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Abstract: In this study, the vibrational properties of single- and double-layer graphene sheets (GSs)
with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential
applications of atomic-scale mass sensing are presented using GSs with simply supported boundary
condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate
the vibration frequency of the GSs under thermal environment. Using the proposed model,
the relationship between the frequency shifts of graphene-based mass sensor and the attached
nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation
of frequency shifts with the attached nanomass and the positions on the GS are investigated
and discussed in detail. The obtained results show that the nanomass can be easily detected by
using GS resonator which provides a highly sensitive nanomechanical element in sensor systems.
The vibrational frequency shift of GS increases with increasing the temperature dependence.
The double-layer GSs (DLGSs) have higher sensitivity than the single-layer GSs (SLGSs) due to
high frequency shifts.
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1. Introduction

Graphene sheets (GSs) are an excellent two-dimensional (2D) material, and have drawn attention
in recent years. Due to the unique properties of small size, super mechanical properties, and high
vibration frequency, graphene sheets have been considered an ideal structure element for fabricating
nanoelectromechanical systems (NEMS) [1–3]. Novel graphene-based nanostructures are believed
to have tremendous potential applications for developing sensors of various types such as magnetic
and electric field sensors, strain and nanoscale mass sensors [3–7]. The mechanism of using GSs as
nanoscale mass sensing is based on the fact that the resonant frequency of GSs is shifted upward when
a nanoparticle is loaded onto the GSs and the shift frequency is sensitive to the attached nanomass.
One relevant application of the GSs is given by carbon nanotubes (CNTs) which can be obtained
by rolling a graphene sheet into a cylinder. Due to their mechanical and physical properties, CNTs
are applied as ultrahigh-frequency nano-mechanical resonators in a large number of NEMS such as
sensors, oscillators and charge detectors [8–14].

At present, the elastic continuum theory and model have been regarded as an effective way to
investigate the vibration behavior of GSs [15,16]. The vibration analysis of multilayered graphene
sheets (MLGSs) using a continuum model has been reported by Kitipornchai et al. [15]. They indicated
that the vibration modes of the graphene sheets that were associated with the resonant frequencies
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were quite different due to the influence of the Van der Waals (vdW) interaction between any two
nanosheets. The lowest natural frequency of a MLGS was independent of the vdW interaction, but
all of the other higher natural frequencies depended largely on the vdW interaction. Natsuki’s group
has investigated the vibrational characteristics of embedded double-layer graphene nanoribbons
(DLGNRs) based on the nonlocal elasticity theory [16]. The results showed that the vibrational
frequency of DLGNRs had a significant difference between the in-phase mode (IPM) and the anti-phase
mode (APM). The nonlocal parameter affected the natural frequencies, especially for higher modes
of vibration. Moreover, the natural frequencies of the APM were less sensitive to the vibration
modes than those of the IPM. The operation of a NEMS mass sensor relied on monitoring how the
resonance frequency of a nanomechanical resonator changed when an additional nanomass was
adsorbed onto its surface [17–20]. Many studies have shown that GSs exhibit ultrahigh frequency
ranges up to the terahertz order because of the inherent characteristics of the materials [15,16,21–23].
These inherent characteristics led to a higher sensitivity to atomic-scale mass detection, whereby the
attached nanomass can easily cause a shift in the resonant frequency of the GS resonator.

Ultrasonic vibration and attenuation are the important properties for design and performance
of the sensor devices. Graphene sheets appear to be excellent element materials for structures of
nanomechanical resonators because they can generate terahertz frequency vibration. Some studies
have been carried out on utilizing the molecular dynamics (MD) method [24,25], molecular structural
mechanics [26] or continuum mechanics [20,27–30] to investigate the applications of single-layer
graphene sheets (SLGSs) for NEMS mass sensors. However, there is very little investigation of
the resonant frequency of double-layer graphene sheets (DLGSs) used as mass sensors and how
temperature affects the vibration frequency of GSs [27].

In this paper, an analytical method based on the nonlocal elasticity theory [31–33] is introduced
to predict the vibrational property of GSs as nanoscale sensing. The potential applications
using single- and double-layer GSs with a simply supported boundary condition are illustrated.
To investigate the vibration frequency of GSs under a thermal environment, the frequency equation in
GSs for attaching a nanoparticle is derived. Using the present theory, the relationship between the
frequency shifts of the graphene-based mass sensor and the attached nanoparticles is investigated
in detail.

2. Theoretical Approach

2.1. Governing Equation Based on Nonlocal Elasticity

We present a continuum elastic model to analyze the vibration frequency of the nanomechanical
mass sensor when temperature effects are considered. As shown in Figure 1, a nanoparticle (mc) is
attached to a simply supported graphene sheet (GS) in an arbitrary position (x0, y0), thereby inducing
a vibrational frequency shift due to the attached mass. The origin is taken at a corner of the mid-plane
of the nanoplate. The coordinates x and y are taken along the length La and the width Lb of the GSs,
respectively. The coordinate z is taken along the thickness (h) direction of the GSs.

C 2017, 3, 4 2 of 11 

were quite different due to the influence of the Van der Waals (vdW) interaction between any two 
nanosheets. The lowest natural frequency of a MLGS was independent of the vdW interaction, but 
all of the other higher natural frequencies depended largely on the vdW interaction. Natsuki’s group 
has investigated the vibrational characteristics of embedded double-layer graphene nanoribbons 
(DLGNRs) based on the nonlocal elasticity theory [16]. The results showed that the vibrational 
frequency of DLGNRs had a significant difference between the in-phase mode (IPM) and the anti-phase 
mode (APM). The nonlocal parameter affected the natural frequencies, especially for higher modes of 
vibration. Moreover, the natural frequencies of the APM were less sensitive to the vibration modes than 
those of the IPM. The operation of a NEMS mass sensor relied on monitoring how the resonance 
frequency of a nanomechanical resonator changed when an additional nanomass was adsorbed onto 
its surface [17–20]. Many studies have shown that GSs exhibit ultrahigh frequency ranges up to the 
terahertz order because of the inherent characteristics of the materials [15,16,21–23]. These inherent 
characteristics led to a higher sensitivity to atomic-scale mass detection, whereby the attached 
nanomass can easily cause a shift in the resonant frequency of the GS resonator. 

Ultrasonic vibration and attenuation are the important properties for design and performance 
of the sensor devices. Graphene sheets appear to be excellent element materials for structures of 
nanomechanical resonators because they can generate terahertz frequency vibration. Some studies 
have been carried out on utilizing the molecular dynamics (MD) method [24,25], molecular structural 
mechanics [26] or continuum mechanics [20,27–30] to investigate the applications of single-layer graphene 
sheets (SLGSs) for NEMS mass sensors. However, there is very little investigation of the resonant 
frequency of double-layer graphene sheets (DLGSs) used as mass sensors and how temperature 
affects the vibration frequency of GSs [27]. 

In this paper, an analytical method based on the nonlocal elasticity theory [31–33] is introduced 
to predict the vibrational property of GSs as nanoscale sensing. The potential applications using 
single- and double-layer GSs with a simply supported boundary condition are illustrated. To investigate 
the vibration frequency of GSs under a thermal environment, the frequency equation in GSs for 
attaching a nanoparticle is derived. Using the present theory, the relationship between the frequency 
shifts of the graphene-based mass sensor and the attached nanoparticles is investigated in detail. 

2. Theoretical Approach 

2.1. Governing Equation Based on Nonlocal Elasticity 

We present a continuum elastic model to analyze the vibration frequency of the nanomechanical 
mass sensor when temperature effects are considered. As shown in Figure 1, a nanoparticle  cm  is 

attached to a simply supported graphene sheet (GS) in an arbitrary position  00, yx , thereby 
inducing a vibrational frequency shift due to the attached mass. The origin is taken at a corner of the 
mid-plane of the nanoplate. The coordinates x and y are taken along the length aL  and the width bL  
of the GSs, respectively. The coordinate z is taken along the thickness  h  direction of the GSs. 

 
Figure 1. Schematic illustration showing graphene sheet with an attached mass. Figure 1. Schematic illustration showing graphene sheet with an attached mass.



C 2017, 3, 4 3 of 10

In the analysis, the vibration frequency of GSs is analyzed based on nonlocal elasticity theory.
For the nonlocal linear elastic solids, Hook’s law of nanoplates can be expressed as

σxx − (e0a)2 ∇2σxx = E
1−ν2 (εxx + νεyy)− Eα∆T

1−ν

σyy − (e0a)2 ∇2σyy = E
1−ν2 (εyy + νεxx)− Eα∆T

1−ν

τxy − (e0a)2 ∇2τxy = Gγxy

(1)

where σ and τ are the normal stress and the shear stress. ε and γ are the axial strain and shear strain.
E, G and ν are the tensile, shear elastic modulus and Poisson’s ratio, respectively. α is the coefficient of
thermal expansion, and ∆T is the temperature change. The parameter e0a is the nonlocal parameter
appropriate to GSs, where e0 is a constant appropriate to the material and has to be determined for each
material independently by experiment or atomistic simulation. a is the internal characteristic length of
a carbon-carbon bond (e.g., lattice parameter, granular size, distance between atoms’ bond) [13,16].

The expressions between the strain and the displacement are [34]

εxx = −z
∂2w
∂x2 , εyy = −z

∂2w
∂y2 , γxy = −2z

∂2w
∂x∂y

(2)

where w is the transverse displacement.
The bending and shear moments can be defined by

Mxx =
h/2w

−h/2

zσxxdz Myy =
h/2w

−h/2

zσyydz Mxy =
h/2w

−h/2

zτxydz (3)

Substituting Equation (1) into Equation (3) and using Equation (2), we obtain

Mxx − (e0a)2
(

∂2 Mxx
∂x2 + ∂2 Mxx

∂y2

)
= −D

(
∂2w
∂x2 + ν ∂2w

∂y2

)
Myy − (e0a)2

(
∂2 Myy

∂x2 +
∂2 Myy

∂y2

)
= −D

(
∂2w
∂y2 + ν ∂2w

∂x2

)
Mxy − (e0a)2

(
∂2 Mxx

∂x2 + ∂2 Mxx
∂y2

)
= −D(1− ν) ∂2w

∂x∂y

(4)

and

D =
Eh3

12(1− ν2)
(5)

According to the elastic theory of thin plates, the governing equation of the vibration for GSs with
the external load is given in

∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 + NT
(

∂2w
∂x2 +

∂2w
∂y2

)
= [ρh + mcδ(x− x0)δ(y− y0)]

∂2w
∂t2 (6)

where mc is an attached nanoparticle mass, h is the thickness of GSs, t is the time, δ is the Dirac delta
function, and NT is the load caused by the temperature change given by

NT =
Eα∆Th
1− ν

(7)

Substituting Equation (4) into Equation (6), we yield

D∇4w +
[
1− (e0a)2 ∇2

]
[ρh + mcδ(x− ξ)δ(x− η)]

∂2w
∂t2 = Nt

[
1− (e0a)2 ∇2

]
∇2w (8)
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The bi-harmonic operator is given by

∇2 =
∂2

∂x2 +
∂2

∂y2 , ∇4 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 (9)

2.2. Dynamic Analysis for Single-Layer Graphene Sheet (SLGSs)

We can introduce the following substitution to obtain the vibration frequency of the governing
equations for SLGSs

w(x, y, t) = Y(x, y) eiωt (10)

where Y(x, y) is the shape function of deflection, and ω is the resonant frequency of the GSs.
Substituting Equation (10) into Equation (8), the governing equation is written as

D∇4Y−ω2
[
1− (e0a)2 ∇2

]
[ρh + mcδ(x− x0)δ(y− y0)]Y = Nt

[
1− (e0a)2 ∇2

]
∇2Y (11)

To obtain the solution of Equation (11), we consider GSs subjected to a simply supported condition.
For the simply supported GSs, we have

∂2w(x, y, t)
∂x2 =

∂2w(x, y, t)
∂y2 = 0, on x = 0, x = La and y = 0, x = Lb (12)

To satisfy the above set of boundary conditions, therefore, the shape function of deflection in
Equation (10) can be expressed as:

Y(x, y) = Amn sin
mπx

La
sin

nπy
Lb

(13)

where Amn is the vibration amplitude of oscillation. m and n indicate the mode numbers.
Substituting Equation (13) into Equation (11), we get

Dπ4
(

m2

L2
a
+ n2

L2
b

)2
sin mπx

La
sin nπy

L2
b

−ω2
[

1 + π2(e0a)2
(

m2

L2
a
+ n2

L2
b

)]
[ρh + mcδ(x− x0)δ(y− y0)] sin mπx

La
sin nπy

Lb

+Nt
[

1 + π2(e0a)2
(

m2

L2
a
+ n2

L2
b

)]
π2
(

m2

L2
a
+ n2

L2
b

)
sin mπx

La
sin nπy

Lb
= 0

(14)

Multiplying Equation (14) by sin mπx
La

sin nπy
Lb

and integrating over the whole region with respect
to x and y with the limits x = 0 to La and y = 0 to Lb, we obtain the following frequency equation
after simplifications,

ω2 =

Dπ4
(

m2

L2
a
+ n2

L2
b

)2
+ Nt

[
1 + π2(e0a)2

(
m2

L2
a
+ n2

L2
b

)]
π2
(

m2

L2
a
+ n2

L2
b

)
[

1 + π2(e0a)2
(

m2

L2
a
+ n2

L2
b

)] (
ρh + 4

La Lb
mc sin2 mπξ sin2 nπη

) (15)

where ξ = x0/La, η = y0/Lb is the non-dimensional position of the attached nanoparticle. According
to the Equation (15), the natural frequency of GSs can be given as f = ω/2π.
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2.3. Dynamic Analysis for Double-Layer Graphene Sheet (DLGSs)

In the analysis for DLGSs with attached nanoparticles, the governing equations are given by the
two coupled equations

D∇4w1 + [ρh + mcδ(x− ξ)δ(x− η)] ∂2w1
∂t2 − Nt∇2w1 = c(w2 − w1)

D∇4w2 + ρh ∂2w2
∂t2 − Nt∇2w1 = c(w1 − w2)

(16)

where wj(x, y, t), j = 1, 2, are the flexural deflections of the upper sheet (j = 1) and lower sheet (j = 2).
c is the vdW interaction coefficient between the upper and lower layers, which can be obtained from
the Lennard-Jones pair potential [20], given as:

c = b
(

4
√

3
9a

)2 24ε
σ2

(
σ
a
)8
[

3003π
256

5
∑

k=0

(−1)k

2k+1

(
5
k

) (
σ
a
)6 1

(z1−z2)
12

− 35π
8

2
∑

k=0

(−1)k

2k+1
1

(z1−z2)
6

] (17)

where ε = 2.968 meV and σ = 0.34 nm are parameters chosen to fit the physical properties of GSs.
zj = zj/a, (j = 1, 2), where zj is the coordinate of the jth layer in the direction of thickness with the
origin at the midplane of the GSs, and a = 1.42 nm is the C–C bond length.

To obtain the vibration frequency for the governing equations Equation (16), we can introduce the
following substitution

wj(x, y, t) = Yj(x, y) eiωt, j = 1, 2 (18)

where Yj(x, y), j = 1, 2 is the shape function of deflection in the upper and the lower sheets, whereas
ω is the resonant frequency of the DLGS sensor.

Substituting Equation (18) into Equation (16), the coupled governing equations of the vibration in
DLGSs are written in the following matrix form:[

D∇4 − Nt∇2 + c− µ(x, y, t)ω2 −c
−c D∇4 − Nt∇2 + c− ρhω2

]{
Y1

Y2

}
=

{
0
0

}
(19)

and
µ(x, y) = ρh + mcδ(x− x0)δ(y− y0) (20)

Algebraic manipulation of Equation (20) reduces it to a single equation, which is

∇8Y− 2Nt

D ∇6Y +
[2c−ρhω2−µ(x,y,t)ω2]D+(Nt)

2

D2 ∇4Y + ρhµ(x,y,t)ω4−(µ(x,y,t)+ρh)cω2

D2 Y = 0 (21)

where Y = Y1, or Y = Y2.
For simply supported boundary condition, we can obtain the following frequency equation based

on the same method with single-layer GSs.

r0ω4 − r1ω2 + r2 = 0 (22)

and

r0 = ( ρh
D )2 + 4ρh

La LbD2 mc sin2 mπξ sin2 nπη

r1 = [π4

D (m2

L2
a
+ n2

L2
b
)2 + Nt

D2 π2(m2

L2
a
+ n2

L2
b
) + c

D2 ](2ρh + 4
La Lb

mc sin2 mπξ sin2 nπη)

r2 = π8(m2

L2
a
+ n2

L2
b
)4 + 2Nt

D π6(m2

L2
a
+ n2

L2
b
)3 + 2cD+(Nt)2

D2 π4(m2

L2
a
+ n2

L2
b
)2 + 2cNt

D2 π2(m2

L2
a
+ n2

L2
b
)

(23)
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The solution of Equation (22) yields the sought natural frequency of DLGSs. The anti-phase mode
of the sought natural frequency, in which the deflection of the upper and lower layers occurs in the
opposite direction, is obtained from:

ω2 =
r1 +

√
r2

1 − 4r0r2

2r0
(24)

3. Results and Discussion

In this simulation, GSs used as the nanomechanical resonator are considered to be simply
supported. The vibration mode takes the fundamental frequency m = n = 1, and the anti-phase
vibration for the DLGSs, in which the deflection of the upper and lower layers occurs in the opposite
direction. In order to investigate the vibrational behavior of a GS mass sensor, the geometrical
dimensions and the material constants are given as follows: The effective thickness h of each layer of
GS was 0.127 nm. The aspect ratio of GSs is 20, which is defined as the side length to the thickness.
The Young’s modulus E and the density ρ of GSs were 2.81 TPa and 2300 kg/m3 [35]. The coefficient
of thermal expansion of GSs was 2.2×10−6/K [2].

The Young’s modulus and the thickness of GSs from the literature [35] are given in Table 1, and
the frequency shifts of GSs with attached nanomass of 100 zg (1 zg = 10−24 kg are obtained based on
the proposed analytical mode.

Table 1. Young’s modulus, thickness and the frequency shifts of GSs [35].

Authors

Young‘s
Modulus Thickness Frequency

Shift *
Frequency

Shift ** Variation Error

E (TPa) t (nm) ∆ω1 (GHz) ∆ω2 (GHz) ∆ω2−∆ω1
∆ω1

Van Lier et al. 1.11 0.34 113.0 115.11 2.21%
Zhao et al. 106.8 0.33 106.8 109.25 2.29%

Natsuki et al. 1.06 0.34 110.4 112.87 2.24%
Meo et al. 0.945 0.34 104.2 106.57 2.24%
Duan et al. 6.88 0.052 68.44 117.14 7.11%

Shi et al. 2.81 0.172 113.8 123.47 8.45%

* The frequency shift at room temperature; ** The frequency shift at temperature of 5 K.

Here, the frequency shift is defined as the difference between the natural frequency of a GS
with and without attached nanoparticles, that is ∆ω = ∆(ω)− ∆(ω + mc). It can be observed that
the frequency shifts of GSs with attached nanoparticles are larger for the temperature dependence.
The variation errors of frequency shifts are about 2% when the temperature change is only 5 K,
especially if the error value increases up to 8.45 % at the Young’s modulus (6.88 TPa) and there is a
small thickness of around 0.052 nm of the GS. This suggests that the temperature dependence of the
frequency shift is affected largely by the Young’s modulus and the thickness of GSs.

Figure 2 shows the location dependence of attached nanoparticles on the frequency shift of the
SLGSs as a function of the attached mass under the temperature difference of 100 K. The attached
mass is located at the center (ξ, η) = (0.5, 0.5) of the GSs; near to the corner (ξ, η) = (0.25, 0.25);
and near to the edge (ξ, η) = (0.5, 0.25). The frequency shift value of GSs increases with increasing
attached mass because the attached nanoparticles increase the overall mass of the GS resonator. It can
be deduced from Figure 2 that the location influence of the nanoparticles on the frequency shift is
significant within a mass range from 10 to 1000 zg. The value of frequency shifts of GSs at the center
load is larger than those away from the center location. This suggests that the sensitivity of the GS
mass sensor is high when nanoparticles are located at the center of GSs.
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As shown in Figure 3, the effects of temperature difference and nonlocal parameter on the
vibration frequency shift of GSs are investigated for an attached mass of 100 zg. In this simulation,
we assume that the nonlocal parameter (e0a) is 0, 2.0 and 4.0 nm [13]. It is found that the nonlocal
parameter affects the vibrational frequency shift of GSs. The value of the frequency shift decreases
with increasing nonlocal parameter, and increases with the temperature difference. Figure 4 shows
the relationship between frequency shift and temperature difference. It is evident that the effect of
temperature difference on the frequency shift is greater for a small mass than for a large mass.C 2017, 3, 4 8 of 11 
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Figure 5 shows a comparison of the frequency shift between SLGSs and DLGSs with the
temperature difference of 100 K. The frequency shift of the GS resonator increases with increasing mass
of nanoparticles. The DLGSs used as a nanomechanical resonator can provide higher sensitivity than
the SLGSs due to large change in the vibrational frequency shift. It can be found that the frequency
shift versus the attached mass show a nearly logarithmic linear relationship within a certain range.
According to this simulation, the relationship between the frequency shift (∆ω) and the attached
mass (mc) can be well represented by the exponential function ∆ω = α mβ

c , which has the double
logarithmic linear relationship. The values of the parameters α and β can be determined easily by fitting
the simulated curve and to obtain high accuracy calibration between frequency shift and attached
mass. A logarithmically linear relationship is found between the frequency shift and the attached mass
when the total mass attached to the GSs is less than 1.0 zg.
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4. Conclusions

In this study, we propose an analytical model to investigate the vibration frequency of simply
supported graphene sheets (GSs) using the nonlocal elasticity theory. The relationship between the
vibrational frequency of GSs and the attached mass is derived analytically, and the influences of
the position of the nanoparticles and the mass on the frequency shifts of GSs are analyzed in detail.
Because the mass of a GS is quite small, the frequency shifts can easily change when a relatively small
mass of a nanoparticle is added to the GS. Based on the simulation, the results indicate the resolution
of a mass sensor could achieve an order of 100 zg. The result demonstrates that the temperature and
the nonlocal parameter affect the vibration frequency shift of the GSs. Moreover, the double-layer
graphene sheets (DLGSs) used as a nanomechanical mass sensor provide higher sensitivity than the
SLGSs. In this simulation, the results show that the Young’s modulus and the thickness of the GS
affect temperature dependence of frequency shifts, especially the error value which increases for high
Young’s modulus and small thickness. It is evident that the variation errors of frequency shifts are
about 2% when the temperature change is only 5 K. The simulation technology and the parameters of
investigation, such as temperature, nonlocal coefficient, geometric and material parameters, are thus
very useful in designing GSs used as nano-scale sensing.
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