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Abstract: Neurodegenerative disorders, brain injury, and the decline in cognitive function with
aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and
inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human
neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress.
Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates
reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our
results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in
94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among
the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated
in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT,
GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs
that were significantly altered under oxidative stress included cancer-related SNHG family members.
We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory
properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning
and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription
regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that
these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing,
and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs,
such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only
the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress
in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that
impact the redox state of the cells and their viability.
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1. Introduction

A decline in cognitive function occurs along with brain aging. In humans and rodents,
it includes structural changes and extensive neuronal cell death [1]. The young brain
successfully copes with stress (e.g., oxidative stress), a capacity that drops in the aging
brain [2,3]. Failure in the stress response leads to pathological processes, as documented in
brain injury, ischemia and reperfusion (I/R), as well as neurodegenerative diseases [4,5].

Gradual changes in the gene expression profiles occur throughout the progression
of normal aging and neurodegenerative diseases [6,7]. In previous studies, ladostigil,
a bifunctional reagent with antioxidant and anti-inflammatory activities, was shown as
a novel neuroprotective drug [8]. Old rats that were chronically treated with ladostigil
showed improved performance in memory and learning tasks relative to untreated old
rats [9–11]. Nevertheless, the direct effect of oxidative stress at a cellular level is masked by
the communication and feedback circuits of different cell types, including the microglia,
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astrocytes, and endothelial cells with neurons. To overcome this difficulty, the antioxidant
function of ladostigil was studied using a neuroblastoma cell line [8,12]. Upon oxidative
stress, an imbalance in mitochondrial redox was monitored, which was attenuated by
ladostigil [12].

Emerging evidence suggests the involvement of long non-coding RNAs (lncRNAs)
in neurodevelopmental, metabolic, and inflammatory diseases [13]. Furthermore, specific
lncRNAs are implicated in all major neurodegenerative diseases, including Alzheimer’s
disease (AD) [14,15]. Specifically, the highly expressed lncRNAs BACE1-AS, 51A, and
BC200 were implicated in the production and accumulation of Aβ and were implicated
in AD pathology in mice with AD pathology; SOX21-AS1 expression determines the level
of neuronal oxidative stress and suppresses neuronal apoptosis [16]. Other lncRNAs
have been linked to Parkinson’s disease (PD) [17,18]. For example, HOTAIR induces the
apoptosis of dopaminergic neurons and MALAT1 (also called NEAT2) is associated with
α-synuclein expression and PD pathogenesis [19]. The role of lncRNAs in governing the
cellular oxidative levels was investigated beyond the context of neurodegenerative diseases
and brain injury. Examples include oxidative stress that impacts pancreatic functioning [20],
cardiac myocytes [21], lung epithelia [16], and more. Multiple layers of regulation are
involved in lncRNA modulation, including chromatin remodeling [20], the regulation of
gene expression enhancers [22], competition for miRNA binding sites on mRNAs [23],
the recruitment of transcription factors to promoters, alterations in splicing, interference
with expression as antisense transcripts, molecular decoys, and more [24,25]. Moreover,
the involvement of circRNAs in manipulating oxidative stress has been established in
cell systems and in the pathogenesis of diseases of the CNS [26]. Studies have shown a
correlation between oxidative stress and lncRNA expression [27]. However, the mechanism
by which lncRNAs can change in response to drugs that alter cellular homeostasis is
mostly unknown.

In this study, we studied SH-SY5Y cells, a neuroblastoma-derived cell line that carries
some dopaminergic neuronal features [28]. We tested the expression profiles of the cells un-
der varying conditions by RNA-seq [12]. We exposed the SH-SY5Y cells to oxidative stress
and monitored their viability and gene expression changes [12]. We applied conditions that
resembled abrupt (by H2O2) and prolonged (by Sin1; 3-morpholinosydnonimine) oxidative
stress and monitored the beneficial effect of ladostigil on the viability of SH-SY5Y cells
under stress conditions. We focused on the mild upregulation of abundant lncRNAs fol-
lowing treatment with Sin1 and determined the impact of ladostigil under oxidative stress
conditions on lncRNA expression. Our investigation of the gene expression levels along
with the attenuation of cell death by ladostigil suggests the beneficial effect of lncRNAs on
cell viability while coping with oxidative stress.

2. Results
2.1. Ladostigil Suppresses Cell Death

Figure 1A shows the results of flow cytometry to determine the fraction of necrotic
cells (each experiment covered 50,000 cells). Propidium iodide (PI) was used as a marker
for permeable membranes of dead cells. After 5 h of exposure to 40 µM H2O2, we saw
a significant increase in PI-positive cells. In the presence of ladostigil, the fraction of PI-
positive cells was attenuated (8.0% to 5.4%; p-value = 0.02). The attenuation in cell death
was also detected 24 h later (Supplementary Figure S1). After treatment with ladostigil,
the fraction of PI-positive cells in cells exposed to 40 µM and 80 µM H2O2 was reduced
(Supplementary Figure S1). Therefore, we conclude that ladostigil protects cells against
non-reversible cell death induced by acute and short-lived stress of H2O2.
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mean and standard deviation (s.d.) from the flow cytometry run of SY-SY5Y cells treated with Sin1 

for 5 h. All measured data were from FACS that was repeated in triplicate. The total FACS cells was 

considered as 100%, and the percentage of them stained with PI is indicated as a fraction. (D) Results 

from triplicate experiments with the mean and standard deviation (s.d.) from the flow cytometry 
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Figure 1. Flow cytometry analysis in cells under oxidative stress conditions in response to treatment
with ladostigil. (A) Results from FACS analysis with 50k cells per experiment. The fraction of live
and dead cells upon 40 µM H2O2 and ladostigil treatment was tested at 5 h following stimulus.
Asterisks indicate the statistical significance of the results. The attenuation in the fraction of PI-
positive cells by ladostigil (5.4 µM) was substantial (p-value = 0.02). (B) Cell viability upon increasing
the concentration of Sin1 with and without the presence of ladostigil (5.4 µM, with mean and standard
error; s.e.). Each data point is based on 8 replicates. (C) Results from 3 repeated experiments with
mean and standard deviation (s.d.) from the flow cytometry run of SY-SY5Y cells treated with Sin1
for 5 h. All measured data were from FACS that was repeated in triplicate. The total FACS cells was
considered as 100%, and the percentage of them stained with PI is indicated as a fraction. (D) Results
from triplicate experiments with the mean and standard deviation (s.d.) from the flow cytometry run
for Annexin-V of SY-SY5Y cells treated with Sin1 for 5 h. NT indicates cells non-treated with Sin1.
Asterisks indicate the t-test statistical results with p-values of <0.005 (***), <0.01 (**), and <0.05 (*).
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2.2. Apoptotic Signal in SH-SY5Y Cells Exposed to Sin1

To better mimic a prolonged and steady increase in oxidation, we exposed the cells to
Sin1 at varying concentrations. Sin1 in living cells acts as a peroxynitrite donor (ONOO−)
and generates nitric oxide (NO) and superoxide (O2

−) [29,30]. In addition to the effect
of Sin1 on the redox state of cells, it was reported as an inhibitor of high-affinity choline
transporters and trafficking in SH-SY5Y cells [31]. We monitored cell viability (using
MTT) by increasing the levels of Sin1 (0 to 350 mM). In parallel, we performed the same
experiment but with the preincubation of ladostigil (5.4 µM, 2 h prior to Sin1 exposure).
Calculating the IC50 for each of the graphs resulted in the IC50 for Sin1 being 247.0 µM,
while the ICD50 of ladostigil in the presence of Sin1 changed to 350.4 µM. These results
allow the beneficial effect of ladostigil in coping with Sin1-induced cellular stress to be
quantified (Figure 1B). The effect of prolonged oxidative stress produced by high levels of
Sin1 on cell viability was assessed by flow cytometry using PI (Figure 1C). Cell viability
was tested at 5 h upon increasing the concentration of Sin1. Under these harsh conditions,
we also stained SH-SY5Y cells with Annexin-V, a sensitive marker for early apoptosis.
Staining cells with Annexin-V showed that the fraction of apoptotic cells was insensitive
to increased levels of Sin1 (Figure 1D). We concluded that, under a high concentration of
Sin1, cell death was increased. However, the fraction that underwent apoptosis remained
stable (~10%), supporting an increase in necrotic cells, rather than apoptosis. Recall that, at
later time points, separating cells by PI and Annexin-V positives is no longer valid, as the
membranes of the cells become fully permeable (discussed in [32]).

2.3. LncRNA Expression Levels in SH-SY5Y Cells

Sin1 at a low concentration (50 µM) produces mild but long-lasting stress due to the
ongoing accumulation of nitric oxide (NO) and superoxide (O2

−). We focused on the
ncRNA levels using RNA-seq (RNA length cutoff at >200 nt) 24 h after treatment. Figure 2A
shows that the cells’ transcriptome comprised 70% mRNAs of coding genes (13,626 coding
mRNAs out of a total of 19,475 transcripts), with the rest of the transcripts being partitioned
among many ncRNA biotypes. The dominant class was lncRNA (long ncRNA, 63.2% of
all ncRNAs), followed by pseudogenes (28.8%). However, the expression levels measured
by TMM for most of these transcripts were very low (<4 TMM for biological triplicates,
see the Section 4). By considering only transcripts that satisfied this threshold, we focused
on 780 ncRNAs expressing transcripts that accounted for 6.7% of all transcripts (total of
11,588, Figure 2B). The rest of the analysis will consider only these ncRNAs (Supplementary
Table S1). A subdivision according to biotypes confirmed that most ncRNA transcripts
belonged to the lncRNA group (73%), followed by the unprocessed pseudogenes group
(19%, Figure 2B).

Figure 2C shows a sorted list of high-expressing lncRNAs in SH-SY5Y cells (above
TMM of 100). A manual classification of these highly expressed transcripts into groups
revealed that about 16% of these transcripts belonged to mitochondrial ncRNAs (e.g.,
MT-RNR1 and MT-RNR2 for 12S and 16S rRNAs of the mitochondrial ribosome, respec-
tively), and an additional 10% were transcripts involved in X-chromosomal inhibition
and chromatin compaction (e.g., XIST, FTX, and JPX, collectively termed XCI, Figure 2C).
Several of the other abundant lncRNAs (Figure 2C) were implicated in the regulation of
oxidative stress, particularly in the context of the CNS and neurons (e.g., MALAT1, GAS5,
and NEAT1) [33].
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Figure 2. Partition of ncRNA biotypes in SH-SY5Y cells. (A) Partition of the RNA-seq results
of untreated SH-SY5Y cells according to the major molecular biotypes. Altogether, there were
19,475 identified transcripts. Blue, coding genes and purple, ncRNAs portioned by biotype classes.
Mito, mitochondrial transcript; TEC, to be experimentally confirmed; and PG, pseudogene. Combined
related biotypes (e.g., transcribed unprocessed and unitary pseudogenes) are marked as multi. (B) Par-
tition of 780 expressed ncRNA transcripts partitioned by major ncRNA classes. The ncRNAs were
based on transcripts with an average TMM of >4. There were 11,588 aligned transcripts that met this
threshold. (C) Top expressing ncRNAs (TMM > 100) colored by broad-sense functional annotations
(inset). MT, mitochondria; snRNA, small nucleus RNA; and XCI, X-chromosome inactivation.

2.4. Chronic Oxidative Stress Upregulated a Collection of LncRNAs

Studies have shown a dependency between acute oxidative stress and the upregulation
of lncRNA expression [27,34]. We tested the profile of the cells’ ncRNA levels 24 h after
the Sin1 stimulus. Figure 3A shows the number of differentially expressed (DE) ncRNA
transcripts partitioned into ncRNA types. We found that the strongest effect induced by
Sin1 was the upregulation of ncRNAs. The fraction of ncRNAs among DE downregulated
genes was only 5.6%, while among the upregulated transcripts, it accounted for 17.1%
(p-value = 0.012). Moreover, among the downregulated genes, the ratio of lncRNAs to
all other molecular ncRNA biotypes was 2.1, but it was 5.1 for the upregulated genes
(Figure 3A). We conclude that the fraction of the expressed ncRNAs, and specifically the
lncRNA class, significantly increased under Sin1-induced stress. While many coding genes
were induced by Sin1 [12], the ncRNA expression fold change was modest (bounded by
<3-fold, Figure 3B).
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Figure 3. Differentially expressed (DE) ncRNAs following 24 h of exposure to Sin1 relative to
untreated cells. (A) Transcripts associated with upregulation (Up) and downregulation (Down)
relative to naïve, untreated cells. The number of genes associated with each expression trend is shown
in parentheses. The rest of the genes (9719 genes) were unchanged. See the Materials and Methods
for the expression trend definition. (B) Histogram showing the DE ncRNAs ratio for downregulated
and upregulated transcripts. The dashed line marks the expression ratio (1.25 and 0.8) vs. naïve cells
for Up and Down, respectively. The pie diagram applies to 94 genes that satisfy the threshold.

Table 1 shows the list of lncRNAs following Sin1 treatment (listed genes with >0.5%
of total expression, see the Section 4). All 18 Sin1-upregulated ncRNAs (Table 1) were
statistically significant (p-value FDR < 1.0 × 10−3; Supplementary Table S2). The highest-
expressed lncRNA was MALAT1 (Figure 2C), which was also upregulated by Sin1 (Table 1,
p-value FDR < 2.5 × 10−4).

Table 1. Differentially expressed lncRNA genes in cells exposed to Sin1 (24 h).

LncRNA LncRNA—Full Name FDR DE (Fold) TMM a

MALAT1 Metastasis-associated lung adenocarcinoma transcript 1 2.5 × 10−4 1.24 1963.7
HAND2-AS1 HAND2 antisense RNA 1 6.7 × 10−25 1.33 671.8
GABPB1-AS1 GABPB1 antisense RNA 1 1.7 × 10−18 1.38 280.8

MIAT Myocardial infarction associated transcript 6.3 × 10−21 1.35 176.9
NEAT1 Nuclear paraspeckle assembly transcript 1 3.5 × 10−5 1.49 154.0
CASC15 Cancer susceptibility 15 1.5 × 10−16 1.27 85.8

AC093849.2 Novel transcript 2.9 × 10−33 1.46 85.0
CCDC144NL-AS1 CCDC144NL antisense RNA 1 1.6 × 10−12 1.32 67.5

MIR137HG MIR137 host gene 4.5 × 10−23 1.47 58.7
GABPB1-IT1 GABPB1 intronic transcript 4.6 × 10−15 1.35 45.6
LINC02268 Long intergenic non-protein coding RNA 2268 1.2 × 10−16 1.45 44.6
TTN-AS1 TTN antisense RNA 1 1.2 × 10−6 1.26 43.0

LINC01833 Long intergenic non-protein coding RNA 1833 6.8 × 10−14 1.32 42.0
LINC00632 Long intergenic non-protein coding RNA 632 5.0 × 10−8 1.31 40.2
AL392083.1 Novel transcript, sense intronic to ADARB2 1.8 × 10−33 1.78 37.6
GATA3-AS1 GATA3 antisense RNA 1 2.3 × 10−8 1.32 36.5
AC012354.1 Novel transcript 2.1 × 10−8 1.28 32.7
AC015813.1 Novel transcript 4.3 × 10−7 1.35 31.8

AC136621.1 Novel transcript (TEC) 2.6 × 10−27 0.56 37.7
AL645608.2 Novel transcript 4.7 × 10−8 0.71 35.9
AC010931.1 Novel transcript 1.5 × 10−19 0.68 34.9
LINC01128 Long intergenic non-protein coding RNA 1128 1.2 × 10−16 0.71 32.2

EP400P1 EP400 pseudogene 1 4.3 × 10−6 0.78 32.1
a TMM, trimmed mean of M-values.
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Table 1 presents the Sin1-induced lncRNAs that met the threshold of absolute ex-
pression and that were statistically significant. Among them were NEAT1 (upregulated
1.49-fold, FDR p-value 3.5 × 10−5) and HAND2-AS1 (upregulated 1.33-fold, FDR p-value
6.7 × 10−25), both implicated in oxidative stress modulation. Notably, among the Sin1-
upregulated genes, many were annotated as antisense (21% of all transcripts upregulated
by Sin1; Supplementary Table S3). Table 1 also lists lncRNAs that were downregulated
by Sin1 (five transcripts, Supplementary Table S3). Note that, in comparison with the
upregulated lncRNAs, the absolute expression levels of these genes were low (<40 TMM).

2.5. Cancer-Related SNHG Family Members Are Differentially Expressed by Sin1

SNHGs (small nucleolar RNA host genes) belong to a large family of lncRNAs whose
expression greatly fluctuates among cell types and conditions [35]. We observed 17 SNHGs
expressed transcripts, which accounted for 3.3% of all highly expressed lncRNAs (Supple-
mentary Table S4, 780 genes).

Figure 4A presents the expression levels (log10TMM) of the identified SNHGs. Four
of the SNHGs (SNHG5, SNHG14, SNHG16, and SNHG29) were highly expressed, with
>100 TMM each. The fold change in expression following Sin1 treatment was small to
modest. SNHG3, SNHG4, SNHG12, and SNHG15 were significantly downregulated by
Sin1. SNHG29 and SNHG5, which were highly expressed lncRNAs (TMM 328.3 and 131.4,
respectively), were slightly upregulated by 10.1% and 8.1%, respectively (FDR p-value of
1.6 × 10−4 and 0.029; Figure 4, Supplementary Table S4). Our observations are consistent
with the proposed role of SNHGs in miRNA competition and as molecular decoys in
SH-SY5Y [36].

Non-Coding RNA 2022, 8, x  8 of 20 
 

 

 

Figure 4. Expression of members of the small nucleolar RNA host genes (SNHGs). (A) Mean expres-

sions (by log10TMM) of the 17 SNHG members identified by DE lncRNA analysis. (B) Fold changes 

(FCs) following treatment with 50 μM Sin1 are shown for each of the SNHGs. FCs below and above 

zero show downregulated and upregulation of the indicated genes. Note that the values are logFC. 

Despite the small effect of the differential expression genes, the filled bar shows statistically signif-

icant genes, and the striped bar indicates a gene belonging to the SNHG group, but failed to reach 

FDR (p-value < 0.05). 

2.6. Impact of Ladostigil on ncRNA Profiles 

To test the potential of ladostigil to cope with prolonged mild stress by Sin1 (50 μM, 

24 h), we applied ladostigil (5.4 mM) and measured the effect on gene expression 24 h 

after treatment. Under such mild conditions of oxidation, the level of cell death was min-

imal (below 10%) [12]. As a control, we incubated cells with ladostigil for 2 h, which had 

negligible effects on cell viability (24 h post-incubation, Supplementary Table S1). 

Figure 5A shows four of the most significantly upregulated lncRNAs by Sin1 (p-value 

FDR ranged from 1 × 10−23 to 1 × 10−51), but were unchanged in the presence of ladostigil 

(24 h). Among these transcripts were TSPEAR-AS1 and TSPEAR-AS2. TRPEAR is a low-

expressing protein that participates in the regulation of the Notch signaling pathway. 

While information on antisense transcripts is scarce, samples of kidney renal clear cell 

carcinoma with higher TSPEAR-AS1 expression showed poor survival when compared 

with patients with low expression (hazard ratio of 1.95; p-value of 8.8 × 10−6) [37]. The other 

examples, AC106881.1 (UNC5C antisense RNA 1; Figure 5A) and BX005019.1, are exclu-

sively expressed in brain tissues. BX005019.1 is located within the MIR137 host gene, a 

main player in the differentiation and maturation of the nervous system [38]. 

Figure 4. Expression of members of the small nucleolar RNA host genes (SNHGs). (A) Mean
expressions (by log10TMM) of the 17 SNHG members identified by DE lncRNA analysis. (B) Fold
changes (FCs) following treatment with 50 µM Sin1 are shown for each of the SNHGs. FCs below and
above zero show downregulated and upregulation of the indicated genes. Note that the values are
logFC. Despite the small effect of the differential expression genes, the filled bar shows statistically
significant genes, and the striped bar indicates a gene belonging to the SNHG group, but failed to
reach FDR (p-value < 0.05).
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2.6. Impact of Ladostigil on ncRNA Profiles

To test the potential of ladostigil to cope with prolonged mild stress by Sin1 (50 µM,
24 h), we applied ladostigil (5.4 mM) and measured the effect on gene expression 24 h after
treatment. Under such mild conditions of oxidation, the level of cell death was minimal
(below 10%) [12]. As a control, we incubated cells with ladostigil for 2 h, which had
negligible effects on cell viability (24 h post-incubation, Supplementary Table S1).

Figure 5A shows four of the most significantly upregulated lncRNAs by Sin1 (p-value
FDR ranged from 1 × 10−23 to 1 × 10−51), but were unchanged in the presence of ladostigil
(24 h). Among these transcripts were TSPEAR-AS1 and TSPEAR-AS2. TRPEAR is a
low-expressing protein that participates in the regulation of the Notch signaling pathway.
While information on antisense transcripts is scarce, samples of kidney renal clear cell
carcinoma with higher TSPEAR-AS1 expression showed poor survival when compared
with patients with low expression (hazard ratio of 1.95; p-value of 8.8 × 10−6) [37]. The
other examples, AC106881.1 (UNC5C antisense RNA 1; Figure 5A) and BX005019.1, are
exclusively expressed in brain tissues. BX005019.1 is located within the MIR137 host gene,
a main player in the differentiation and maturation of the nervous system [38].
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Figure 5. Sample of the lncRNAs by the measured expression levels in naïve untreated cells (NT),
cells exposed to Sin1 (24 h) with or without ladostigil. (A) The transcripts shown are those with
maximal induction by Sin 1 relative to NT. The average TMM and the standard deviations from
biological triplicates are shown for each experimental group. (B) The transcripts shown are those with
a maximal effect by ladostigil in the presence of Sin1. The average TMM and the standard deviations
from biological triplicates are shown for each experimental group. The statistical significance with the
p-value FDR ranging from 0.05–0.005 is depicted by * and <0.005 by **. (C) The genomic segments of
AC105339.2 and RPARP-AS1 cover 10 and 12k nucleotides, respectively. AC105339.2 and RPARP-AS1
show the overlap between the lncRNA transcript and the gene in the vicinity. AC105339.2 acts
as antisense to FSD2 (704 aa) and RPARP-AS1 is the antisense for C10orf95 (213 aa). Numerous
transcripts of RPARP-AS1 are shown above the ENCODE annotations for enhancers (red) and
proximal promotors (yellow).
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We tested whether ladostigil reduces the damage induced by oxidative stress via
lncRNA expression. To this end, we considered the expression profile following Sin1 as a
reference, and applied a strict statistical threshold. Only 8 genes out of 19,475 annotated
genes were identified as significantly induced by ladostigil, with 4 coding genes and 4
lncRNAs (Figure 5B). RPARP-AS1 (also called C10orf95 Antisense RNA 1) overlapped
with the production of a short (213 aa) protein of unknown function (Figure 5C). Possible
regulation of the splicing machinery was proposed for AC105339.2, which overlapped
with the FSD2 transcript (fibronectin type III and SPRY domain containing 2; also called
A1L4K1). SNHG21 and SCARNA15 (Figure 5C) were two other overlapping genes that
were implicated in the redox homeostasis of cancer cells and stress conditions [39].

We further inspected the genomic organization of these four ncRNAs upregulated
by ladostigil in cells exposed to Sin1 (24 h). We used GeneHancer (GH) [40] to test the
likelihood of the ladostigil-upregulated ncRNAs acting as enhancers (eRNAs). GeneHancer
integrates information from numerous independent databases.

Table 2 presents the prediction confidence for the four ladostigil-upregulated ncRNAs
as enhancers in view of their potential gene target regulation. Elite enhancers were defined
by high confidence scores for enhancers according to multiple independent resources. All of
the genes listed were classified as elite enhancers. Note that only 7% of the >100k analyzed
genes and transcripts in the GH database were marked as elite enhancers. GH double elite
was assigned to two of the four transcripts. Under stress, ladostigil induction of lncRNAs
may impact global processes, as reflected by eRNAs that act as enhancers.

Table 2. ncRNA upregulated by ladostigil treatment under oxidative stress conditions.

ncRNA GH
Score

Total
Score

Elite
GH a

TSS
(kb)

# of DB
Evidence TFs Coding

Targets
ncRNA
Targets Selected Target

AC010680.1 0.3 250.7 * 64.0 1/5 1.2 2 3 FKBP7
AC022400.6 1.9 250.7 ** 486.4 5/5 4.6 10 13 SEC24C
AC105339.2 2.1 11.3 * 24.1 5/5 9.8 7 5 WHAMM
RPARP-AS1 2.1 257.3 ** 546.8 5/5 6.6 13 5 PPRC1

a GeneHancer (GH) definition of elite (*) gene based on the enhancer score and/or high confidence for the gene
targets. High confidence scores are shown in bold. Genes that meet high confidence GH and Total scores are
marked (**). Selected gene, a representative gene from the set of coding targets.

It is an accepted view that each lncRNA molecule is involved in multiple cellular
functions. For example, we propose a function for AC105339.2 as an enhancer (eRNA,
Table 2) and also as an antisense (Figure 5). Moreover, the human RNA interactome has a
wealth of experimental evidence for protein, miRNA, and lncRNA interactions [41]. The
notion of multi-function activities for lncRNAs was validated for several abundant ones.
Both GAS5 and the mitochondrial pseudogene MTND4P12 were among the most abundant
lncRNAs in SH-SY5Y (Figure 2C), and both were significantly upregulated in the presence
of ladostigil (Supplementary Table S2). GAS5 is implicated in human cancer as a tumor
suppressor that is modulated by miRNAs. In SH-SY5Y cells exposed to Sin-1, the level
of GAS5 is already high (TMM = 188) and is slightly upregulated by ladostigil (p-value
5 × 10−5). We report on 45 MBSs on GAS5 (mapped to 35 unique miRNAs, Supplementary
Table S5) using a stringent seed-matching scheme [42]. Interestingly, the GAS5 MBSs
contained several highly expressed miRNAs, such as miR-10b (21.8% of all expressed
miRNAs in undifferentiated SH-SY5Y), miR-21, miR-148a, miR-26a, miR-222, and more.
We expect that the increase in GAS5 transcripts by ladostigil will directly bind miRNAs
and consequently impact cell survival through ceRNA activity (Supplementary Table S5).
A similar activity of ceRNA can be performed by MTND4P12 (MT-ND4 pseudogene 12),
which has MBSs for 10 different miRNAs, among which miR-140 and miR-24 are relatively
abundant in SH-SY5Y cells.



Non-Coding RNA 2022, 8, 72 10 of 19

2.7. A Shift in Abundant ncRNAs upon Stress Is Cell-State-Dependent

SH-SY5Y cells can undergo in vitro differentiation with retinoic acid (RA), and as
a result, develop a predominantly mature dopaminergic-like neuronal phenotype [43].
We performed semi-quantitative RT-PCR to test the impact of gene expression change
for several of the major ncRNAs that were implicated in the response to oxidation stress
according to the cell state (undifferentiated vs. RA differentiated). We assessed the effect
on gene expression following the exposure of cells to Sin1 only and to Sin1 in the presence
of ladostigil (5.4 µM; Figure 6). The results from the gel analysis of the amplicons of the
lncRNAs indicate that the differentiated cells were signified by reduced expressions of
MALAT-1 and MIAT, but not NETA-1. In accordance with the results from the RNA-seq
analysis, the expression levels of MALAT-1, MIAT, and NEAT-1 were induced by Sin1, and
ladostigil partially reverted the elevated expression of these major lncRNAs (no change
was observed in β-actin as an internal control; Figure 6A). The maximal upregulation in
expression was measured in MIAT (lncRNA myocardial infarction-associated transcript).
The MIAT was shown to maintain human lens epithelial cells (HLECs), where its expression
is critical to the viability, proliferation, and migration of the cells in response to oxidative
stress [27]. Overall, Sin1 induced many of the abundant ncRNAs in the undifferentiated
cells, while ladostigil attenuated the effect. In contrast, the effect of Sin1 was quite modest
and no induction was observed in undifferentiated cells.
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Figure 6. Differentially expressed (DE) ncRNAs following 24 h of exposure to Sin1 relative to
untreated cells. (A) RT-PCR results on Agarose gel. The RT-PCR product of β-actin was used as
an internal control. Each condition is shown for two biological duplicates. The indicated ncRNA
results are for the untreated culture (N.T.) and cells in the presence of Sin1, and Sin1 and ladostigil
(5.4 µM). (B) Quantification of the results in (A) by a heatmap visualization. Orange, comparison of
the baseline of the untreated cells. Blue, changes in cells by Sin1, and Sin1 and ladostigil (5.4 µM).

3. Discussion

In this work, we examined undifferentiated SH-SY5Y cells under oxidative stress
conditions by inspecting the lncRNA expression profiles [44–46]. In brain injury, ischemia,
neuroinflammation, and other pathophysiological processes, changes in the amount and
composition of ncRNAs (e.g., miRNAs and lncRNAs) are frequently observed [47,48].
Several discoveries regarding ncRNAs emerged from the analysis of SH-SY5Y under
continuous oxidative stress. Firstly, although ncRNAs accounted for 30% of all transcripts
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detected, many were lowly expressed (only 6.7% with TMM > 4, Figure 2), reflecting
the high sensitivity of the sequencing methodology [49]. Secondly, following sin1, most
lncRNAs were upregulated, with only a few being downregulated (Figure 3, Fisher exact
test, p-value < 1 × 10−5). Finally, the absolute fold change (FC) of the Sin1-upregulated
lncRNAs was low (Table 1). We argue that, even with such a low increase or decrease in
the overall expression (Figure 3B bounded by 3.0-fold), the dysregulation of abundant
lncRNAs substantially impacts cells’ states.

Despite the growing interest in using lncRNAs for prognosis [50], knowledge of
lncRNA binding specificity is limited, with only a few highly expressed lncRNAs having
been studied in depth. Even under the mild oxidation stimulation that was introduced to
undifferentiated SH-SY5Y cells (50 µM Sin1, 24 h), tens of lncRNAs were up-regulated, a
few of them belonging to the highly expressed lncRNAs. Many of the highly expressed
lncRNAs have been linked to neurodegenerative, inflammatory, metabolic, and systemic
diseases [33,51]. It is likely that the same lncRNAs may act on multiple layers of regulation,
such as chromatin, transcription, biological machines (e.g., spliceosomes), recruiting or
stabilizing proteins, and competing for binding sites [52]. Inspecting the genomic location
supports the notion of multiple functions that can be carried out by a specific lncRNA [53].
For example, GABPB1-AS1 (Table 1) suppresses the transcription of GABPB1, a gene
product that acts upon damaged membranes via peroxidases. As a result, in both health
and disease, it regulates cellular antioxidant capacity and cell viability [15]. Several of
the most abundant lncRNAs that were affected by changing conditions (e.g., MALAT1,
XIST, GAS5, and NEAT1) [24] have been proposed to act via multiple modes of action [52].
NEAT1 lncRNA, in particular, was initially linked to chromatin organization but has since
been shown to play a role in regulating oxidative stress, pain control, and inflamma-
tion [54,55]. In neurons, NEAT1 could reverse the damage caused by superoxide and
counteract the H2O2-induced neuronal damage. The dysregulation of HAND2-AS1 can
alter energy metabolism at the organismal level [56]. MALAT1, the most abundant lncRNA
in SH-SY5Y, is involved in a variety of cell biology processes, including autophagy and
ischemia-induced apoptosis [57,58]. MALAT1 and NEAT1 play a neuroprotective role in
AD and PD, respectively [59,60]. MIAT, NEAT1, and MALAT1 are coordinately changed
in schizophrenia [61]. Other lncRNAs have been linked to autism, amyotrophic lateral
sclerosis (ALS), and other diseases.

The direct role of miRNAs in maintaining SH-SY5Y cell homeostasis has been ex-
tensively studied [62]. Several abundant ncRNAs play an active role in such sponging
mechanisms. For example, MALAT1 promotes oxygen–glucose deprivation/reoxygenation
(OGD/R)-induced neuronal injury through miRNA competition [59,60]. Similarly, NORAD
promotes cell survival by sponging miRNAs [23]. In such cases, even a small change in
the accessibility of miRNAs alters the ratio of free to bound cellular miRNAs, leading to a
revised cell state by the available miRNA pool [63].

A special case concerns the SNHG genes (Figure 4) that were originally studied in
cancer and are characterized by a rich repertoire of miRNA binding sites (MBS). As a
result, several of the SNHGs may collaboratively titrate out miRNAs and thus release their
bound targets, a mechanism known as ceRNA [25,64]. Of these, SNHG12 was significantly
downregulated in the presence of Sin1 in undifferentiated SY-SY5Y cells. In these cells,
SNHG12 participates in the unfolded protein response (UPR), apoptosis, inflammation, and
oxidative stress [65]. It has been proposed that several of the SNHG members carry anti-
inflammatory roles under oxygen–glucose deprivation/reoxygenation (OGD/R) conditions
by targeting specific miRNAs [33,66]. As a general theme, lncRNAs, such as SHNGs, act
via the sponging of specific miRNAs (e.g., [67,68]).

Among the abundant neuronal lncRNAs that were altered by Sin1 treatment, MALAT-1,
MIAT, NEAT1, and MIR137HG (Table 1) contain miR-106a MBSs [69]. This also applies
to members of the SNHG lncRNAs (Supplementary Table S4). Specifically, we identified
17 members of the SNHGs that were expressed in SH-SY5Y (Figure 4). Note that MBSs
for miR-106a were found in nine of them (SNHG1, SNHG3, SNHG5-7, SNHG10-12, and
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SNHG14, Supplementary Table S4). Many of these targets were confirmed by miR-CLIP
with miR-106a as bait [70]. An inverse link was established between the level of available
miR-106a and Treg anti-inflammatory response (e.g., allergy, inflammatory bowel disease
(IBD), and LPS-induced macrophages) [71]. In SH-SY5Y, we anticipate that the collaborative
sponging of miR-106a by abundant lncRNAs, including SNHGs, underlies the beneficial
impact of ladostigil.

Interestingly, among the ncRNA-induced genes following Sin1 is MIR137HG (Table 1),
a precursor of hsa-miR-137 and hsa-miR-2682, two highly expressed miRNAs of the CNS
and especially the brain cortex. In genome-wide association studies, the MIR137HG gene
has been linked to schizophrenia and other psychiatric disorders [72,73]. The function of
has-miR-137 and has-miR-2682 in cell proliferation was reported in the context of cancer,
where SNHG3 acts as a direct sponge of miR-2682 [74]. Thus, it is likely that the suppression
of SNHG3 (Figure 4) and the induction of MIR137HG (1.5 fold, p-value 4.5 × 10−23, Table 1)
together increased the accessibility of miR-137 and miR-2682.

An attractive hypothesis for the involvement of abundant ncRNAs under long-lasting
stress conditions concerns regulation by the antioxidation response. We recently showed
that oxidative stress in SH-SY5Y undifferentiated cells led to an alteration in ER stress
and the redox state [12]. Nrf2 (gene name: NFE2L2), a master transcription factor (TF)
of redox homeostasis, is upregulated by Sin1, whereas ladostigil inhibits NFE2L2 expres-
sion [12]. Furthermore, Nrf2 has been identified as a regulatory hub for lncRNAs [75]
and miRNAs [76,77]. The capacity of ladostigil to improve cell viability (Figure 1) could
reflect a cross-talk of MALAT1 and Nrf2 in cytotoxicity. We identified MALAT1, the highest
expressed lncRNA in undifferentiated SH-SY5Y cells, to be further upregulated by Sin1
(1.24-fold). MALAT1 has been shown to inhibit apoptosis via Nrf2 activation. This is
mediated via the suppression of lipid peroxidation and damaged DNA [60].

In this work, we focused on undifferentiated SH-SY5Y cells exposed to abrupt (by
H2O2) and long-term oxidative stress (by Sin1). However, exposing SH-SY5Y cells to
various combinations of growth factors and morphogens (e.g., RA) drives their differen-
tiation toward mature dopaminergic-related neurons [78,79]. After exposing SH-SY5Y to
RA for several days, profound changes in mitochondrial metabolism were observed [80].
While differentiated SH-SY5Y cells maintained the same mitochondrial number, they were
distinguished by elevated membrane potentials. Overall, the differentiated cells were more
resistant to cytotoxicity and mitochondrial dysfunction. In accordance with these results,
we show that RA-differentiated SH-SY5Y coped with Sin1 where no induction of abundant
ncRNAs was recorded (Figure 6). Importantly, alternative differentiation protocols that
were presented (e.g., the two-step RA and BDNF combination) drove the cells to become
more vulnerable to energetic stress, despite the increased ATP production [28]. We an-
ticipate that inspecting specific changes in the lncRNA profile is useful for the study of
functional neurons in health and disease [51].

In summary, we present evidence for reduced cytotoxicity in undifferentiated SH-SY5Y
cells that were treated by ladostigil. We found that ladostigil shifted the IC50 for cell viabil-
ity of Sin1 from ~250 µM to ~350 µM, presumably by its antioxidative activity. There were
numerous mechanisms by which lncRNAs responded to oxidative stress, including the
regulation of transcription by enhancers, competing with miRNAs, modulating transcrip-
tion factors, and molecular decoys. Among the hundreds of lncRNAs identified in the cells
(Supplementary Table S2), tens of abundant ones were moderately upregulated. We show
that RA-differentiated cells were quite robust to Sin1 and ladostigil. We anticipate that
the oxidative stress-driven shifts in the lncRNA expression levels participated in the cells’
responses to external stress, which distinguished their differentiated state. We propose that
even a modest dysregulation in the lncRNA levels may affect cell homeostasis. We propose
lncRNAs as cellular indicators for assessing the effects of novel drugs (e.g., ladostigil) under
chronic stress conditions that characterize the aging brain and neurodegenerative diseases.
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4. Materials and Methods
4.1. Materials

All reagents were purchased from Sigma Aldrich (Burlington, MA, USA) unless other-
wise stated. Ladostigil, (6-(N-ethyl, N-methyl) carbamyloxy)-N propargyl-1(R)-aminoindan
tartrate, was a gift from Spero BioPharma (Cambridge, MA, USA). Sin1 (3-(4-5 Morpholinyl)
sydnone imine hydrochloride) was obtained from Sigma-Aldrich (Cat-M5793). Media prod-
ucts MEM and F12 (ratio 1:1), heat-inactivated fetal calf serum (10% FCS, Cat. C8056,
Sigma-Aldrich), and L-Alanyl-L Glutamine were obtained from Biological Industries IMBH
(Beit-Haemek, Israel). All tissue culture materials were purchased from IMBH, (Beit-
Haemek, Israel). H2O2 (30%, Cat. H1009, Sigma-Aldrich, Rehovot, Israel) was diluted in
cold water and the solutions were used within 2 h. Cell viability was determined using MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Cat M5655, Sigma-Aldrich,
Rehovot, Israel).

4.2. SH-SY5Y Cell Culture

Human neuroblastoma-derived SH-SY5Y cells derived from the original SK-N-SH
clone were obtained from the ATCC (American Type Culture Collection, Manassas, VA,
USA) [78]. Cells were cultured in Minimum Essential Media (MEM and F12 ratio 1:1,
4.5 g/l glucose) with 10% fetal calf serum (FCS) and 1:10 L-Alanyl-L-Glutamine. Cells
were incubated at 37 ◦C under a humidified atmosphere of 5% CO2. Ladostigil was added
to the culture medium 2 h prior to the activation of oxidative stress, and analysis was
performed. Cells were tested 24 h later (i.e., 26 h after the addition of ladostigil), unless
otherwise stated.

SH-SY5Y cells were differentiated by retinoic acid (RA) according to the published
protocol [81]. Briefly, 1.5 × 104 cells/cm2 were seeded in medium supplemented with 10%
fetal bovine serum (FBS, Cat. F7524, Sigma-Aldrich). After 24 h, the cells were introduced
to a fresh medium with only 1% FBS, supplemented with 10 µM of RA (all-trans-RA,
Cat. R625, Sigma-Aldrich), and maintained for an additional 7 days. On day 4, the same
medium was replaced with fresh medium. On day 7, the cells were harvested and used for
the preparation of the cDNA for the RT-PCR experiments.

4.3. Cell Viability Assay

SH-SY5Y cells were cultured at a density of 2 × 104 cells per well in 96-well plates
with 200 µL of medium. An MTT assay was conducted using colorimetric measurement for
cell viability, with viable cells producing a dark blue formazan product [82]. The cells were
treated in the absence or presence of ladostigil (at 5.4 mM and 54 mM). The drug is soluble
in water. The MTT solution in phosphate-buffered saline (PBS, pH 7.2) was prepared as
a working stock of 5 mg/mL. After 24 h, the culture medium was supplemented with
10 µL of concentrated MTT per well. Absorption was determined in an ELISA reader at
λ = 535 nm, using absorption at λ = 635 nm as a baseline. Cell viability was expressed
as the percentage of untreated cells. Each experimental condition was repeated 8 times.
The results of the survival assays are presented as the mean ± SEM. When appropriate,
p-values < 0.05 were calculated and considered statistically significant. We report on genes
that met the FDR-adjusted p-value of ≤0.05 (q-value).

4.4. Flow Cytometry

SH-SY5Y cells were cultured in 6-well or 12-well plates to reach a 70–80% confluence
level (37 ◦C and 5% CO2) before analysis by fluorescence-activated single-cell sorting
(FACS). Propidium iodide (PI, Cat. R37108, Thermo-Fisher (Waltham, MA, USA) was
used as a marker for dead cells. PI and Annexin V-FITC were purchased from MBL
(MEBCYTO-Apoptosis Kit; Woburn, MA, USA). Early apoptosis was detected using con-
jugated Annexin V [83]. The fluorescence of Annexin-V indicates the presence of phos-
phatidylserine (PS) at the outer leaflet of the plasma membrane. FACS analysis was con-
ducted with 50,000 cells and the fraction of dead cells stained with PI was determined. Cells
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were stained with Annexin V according to the manufacturer’s MBL protocol. Cells in the
early apoptosis phase are defined as Annexin V-positive and PI-negative. Discriminative
staining with PI and Annexin-V by FACS was discussed in [32,84].

4.5. RNA Sequencing

SH-SY5Y cells were pre-incubated for 2 h with ladostigil at a concentration of 5.4 µM.
The cells were exposed to Sin1 (t = 0) and harvested at 10 h or 24 h following the addition of
ladostigil. The total RNA was extracted using an RNeasy Plus Universal Mini Kit (QIAGEN,
GmbH, Hilden, Germany) according to the manufacturer’s protocol. Briefly, a mini spin
column was used and centrifuged for 15 s at ≥8000× g and room temperature. Samples with
an RNA integrity number (RIN) of >9.0, as measured by an Agilent 2100 Bioanalyzer, were
considered for further analysis. Total RNA samples (1 µg RNA) were enriched for mRNAs
by the pull-down of poly(A) RNA and libraries were prepared using a KAPA Stranded
mRNA-Seq Kit (QIAGEN, GmbH, Hilden, Germany) according to the manufacturer’s
protocol. As the RNA-seq experiment was performed using a protocol for the removal
of ribosomal RNAs, restricting molecule length to a minimum of >200 nucleotides, a
sequencing depth to many of the lowly expressing transcripts could be achieved. RNA-
seq libraries were sequenced using Illumina NextSeq 500 to generate 85 bp single-end
reads. RNA-seq data files were deposited in ArrayExpress [85] under accession number
E-MTAB-10450.

4.6. Reverse Transcription Polymerase–Chain Reaction (RT-PCR)

Total RNA was extracted with Trizol (Thermo-Fisher, Waltham, MA, USA)), and RT
was performed using a Ready-To-Go first-strand synthesis kit (Amersham Pharmacia
Biotech, Cat. 27925901, Uppsala, Sweden) according to the manufacturer’s instructions.
RNA was reverse-transcribed into cDNA (1 µg) and used in the PCR reaction. The primers
used for the PCR reactions are listed in Table 3. The PCR conditions consisted of denatura-
tion at 95 ◦C for 2 min and 35 cycles (10 s at 95 ◦C, 15 s at 60 ◦C, and 15 min at 72 ◦C for
extension). The amplicon from the β-actin was used as the internal control for normaliza-
tion. The PCR products were separated on 1.5–2% agarose gel and stained with ethidium
bromide, followed by densitometry measurement (using ImageJ).

Table 3. Forward and reverse oligonucleotide primers used for gel-based RT-PCR assays.

Symbol Transcript Forward Primer Reverse Primer Amplicon (nt)

MALAT1 NR_144568.1 GCTCTGTGGTGTGGGATTGA CTCGGGCGAGGCGTATTTAT 386

NEAT1 NR_028272.1 GGGACAACATTGACCAACGC ACCACGGTCCATGAAGCATT 356

MIAT NR_033321.2 TCCCATTCCCGGAAGCTAGA GAGGCATGAAATCACCCCCA 274

SNHG12 NR_146383.1 CCTTCTCTCGCTTCGGACTG ATCTGCTTAAGTACGCCGGG 167

ACTB NM_001101.5 ACAGAGCCTCGCCTTTGCCGA CATGCCCACCATCACGCCCTGG 196

4.7. Bioinformatic Analysis and Statistics

All next-generation sequencing (NGS) data underwent quality control using FastQC [86]
and were processed using Trimmomatic [87]. All genomic loci were annotated using GEN-
CODE version 37 and aligned to GRCh38 using a STAR aligner [88] and default parameters.
All statistical tests were performed using R-base functions. Figures were generated using
the R package ggplot2. The experiments contained a minimum of three biological replicates.
The trimmed mean of M-values (TMM) was used for the normalization of the RNA read
counts. A TMM value of > 4 was used as the lower cutoff value for the gene expression lev-
els. For quantifying relative expression, the sum of TMM values from all lncRNA (> 4) was
considered as 100% and only ncRNAs representing > 0.5% of that total TMM are reported.
Differential expression analysis was performed using edgeR [89]. Unless otherwise stated,
genes with a false discovery rate (FDR)-adjusted p-value of ≤ 0.05 and an absolute log
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fold-change (FC) above 0.3 were considered as significantly differentially expressed. Data
on the miRNA–lncRNA–protein interactome were downloaded from the experimentally
verified RAID v2.0 database [69].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ncrna8060072/s1, Table S1: RNA-seq TMM results of triplicate
tests for SH-SY5Y cells (NT, lado, NT/lado and Sin1, Sin1/ladostigil. Table S2: RNA-seq-expressed
(DE) genes; Sin1 treated vs. Sin1/Ladostigil treatment (24 h). Table S3: ncRNA collection of 780 DE
significant genes for Sin1 vs. NT (TMM > 4; Source of Figures 2 and 3). Table S4: SNHG representatives
(Source of Figure 4), and their predicted and validated miRNA binding sites. Table S5: Conserved
MBSs on ncRNA GAS5 and MTND4P12. Figure S1: Flow cytometry analysis of cells under oxidative
stress in response to treatment with ladostigil.
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