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Abstract: Long non-coding RNAs (lncRNAs) are untranslated regulatory transcripts longer than
200 nucleotides that can play a role in transcriptional, post-translational, and epigenetic regulation.
Traditionally, RNA-sequencing (RNA-seq) libraries have been created by isolating transcriptomic
RNA via poly-A+ selection. In the past 10 years, methods to perform ribosomal RNA (rRNA)
depletion of total RNA have been developed as an alternative, aiming for better coverage of whole
transcriptomic RNA, both polyadenylated and non-polyadenylated transcripts. The purpose of this
study was to determine which library preparation method is optimal for lncRNA investigations
in the horse. Using liver and cerebral parietal lobe tissues from two healthy Thoroughbred mares,
RNA-seq libraries were prepared using standard poly-A+ selection and rRNA-depletion methods.
Averaging the two biologic replicates, poly-A+ selection yielded 327 and 773 more unique lncRNA
transcripts for liver and parietal lobe, respectively. More lncRNA were found to be unique to poly-A+

selected libraries, and rRNA-depletion identified small nucleolar RNA (snoRNA) to have a higher
relative expression than in the poly-A+ selected libraries. Overall, poly-A+ selection provides a more
thorough identification of total lncRNA in equine tissues while rRNA-depletion may allow for easier
detection of snoRNAs.

Keywords: annotation; transcriptome; regulatory; horse

1. Introduction

Long non-coding RNAs (lncRNAs) are untranslated transcripts longer than 200 nucleotides (nt).
They have been shown to have a wide range of functions in the regulation of transcription, translation,
epigenetics, differentiation, and the cell cycle [1–7]. In recent years, lncRNAs have been increasingly
shown to play important roles in diseases, particularly cancer [8–10] and neurodegeneration [11,12].
However, many functional roles of lncRNAs in cell biology, development, and disease pathogenesis
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remain unknown, especially in the horse. As sequence conservation of lncRNA among species is
low [13], lncRNAs identified in the human and mouse often are not expected to have a similar genomic
sequence in horses.

Previously, an equine lncRNA pipeline and database (https://github.com/eyscott/lncRNA) was
developed using RNA sequencing (RNA-seq) data from various laboratories and across disease
phenotypes [13]. While filling a necessary gap in knowledge in equine genetics, the database had some
limitations. One of the largest limitations was that many of the horses had one of several diseases.
This prevents the public database from being used as a baseline from which to identify aberrant lncRNA
expression or splicing in disease-affected horses. Additionally, some RNA samples were prepared
using ribosomal RNA (rRNA)-depletion whereas other samples were prepared with poly-A+ selection.
However, both methods were not used on any single tissue, so there was no way to assess and quantify
different transcription profiles as a function of the library preparation methods used. Previous human
studies have demonstrated that the transcripts that are sequenced may differ in quantity and identity
between the two methods, with poly-A+ selection limited to transcripts with a polyadenylated tail and
rRNA-depleted libraries having the additional challenge of often including intronic and intergenic
regions [14]. In the horse, biologic validation of putative lncRNAs is lacking; therefore, it is difficult to
distinguish between novel lncRNA and true intronic and intergenic reads.

The objective of this study was to determine which RNA-seq library preparation method would
most reliably capture lncRNA in the equine genome. Long ncRNA was the focus of this study since
substantial work is already in progress to annotate equine protein-coding genes, lncRNA are more
likely than protein-coding genes to differ from other species [13,15–17], and there are potentially fewer
lncRNA with poly-A tails. Using liver and cerebral parietal lobe tissues collected from two healthy
Thoroughbred mares as part of the Functional Annotation of Animal Genomes (FAANG) initiative,
direct comparisons between library preparations was performed. These two tissues were chosen to
be representative of homogenous and heterogeneous tissue, respectively. As non-polyadenylated
lncRNA have been identified in other species [18,19], our hypothesis was that rRNA-depleted libraries
would be preferable for annotating lncRNA as this method is not dependent on the transcripts being
polyadenylated. Determining the RNA-seq library preparation method best for identifying lncRNA
is an essential step toward annotation of the horse genome to identify genetic regions and variants
associated with diseases.

2. Results

Liver and parietal lobe of the cerebrum were collected from two healthy Thoroughbred mares
(adult horse 1: AH1 and adult horse 2: AH2) [20]. RNA was isolated and prepared for sequencing with
poly-A+ selection and rRNA-depletion. Four filters were applied to the resulting RNA-seq datasets
as previously described [13] to isolate lncRNA transcripts. First, single exon transcripts with low
transcripts per million (TPMs) were filtered out as done previously [13] to remove likely uninformative
reads and polymerase mistakes. Then, known protein-coding transcripts were filtered out. Next,
the remaining transcripts were filtered based on the definition of lncRNA (>200 nt) and by TPM.
To ensure no protein-coding transcripts remain, protein-coding transcripts were computationally
predicted and removed. Lastly, previous work has shown that this pipeline removes some true lncRNA,
so a rescue step is required [13]. This was done by comparing the removed transcripts to known
human lncRNA.

Filtering out known protein-coding and single exon transcripts expressed at low levels resulted
in the greatest removal of transcripts for all the samples (Figure 1A). Libraries prepared with
rRNA-depletion had more protein-coding transcripts removed across tissues and biologic replicates
(Figure S1), and poly-A+ selection yielded more unique lncRNA (Figure 1B). Additionally, as expected,
the more complex parietal lobe samples had more unique lncRNA transcripts than the liver samples,
which have a more homogenous cellular composition (Figure 1B).

https://github.com/eyscott/lncRNA
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Figure 1. (A) Bar graph showing the average number of total transcripts between the two horses
after each filtering step. TPM = transcripts per million. (B) Number of unique long non-coding RNAs
(lncRNA) in each tissue library preparation combination (same as the last bar in A). Each data point
represents one horse. PolyA indicates poly-A+ selection.

To investigate if the lncRNA expression was similar between the two biologic replicates, we plotted
the TPM values for each horse against each other for each tissue and library preparation method in a
correlation plot. Analogous unannotated transcripts between biologic replicates were identified via
bedtools intersect (Table S1). Correlation was significant across both tissue types (Figure 2). In each
dataset, there were unique transcripts that were outliers (Table S2) with high TPM values. However,
even when the outliers were removed, correlations of biologic replicates between library preparations
remained significant (Spearman r(liver_polyA) = 0.45, p = 8.98 × 10−97; Spearman r(liver_ribo) = 0.524,
p = 3.24 × 10−86; Spearman r(parietal_polyA) = 0.53, p = 6.08 × 10−172; Spearman r(parietal_ribo) = 0.588,
p = 4.47 × 10−127). Taken together, these findings demonstrate strong correlation of biologic replicates
within library preparations and tissue types.
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Figure 2. Correlation plots for lncRNA expression between biologic replicates. The poly-A+ selected 
libraries are on the left, the rRNA depleted libraries on the right. The top two graphs are from the 
liver while the bottom two are from the parietal lobe of the cerebrum. The x-axis indicates expression 
of the individual lncRNA in adult horse 1 (AH1). The y-axis shows expression of the same lncRNAs 
in adult horse 2 (AH2). Spearman correlation (r) and p-value in bottom right corner. 

Differentially expressed (DE) lncRNAs between liver and parietal lobe samples for each library 
preparation were determined (Table S3). While most of the DE lncRNA were unannotated, H19 was 
identified by both poly-A+ selection and rRNA-depletion as being expressed higher in the liver than 
the parietal lobe, similar to findings in humans [21]. In poly-A+ selected libraries, lncRNAs that 
appear similar to LINC00643, LINC02586, and LOC100128494 in humans have similar expression 
patterns in liver and parietal lobe [21]. For example, LINC00643 is highly expressed in the brain in 
humans and only minimally in the liver [21], which parallels what we see in our RNA-seq data. In 
rRNA-depleted libraries, lncRNAs that have similarities in sequence or genomic position to 
MIR124-2HG, LINC00643, RP4-785G19.5, and LINC01351 in humans have parallel expression 
patterns in liver and parietal lobe in the horse [21]. H19, LINC02586, MIR124-2HG, and LINC01351 

Figure 2. Correlation plots for lncRNA expression between biologic replicates. The poly-A+ selected
libraries are on the left, the rRNA depleted libraries on the right. The top two graphs are from the liver
while the bottom two are from the parietal lobe of the cerebrum. The x-axis indicates expression of the
individual lncRNA in adult horse 1 (AH1). The y-axis shows expression of the same lncRNAs in adult
horse 2 (AH2). Spearman correlation (r) and p-value in bottom right corner.

Differentially expressed (DE) lncRNAs between liver and parietal lobe samples for each library
preparation were determined (Table S3). While most of the DE lncRNA were unannotated, H19 was
identified by both poly-A+ selection and rRNA-depletion as being expressed higher in the liver than
the parietal lobe, similar to findings in humans [21]. In poly-A+ selected libraries, lncRNAs that appear
similar to LINC00643, LINC02586, and LOC100128494 in humans have similar expression patterns in
liver and parietal lobe [21]. For example, LINC00643 is highly expressed in the brain in humans and
only minimally in the liver [21], which parallels what we see in our RNA-seq data. In rRNA-depleted
libraries, lncRNAs that have similarities in sequence or genomic position to MIR124-2HG, LINC00643,
RP4-785G19.5, and LINC01351 in humans have parallel expression patterns in liver and parietal lobe in
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the horse [21]. H19, LINC02586, MIR124-2HG, and LINC01351 expression in the parietal lobe and liver
was confirmed with quantitative reverse transcription PCR (qRT-PCR) in the same horses (Figure S2).
This suggests that both library preparations are accurately demonstrating relative expression between
tissue types.

Comparing the DE lncRNAs that are annotated by National Center for Biotechnology Information
(NCBI) showed that the top two lncRNA are the same for poly-A+ selection and rRNA-depletion.
One in an unknown lncRNA (rna69770; Table S3) and the other is H19 (rna41570; Table S3). Additionally,
within the top 10 DE lncRNA, there are two other lncRNA that show up in both library preparations.
There is another unknown lncRNA (rna12060; Table S3) and the other is similar to human LINC00643
(rna64504; Table S3). So, only four of the top 10 annotated DE lncRNA are the same between library
preparations, indicating that there is a substantial difference in the quantity of lncRNA that is detected
by each library preparation.

To further address the impact that library preparation plays in defining the lncRNA transcriptome,
a multi-dimensional scaling (MDS) plot was evaluated. While tissue type caused the largest difference
between samples (dimension 1; x-axis), library preparation caused the second largest difference
(dimension 2; y-axis; Figure 3). Principal component analysis (PCA) also showed an even greater
difference between tissues when rRNA-depletion was used (PC1 = 70.9%, PC2 = 12%; Figure S3).
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Figure 3. Multidimensional scaling plot of the lncRNA expression from each tissue/library preparation
for each horse.

We also investigated how many lncRNAs only appear in one library preparation. Within poly-A+

selected libraries for the liver and parietal lobe, 1276 and 2602 unique lncRNA were identified,
respectively. Fewer lncRNA were unique to the rRNA-depleted libraries, with 977 and 1467 lncRNAs
identified for the liver and parietal lobe, respectively. This suggests poly-A+ selection captures more
lncRNA than rRNA-depletion.

To continue investigating the differences between library preparations, correlation plots were
constructed between library preparation methods for each horse and each tissue (Figure 4 and Figure S4).
There was only a moderate degree of correlation between library preparations (Spearman r(liver,subset) =

0.476, p = 3.62 × 10−86; Spearmen r(parietal,subset) = 0.473, p = 9.25 × 10−89).
When evaluating the annotated lncRNA that had substantially higher TPMs in one library

preparation as compared to the other, small nucleolar RNAs (snoRNAs) were consistently higher in
rRNA-depleted libraries. There is minimal difference in the number of snoRNAs identified between
each library preparation (Table S5); however there appears to be a large difference in the relative
expression of snoRNAs in rRNA-depleted libraries. Limiting the correlation analysis to the EquCab3.0
RefSeq annotated lncRNA (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/863/925/GCF_002863925.
1_EquCab3.0/), which excludes snoRNAs, removed all transcripts that had high expression (>60 TPM)
in the rRNA-depleted libraries and substantially disproportionate low expression in the poly-A+

selected libraries. However, the correlation between library preparations slightly decreased (Spearman

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/863/925/GCF_002863925.1_EquCab3.0/
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r(liver,subset) = 0.425, p = 2.47 × 10−19; Spearman r(parietal)l = 0.416, p = 1.84−19; Figure 5 and Figure S3),
but this is likely due to the decrease in number of transcripts used in the analysis.
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cerebrum. Spearman correlation (r) and p-value in bottom right corner.
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3. Discussion

Long ncRNAs play a role in many cellular functions [1–7] and have been implicated in cancer [8–10]
and neurodegeneration [11,12]. Additionally, lncRNAs may play a large role in athletic performance in
the horse [22]. Thus, the goal of this study was to determine which RNA-seq library preparation method
most reliably identifies lncRNA in horses. We hypothesized that rRNA-depleted libraries would be
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preferable as selection is not dependent on a poly-A tail. However, with an average coverage of 30 M
reads, we identified more total lncRNA in the poly-A+ selected libraries, suggesting that poly-A+

selection may be more efficient at capturing lncRNAs than rRNA-depletion. It has been shown that some
non-polyadenlyated lncRNAs are stabilized by other secondary structure features [23]. These features
could have prevented the isolation of the associated transcripts during library preparation, leading to
fewer lncRNAs being detected in the rRNA-depleted libraries. Additionally, the high TPM values
obtained for snoRNAs suggest that these transcripts are overrepresented in rRNA-depleted libraries,
preventing other ncRNAs from being identified. Previous studies on RNA-seq from human cell lines
and blood have detected more or equal numbers of lncRNA in rRNA-depleted libraries [14,24–26],
though one study explicitly reported that rRNA-depleted libraries yielded fewer usable reads than
poly-A+ selection [14]. The study that found this included RNA from the colon, however this RNA
sample was obtained directly from a commercial source and was not isolated by the researchers.
Our study is unique in that all RNA was isolated by a single researcher from flash-frozen tissue collected
from healthy, well-phenotyped individuals before proceeding to library preparation. This minimizes
the potential variation from multiple individuals performing RNA isolations as well as any pathological
variation. As a result, we did identify a strong correlation between biologic replicates.

While this study highlights many of the drawbacks of rRNA-depletion library preparation
methods, poly-A+ selection has its own disadvantages. As seen here, some transcriptomic information
is lost if it does not have a polyadenylated tail. Additionally, it is well known that poly-A+ selected
libraries have a 3′-bias. In an effort to identify a library preparation method that avoids some of the
biggest disadvantages of poly-A+ selection and rRNA-depletion, the rRNA-depletion protocol could
be further optimized. Alternatively, a NuGEN Ovation v2 protocol, which utilized both random and
oligo(dT) primers to remove rRNAs, performed well in lncRNA identification in one comparison
study [27]. This method addressed the poly-A tail disadvantage; however, it performed poorly when
looking at protein-coding transcripts and had a substantial 3′-bias [27]. In short, further research is
needed to develop an improved RNA-seq library preparation protocol.

Investigating DE lncRNA between tissues for poly-A+ selection and rRNA-depletion as a proof of
concept identified several lncRNA that are similar to lncRNA found in humans with similar expression
differences between brain and liver tissues [20]. This suggests that both methods may be used to
annotate lncRNA that is already known in other species. However, more lncRNA transcripts were
unique to poly-A+ selected libraries than to rRNA-depleted libraries, indicating that, for a specific
sequencing depth, poly-A+ selection may yield more informative lncRNA data.

When comparing poly-A+ selection and rRNA-depletion methods in humans, it is common to
limit the comparison to already annotated lncRNA [14,24–26]. While this may be sufficient when using
human data, there are not enough lncRNAs annotated in the equine reference genome to identify a
substantial correlation between library preparation methods [14,24]. However, we can still observe
a moderate correlation between library preparations. rRNA-depletion is often recommended for
poor-quality RNA where a full transcript is likely not attached to a polyA-tail [28]. The RNA used in
this study was of high quality and therefore our comparative results only apply to high-quality RNA
library preparations.

As suggested in Scott et al. [13], library preparation does play a large role in the lncRNA that are
detected. As such, rRNA-depleted datasets should not be considered equivalent to poly-A+ selected
datasets. While this might not raise problems in the annotation of the equine genome, differential
transcript expression studies between two equine populations would require additional biologic
replicates to overcome the variation between library preparations. A primary advantage of using
rRNA-depletion appears to be enhanced identification of snoRNAs. Data from human studies supports
this. In a previous report using the HEK293 cell line, a snoRNA was one of the top three highly expressed
lncRNA [25]. That particular study raised a valid concern that these highly expressed snoRNAs and
similar transcripts lowered the sequencing depth for other RNAs [25]. Similarly, when using pooled
blood RNA and a single colon RNA sample, a large portion of rRNA-depleted libraries consisted of a
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small number of lncRNAs and small RNAs (smRNAs) [14]. Therefore, for annotation of these RNAs,
rRNA-depletion would likely be the most thorough. However, poly-A+ selection can identify these
RNAs and may simply require deeper sequencing to better detect these transcripts. Previous study
of HEK293 cells support this finding of highly expressed lncRNA from rRNA-depleted libraries also
being present in poly-A+ selected libraries [25].

As only two tissues were used in this study, the results obtained here do not provide a thorough
annotation of the equine genome. By evaluating eight different tissues, Scott et al. identified 20,800 putative
lncRNA [13]. This number of putative lncRNA far exceeds what was identified in our study; however,
tissues used in the Scott et al. study included both nervous and embryonic tissues, which likely have a
substantially different lncRNA transcriptional profile as compared to adult horses [29]. In humans,
rRNA-depletion has been reported to include more intergenic and intronic reads than poly-A+

selection [14]. Unfortunately, as many non-coding RNAs and untranslated regions are not identified in
the horse, an accurate measure of the non-exonic reads in our dataset cannot be obtained. Similarly,
we do not know the true distribution of lncRNA in horses. However, the identification of similar
lncRNA that are differentially expressed between the liver and parietal lobe in both humans and horses
suggest a potential method for future annotation.

Potential limitations of this study include the use of only two tissues from two biological replicates.
Since the liver and parietal lobe are quite different in terms of cellular make-up complexity, they were
considered to be good representative tissues. However, there could be some factors concerning
RNA-seq library preparations we are not observing with the limited sample number. A limitation of
the pipeline used is a combination of the strict filtering of predicted protein-coding sequences and an
ineffective rescue of known lncRNA from human data. All transcripts with an open reading frame
(ORF) were filtered out which likely excluded some lncRNA as there are reports of lncRNA with
short ORFs in mice [30,31]. As noted from the increase in lncRNA after rescuing filtered out known
lncRNA, a substantial number of lncRNA were incorrectly filtered out. An alternative pipeline may
remove this part of the filter, though there is then the possibility of retaining unannotated or truncated
protein-coding transcripts. Additionally, due to the low sequence conservation of lncRNA between
horse and human [13], there are likely lncRNA that are not rescued as this step uses nucleotide BLAST
(BLASTN). An improved rescue might utilize lncRNA known to be expressed in a specific tissue in a
more thoroughly annotated species, such as human, and identify lncRNA in syntenic regions of the
organism of interest, such as horse.

In summary, poly-A+ selection allowed for the identification of more lncRNA and missed fewer
lncRNAs compared to rRNA-depletion. While changes to the pipeline could improve annotation,
using poly-A+ selection in equine samples provides thorough identification of lncRNA.

4. Materials and Methods

4.1. Samples and Sequencing

Liver and parietal lobe of the cerebrum tissues from two healthy Thoroughbred mares was
obtained from the functional annotation of the animal genome biobank [20] to investigate lncRNA
expression in both a homogeneous and a complex tissue. RNA was isolated using a phenol-chloroform
method with a column clean up. RNA quality was measured using an Agilent Bioanalyzer (RIN = 8.7).
Two RNA-seq libraries were prepared from each tissue sample, one based on poly-A+ selection and
the other using rRNA-depletion. Poly-A+ selected libraries were made using a strand-specific poly-A+

capture protocol (TruSeq Stranded mRNA, Illumina, San Diego, CA, USA). A bioanalyzer was used
to ensure all poly-A+ selected libraries had adequate size distributions. The rRNA was depleted
(Ribo-Zero, Illumina, San Diego, CA, USA) and prepared as strand-specific (TruSeq Stranded Total
RNA Library pre kit, Illumina, San Diego, CA, USA). The libraries were size selected for 140 bp ± 10%
fragments and sequenced on a HiSeq 4000 to an average depth of 30 M mapped reads (ERX2600970,
ERX2600971). The reads are paired end and 125 bp long.
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4.2. lncRNA Identification

The reads were trimmed with Sickle [32], mapped with STAR (2-pass) [33], map quality checked
with samtools flagstat (>99% mapped and properly paired) [32], down-sampled to similar read counts
across samples with samtools view [34], and annotated with Stringtie [35]. The EquCab3 reference
genome and corresponding annotation was obtained from NCBI [36]. A lncRNA pipeline slightly
modified from the one published by Scott and Mansour [13] was used to isolate the lncRNA and
compare the two library preparation methods. Known protein coding transcripts were removed using
a combination of filtering out any transcript GffCompare [37] identified as an exact match with protein
coding transcripts from the reference and anti_join [38] against known protein coding transcript names.
A histogram of TPMs was used to identify the cut-off to filter out the single exon transcripts with low
TPMs that were categorized as false positives (TPM < 2) and to determine the TPM cut-off for the
remaining transcripts (TPM < 0.4). As lncRNA are defined as longer than 200 bp, the transcripts were
also filtered based on length. Remaining protein coding regions were computationally identified by
combining predicted ORFs, protein domain models (Pfam) [39,40], and protein sequence database
(hmmsearch; http://hmmer.org/). Additionally, the reads were BLAST’d (NCBI) against known human
protein coding cDNA and protein peptide sequences. These findings were merged and filtered out.
Known human lncRNA from the Ensembl ncRNA database (ftp.ensembl.org/pub/release-86/fasta/

homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz) were then compared to the filtered out
coding regions and any matches were returned to the final lncRNA file. The lncRNA analysis and final
bed files are detailed at https://github.com/ADahlgren/PolyA_ribozero.

4.3. Analysis

BEDtools intersect (version 2.29.2) [41] was used to identify lncRNA that do not overlap (by 50%)
with the opposite library to identify the number lncRNA that were unique to each library preparation
for each tissue. BEDtools intersect was also used to identify transcripts in one library that overlap with
transcripts from another library (by 90%) and to identify transcripts that are likely RefSeq lncRNAs.

Correlation plots were made in Rstudio. The spearman rho (r) value and p-values were also
calculated in Rstudio. EdgeR [42] was used to create MDS scaling plots based on log fold change to
determine the role library preparation plays in the lncRNA transcriptome. It was also used to identify
the most differentially expressed transcripts between liver and parietal lobe for each library preparation
method, with p values corrected by a false discovery rate of <0.05. Principal component analysis was
done using the dataset from EdgeR in Rstudio.

4.4. qRT-PCR

RNA from AH1 and AH2 was reverse transcribed into cDNA using SuperScript III (ThermoFisher;
Waltham, MA, USA) according to the manufacturer’s instructions. Primers were designed using Primer
3 Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) to span two exons (Table S5).
Endpoint PCR showed specific amplification of the correct product. qRT-PCR was performed on an
AriaMx Real-time PCR System (Agilent; Santa Clara, CA, USA) using Brilliant III Ultra-Fast SYBR
qPCR Master Mix (Agilent; Santa Clara, CA, USA). cDNA was pooled and serially diluted to ensure
efficient amplification and the optimal dilution. All samples were run in triplicate and delta Cqs were
calculated with ACTB as the reference gene.

Supplementary Materials: The following are available online at http://www.mdpi.com/2311-553X/6/3/32/s1,
Figure S1: Average number of protein-coding transcripts, Table S1: Number of lncRNA Used in Correlation
Analysis by Tissue and Library Preparation, Table S2: lncRNA Removed in Biologic Replicate Correlation, Table S3:
raw output from edgeR analysis, Figure S2: Bar graphs showing delta Cq in parietal lobe and liver for four
lncRNA transcripts, Figure S3: Principle component plot of the lncRNA expression, Figure S4: Correlation plots
for lncRNA expression in AH2 with annotated transcripts, Table S4: lncRNA annotated as snoRNA for each horse,
tissue, and library preparation method, Figure S5: Correlation plots for lncRNA expression in AH2 with RefSeq
annotated lncRNA, Table S5: qRT-PCR primer sequences.

http://hmmer.org/
ftp.ensembl.org/pub/release-86/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz
ftp.ensembl.org/pub/release-86/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz
https://github.com/ADahlgren/PolyA_ribozero
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.mdpi.com/2311-553X/6/3/32/s1
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