany, R.; Itskov, M. Constitutive modeling of the Mullins effect and cyclic stress softening in filled
elastomers. Phys. Rev. E 2013, 88, 012602. [CrossRef] [PubMed]

79. Clough, J.M.; Creton, C.; Craig, S.L.; Sijbesma, R.P. Covalent bond scission in the Mullins effect of a filled
elastomer: Real-time visualization with mechanoluminescence. Adv. Funct. Mater. 2016, 26, 9063–9074.
[CrossRef]

80. Mahmoud, W.E.; Al-Ghamdi, A.A.; Al-Solamy, F.R. Evaluation and modeling of the mechanical properties of
graphite nanoplatelets based rubber nanocomposites for pressure sensing applications. Polym. Adv. Technol.
2012, 23, 161–165. [CrossRef]

81. De Focatiis, D.S.A.; Hull, D.; Sánchez-Valencia, A. Roles of prestrain and hysteresis on piezoresistance in
conductive elastomers for strain sensor applications. Plast. Rubber Compos. Macromol. Eng. 2012, 41, 301–309.
[CrossRef]

82. Ponnamma, D.; Sadasivuni, K.K.; Strankowski, M.; Moldenaers, P.; Thomas, S.; Grohens, Y. Interrelated shape
memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 2013, 3, 16068–16079.
[CrossRef]

83. Peddini, S.K.; Bosnyak, C.P.; Henderson, N.M.; Ellison, C.J.; Paul, D.R. Nanocomposites from
styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties.
Polymer 2015, 56, 443–451. [CrossRef]

84. Fang, C.; Zhang, Y.; Wang, W.; Wang, Z.; Jiang, F.; Wang, Z. Fabrication of copolymer-grafted multiwalled
carbon nanotube composite thermoplastic elastomers filled with unmodified MWCNTs as additional fillers
to improve both electrical and mechanical properties. Ind. Eng. Chem. Res. 2015, 54, 12597–12606. [CrossRef]

85. Bokobza, L. Multiwall carbon nanotube-filled natural rubber: Electrical and mechanical properties. eXPRESS
Polym. Lett. 2012, 6, 213–223. [CrossRef]

86. Payne, A.R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl.
Polym. Sci. 1962, 6, 57–63. [CrossRef]

http://dx.doi.org/10.1002/app.1961.070051504
http://dx.doi.org/10.5254/1.3544867
http://dx.doi.org/10.1002/app.1966.070100205
http://dx.doi.org/10.5254/1.3539210
http://dx.doi.org/10.1080/00222347108212551
http://dx.doi.org/10.5254/1.3538664
http://dx.doi.org/10.5254/1.3547657
http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
http://dx.doi.org/10.1007/s00466-015-1251-1
http://dx.doi.org/10.5254/1.3547741
http://dx.doi.org/10.1002/app.10858
http://dx.doi.org/10.1103/PhysRevE.89.012602
http://www.ncbi.nlm.nih.gov/pubmed/24580250
http://dx.doi.org/10.1016/j.ijsolstr.2009.03.022
http://dx.doi.org/10.1103/PhysRevE.88.012602
http://www.ncbi.nlm.nih.gov/pubmed/23944481
http://dx.doi.org/10.1002/adfm.201602490
http://dx.doi.org/10.1002/pat.1840
http://dx.doi.org/10.1179/1743289812Y.0000000022
http://dx.doi.org/10.1039/c3ra41395k
http://dx.doi.org/10.1016/j.polymer.2014.11.006
http://dx.doi.org/10.1021/acs.iecr.5b03599
http://dx.doi.org/10.3144/expresspolymlett.2012.24
http://dx.doi.org/10.1002/app.1962.070061906


C 2017, 3, 10 22 of 22

87. Payne, A.R. Dynamic properties of natural rubber containing heat-treated carbon blacks. J. Appl. Polym. Sci.
1965, 9, 3245–3254. [CrossRef]

88. Bokobza, L. Elastomeric composites based on nanospherical particles and carbon nanotubes: A comparative
study. Rubber Chem. Technol. 2013, 86, 423–448. [CrossRef]

89. Wang, M.-J. Effect of polymer-filler and filler-filler interactions on dynamics properties of filled vulcanizates.
Rubber Chem. Technol. 1998, 71, 520–589. [CrossRef]

90. Clément, F.; Bokobza, L.; Monnerie, L. Investigation of the Payne effect and its temperature dependence on
silica-filled polydimethylsiloxane networks. Part I: Experimental results. Rubber Chem. Technol. 2005, 78,
211–231. [CrossRef]

91. Ponnamma, D.; Sadasivuni, K.K.; Strankowski, M.; Guo, Q.; Thomas, S. Synergistic effect of multi walled
carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 2013,
9, 10343–10353. [CrossRef]

92. Maier, P.G.; Göritz, D. Molecular interpretation of the Payne effect. Kautsch. Gummi Kunststoffe 1996, 49,
18–21.

93. Bokobza, L.; Pflock, T.; Lindemann, A.; Kwiryn, D.; Dos Santos Claro, P. Thermal conductivity and mechanical
properties of composites based on multiwall carbon nanotubes and styrene-butadiene rubber. Kautsch. Gummi
Kunststoffe 2014, 67, 45–50.

94. Araby, S.; Zaman, I.; Meng, Q.; Kawashima, N.; Michelmore, A.; Kuan, H.-C.; Majewski, P.; Ma, J.; Zhang, L.
Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 2013,
24, 165601. [CrossRef] [PubMed]

95. Araby, S.; Meng, Q.; Zhang, L.; Kang, H.; Majewski, P.; Tang, Y.; Ma, J. Electrically and thermally conductive
elastomer/graphene nanocomposites by solution mixing. Polymer 2014, 55, 201–210. [CrossRef]

96. Wu, X.; Lin, T.F.; Tang, Z.H.; Guo, B.C.; Huang, G.S. Natural rubber/graphene oxide composites: Effect of
sheet size on mechanical properties and strain-induced crystallization behavior. Exp. Polym. Lett. 2015, 9,
672–685. [CrossRef]

97. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer
composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [CrossRef]

98. Ciselli, P.; Lu, L.; Busfield, J.J.C.; Peijs, T. Piezoresistive polymer composites based on EPDM and MWNTs
for strain sensing applications. E-Polymers 2010. [CrossRef]

99. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and
future. Prog. Mater. Sci. 2011, 56, 1178–1271. [CrossRef]

100. Li, B.; Zhong, W.-H. Review on polymer/graphite nanoplatelets nanocomposites. J. Mater. Sci. 2011, 46,
5595–5614. [CrossRef]

101. Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer
2011, 52, 5–25. [CrossRef]

102. Bokobza, L. Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites.
Polym. Adv. Technol. 2012, 23, 1543–1549. [CrossRef]

103. White, S.I.; Di Donna, B.A.; Mu, M.; Lubensky, T.C.; Winey, K.I. Simulations and electrical conductivity of
percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B 2009, 79, 024301.
[CrossRef]

104. Kost, J.; Narkis, M.; Foux, A. Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading
experiments. J. Appl. Polym. Sci. 1984, 29, 3937–3946. [CrossRef]

105. Al-solamy, F.R.; Al-Ghamdy, A.A.; Mahmoud, W.E. Piezoresistive behavior of graphite nanoplatelets based
rubber nanocomposites. Polym. Adv. Technol. 2012, 23, 478–482. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/app.1965.070091004
http://dx.doi.org/10.5254/rct.13.86983
http://dx.doi.org/10.5254/1.3538492
http://dx.doi.org/10.5254/1.3547879
http://dx.doi.org/10.1039/c3sm51978c
http://dx.doi.org/10.1088/0957-4484/24/16/165601
http://www.ncbi.nlm.nih.gov/pubmed/23535387
http://dx.doi.org/10.1016/j.polymer.2013.11.032
http://dx.doi.org/10.3144/expresspolymlett.2015.63
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005
http://dx.doi.org/10.1515/epoly.2010.10.1.125
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
http://dx.doi.org/10.1007/s10853-011-5572-y
http://dx.doi.org/10.1016/j.polymer.2010.11.042
http://dx.doi.org/10.1002/pat.3027
http://dx.doi.org/10.1103/PhysRevB.79.024301
http://dx.doi.org/10.1002/app.1984.070291226
http://dx.doi.org/10.1002/pat.1902
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basic Issues on Carbon Nanomaterials 
	Manufacturing Techniques of Rubber Nanocomposites 
	Tensile Properties 
	Dynamic Mechanical Properties 
	Electrical Properties under Strain 
	Conclusions 

