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Abstract: Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to
cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the
main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by
gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia
is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway
in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by
altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and
angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding
the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to
evolve cancer therapy. Long non-coding RNAs (IncRNA) are a class of non-protein coding RNA
molecules with a length of over 200 nucleotides. They participate in cancer development and
progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing
body of evidence supports the role of IncRNAs in the hypoxic and normoxic regulation of HIF and its
subunits HIF-1oc and HIF-2« in cancer. This review provides a comprehensive update and overview
of IncRNAs as regulators of HIFs expression and activation and discusses and highlights potential
involved pathways.
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1. Introduction

Hypoxic conditions are a challenge for oxygen-dependent mammalian cells requiring an adequate
cellular response in order to adapt metabolic and proliferative processes. Hypoxia-inducible factor
(HIF) is the main sensor of cellular oxygen levels as well as the main transcriptional regulator of cellular
response to hypoxia [1]. There are several subunits of this protein, e.g., HIF-1o, HIF-2c and HIF-3 as
well as the constitutively expressed HIF-1§3, that become activated by dimerization of HIFo subunits
with HIE-13 [1,2]. Physiologically, during normoxic conditions, HIF-1oc and HIF-2cx are constantly
degraded through initial hydroxylation by prolyl hydroxylase (PHD) enzymes which further enables
binding to the von Hippel-Lindau (VHL) protein [3,4]. Subsequently, this initiates ubiquitination of
HIFx subunits by a-ketoglutarate-dependent dioxygenases thereby marking them for proteasomal
degradation. However, under hypoxic conditions, PHDs are no longer active, consequently leading
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to HIFx accumulation and further dimerization with the HIF-1$3 subunit. This enables binding to
hypoxia response elements (HRE) in the promoter regions of target genes, which aims to reduce cellular
oxygen consumption by, for instance, activating anaerobic glycolysis or promoting angiogenesis [1,5].
As for HIF-3«, in contrast to HIF-1x and HIF-2x evidence suggests a negative regulatory influence
on hypoxia-related gene expression, partially by competing for HIF-13 and acting as a transcription
factor [6,7]. Overexpression of HIF-3cx was related to attenuated angiogenesis and proliferation [8].
In cancer, hypoxic conditions within tumors are frequently encountered. Therefore, it is not surprising
that an overexpression of HIFs can be observed across many cancer types. However, HIFs may also
be upregulated in normoxia [9-11]. This significantly impacts tumor growth and progression as,
for instance, HIF overexpression promotes cancer angiogenesis or activates glycolysis in addition to the
aerobic metabolism compensating for the increased energy demands of fast proliferating cancer cells,
which is known as the Warburg effect [12,13]. In addition, HIF activation is strongly associated with
emerging drug resistance [14,15]. Thus, HIFs represent a powerful potential therapeutic target which is
consequently being investigated in several clinical trials aiming to therapeutically target HIFs [16,17].

Apart from that, in the recent years, a growing body of evidence supports the involvement of
non-coding RNAs including microRNAs (miRNAs) and long-noncoding RNAs (IncRNAs) in HIFs
regulation in cancer [18-20].

IncRNAs are a class of non-protein coding RNAs that are more than 200 nucleotides in length [21].
In cancer, over the last decade IncRNAs were successfully established as regulators of tumor growth,
progression and therapy resistance and are considered as potential therapeutic targets [22-26].
Additionally, their utility as diagnostic and prognostic biomarkers has been suggested [27]. LncRNAs
can be classified depending on their localization within the genome. The sequences of intergenic
IncRNAs (lincRNA) are localized between two protein-coding genes, whereas intronic IncRNAs
originate from introns of protein-coding genes [28]. LncRNA transcripts may also overlap with known
protein-coding genes. If they are transcribed in the opposite direction of a protein-coding DNA
sequence, they are called antisense IncRNAs [28]. LncRNAs may exert their functions through different
mechanisms, for example they may act as signal, guide, decoy or scaffold for other non-coding RNAs
or proteins, thereby regulating processes like transcription, splicing, RNA stability and translation [29].
Several IncRNAs, such as HOXA distal transcript antisense RNA (HOTTIP) [30], prostate cancer gene
expression marker 1 (PCGEM1) [31], gastric adenocarcinoma associated, positive CD44 regulator,
long intergenic non-coding RNA (GAPLINC) [32] and antisense non-coding RNA in the INK4 locus
(ANRIL) [33] are upregulated upon hypoxia, for instance, by binding of the HIF transcription factors to
their promoter region. Yet not all of them are also exerting regulatory functions on the HIF pathway [34].
In the recent years, an increasing number of IncRNAs was reported to participate in HIFs regulation
and acting directly or indirectly as enhancers or inhibitors of the HIF-pathway. Associated mechanisms
include the regulation of HIFs transcription [35], translation [36], degradation [37], activation [38] and
protein stability [39,40] (Table 1). See Figure 1 for an overview of HIF regulation and examples for
IncRNA interventions.

The aim of this review is to summarize the current evidence on IncRNAs as regulators of HIFs
across various cancer entities and to highlight so far unsolved questions that require further research.
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Figure 1. Regulation of hypoxia-inducible factor (HIF) and examples of long non-coding RNA (IncRNA)

involvement. After transcription and translation under normoxic conditions hypoxia-inducible factor

(HIF) 1/2« is hydroxylated by proline hydroxylases (PHD) which subsequently enables binding of the

von Hippel-Lindau (VHL) protein and results in VHL-mediated ubiquitination and degradation through

the proteasome pathway. In hypoxia, PHDs are inhibited and HIF-1/2x accumulate and are activated

by dimerization with the constitutively expressed HIF-1p leading to transcription of HIF target gene.

IncRNAs are involved in HIF regulation in several ways. For instance, they may regulate HIF transcription

and translation, act as microRNA sponges, directly bind to PHDs and VHL or facilitate binding between

HIF and transcriptional cofactors. (Created with BioRender.com).

Table 1. Overview of long non-coding RNAs involved in HIFs regulation, not including competing

endogenous RNAs.
IncRNA Impact on HIF Role in HIF Regulation References
HIF-1x
PVT1 T increases HIF-1x expression and stability [41-43]
LINK-A T increases HIF-1 stability and activation [44—46]
lincRNA-p21 ) increases HIF-1a protein stability [40]
HISLA T increases HIF-1a protein stability [47]
GHET1 ) increases HIF-1x expression and stability [39,48]
MIR31HG/HIFCAR T enhances HIF-1«x activation [38,49]
DANCR T stabilizes HIF-1o mRNA [50]
CASC9 T increases HIF-1« protein stability [51,52]
MALAT1 ) increases HIF-1a protein stability [53]
MTA2TR ) increases HIF-1a protein stability [54]
UBE2CP3 T no specific mechanism defined [55]
AWPPH T no specific mechanism defined [56]
LET 1 decreases HIF-1ac mRNA stability [57]
ENST00000480739 1 decreases HIF-1o protein stability [58]
CPS1-IT1 1 decreases HIF-1x activation [59-61]
HITT 1 inhibits HIF-1o transcription and translation [35,36]
MEG3 l Increases HIF-1x expression [62]
IDH1-AS1 1 decreases HIF-1ox protein stability [37]
PIN1-v2 l inhibits HIF-1o transcription [63]
HOTAIRM1 1 post-transcriptionally inhibits HIF-1« expression [64]
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Table 1. Cont.

IncRNA Impact on HIF Role in HIF Regulation References
HIF-2x
o o g o deoed, )
SARCC l decreases HIF-2¢ transcription and translation [68]
MALAT1 T increases HIF-2o protein stability [69]
lincRNA-p21 ) increases HIF-2a protein stability [40]

Abbreviations: PVT1—Plasmacytoma Variant Translocation 1; LINK-A—Long intergenic non-coding RNA for kinase
activation; HISLA—HIF-1« stabilizing long noncoding RNA; GHET1—gastric carcinoma high expressed transcript 1;
MIR31HG—miR-31 host gene; HIFCAR—HIF-1« co-activating RNA; DANCR—differentiation antagonizing
non-protein coding RNA; CASC9—cancer susceptibility candidate 9; MALAT1—metastasis associated lung
adenocarcinoma transcript 1, MTA2TR—MTAZ2 transcriptional regulator RNA; UBE2CP3—ubiquitin conjugating
enzyme E2C pseudogene 3; AWPPH—associated with poor prognosis of hepatocellular carcinoma; LET—low
expression in tumor; CPS1-IT1—CPS 1 intronic transcript 1; HITT—HIF-1x inhibitor at translation level;
MEG3—maternally expressed gene 3; IDH1-AS1—isocitrate dehydrogenase 1 antisense RNA 1; PIN1-v2—enzyme
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 variant 2; HOTAIRM1—HOXA transcript antisense RNA,
myeloid specific 1; HIF2PUT—Hypoxia-inducible factor-2« promoter upstream transcript; SARCC—suppressing
androgen receptor in renal cell carcinoma.

2. Methods

The PUBMED database was used for a literature search. The search terms used were “long
non-coding”, “long non-coding”, “long noncoding”, “RNA”, “IncRNA”, “hypoxia”, “hypoxic”,
“hypoxia-inducible factor”, “hypoxia inducible factor” or “HIF” in various combinations. Headlines
and abstracts and full texts were screened for relevance. We excluded studies that solely addressed
IncRNAs induced by HIF and only included studies that presented IncRNAs as direct or indirect
regulators of HIF subsets.

3. IncRNAs in the Regulation of HIF-1x
3.1. IncRNAs as Enhancers of HIF-1a Expression, Activation and Stability

3.1.1. PVT1

Plasmacytoma Variant Translocation 1 (PVT1) is a well-known oncogenic IncRNA and has been
repeatedly suggested as a novel target in cancer therapy [70,71]. PVT1 may participate in the regulation
of HIF-1x in two different ways. On the one hand, it was shown to act as a competing endogenous RNA
(ceRNA) for the miRNAs miR-186 [43] and miR-199a-5p [42] in gastric cancer and non-small cell lung
cancer (NSCLC) cells, respectively, thereby preventing them from miRNA-mediated HIF-1oco mRNA
degradation. Overexpression of PVT1 therefore resulted in increased HIF-1oc expression levels [42,43].
On the other hand, a different mechanism of HIF-1x regulation was only recently proposed in
nasopharyngeal carcinoma by Wang et al. [41]. PVT1 was shown to stabilize HIF-1« by acting as a
scaffold for the chromatin modifying histone acetyltransferase KAT2A (lysine acetyltransferase 2A)
thereby promoting its function and acetylation of H3K9. Consequently, this facilitates the binding of
transcription intermediary factor 13 (TIF13) and H3K9%ac to the TIF13/H3K9ac complex which then
acts as a transcriptional activator for HIF-1«x stabilizing genes. Wang et al. [41] identified increased
NF90 (nuclear factor 90) transcription by overexpression of PVT1 and binding of the TIF13/H3K9ac
complex to the NF90 promoter region. NF90 is a double-stranded RNA-binding protein that ultimately
stabilizes HIF-1o« mRNA. This was experimentally confirmed both in vitro and in vivo when they also
investigated the role of this pathway in radiotherapy sensitivity [41].

Apart from PVT1 [42,43], various other IncRNAs exert their regulatory function on HIF-1« by
acting as ceRNAs [72-90]. See Table 2 for an overview of ceRNAs and their associated pathways in
HIF regulation. Some selected examples with unique pathways or a larger body of evidence are further
discussed in this section.
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Table 2. Competing endogenous RNAs in the regulation of hypoxia-inducible factor.

Expression  Impact on HIF

IncRNA Cancer Pattern Expression Pathway Reference
HIF-1x
PVT1 Gastric cancer T increase PVT1/miR-186/HIF-1x [43]
Nlon'smau cell 1 increase PVT1/miR-199a-5p/HIF-1x [42]
ung cancer
H19 Endometrial cancer T increase H19/miR-20b-5p/HIF-1/AXL [89]
Breast cancer T increase H19/miR-let-7/HIF-10/PDK1 [88]
Hepatic cancer T increase HOTAIR/miR-130a-3p/HIF-1x [87]
HOTAIR ™ Renal cell carcinoma 1 increase HOTAIR/miR-217/HIF-10/AXL [84]
Cervical cancer T increase HOTAIR/miR-127/HIF-1ec [86]
HIF1A-AS2 Breast cancer T increase HIF1A-AS2/miR-548¢-3p/HIF-1«/VEGF [83]
UCA1 Breast cancer T increase UCA1/miR-18a/HIF-1 [82]
CDKN2B-AS1 Ovarian cancer T increase CDKN2B-AS1/miR-411-3p/HIF-1a/VEGF ~ [81]
DLX6-AS1 Nasopharyngeal 7 increase DLX6-AS1/miR-199a-5p/HIF-1ac [80]
carcinoma
FEZF1-AS1 Pancreatic cancer T increase FEZF1-AS1/miR-142/HIF-1x [79]
LINC00512 Gallbladder 0 increase LINC00512/miR-138/HIF-1oc (78]
carcinoma
RoR Hepatic cancer T increase RoR/miR-145/HIF-1x [77]
SNHG6 Esolz}e‘ﬁifcfr?(‘)‘;jous 0 increase SNHG6/miR-186-5p/HIF-1a [76]
TMPO-AS1 Retinoblastoma T increase TMPO-AS1/miR-199a-5p/HIF-1x [75]
TUG1 Osteosarcoma T increase TUG1/miR-143-5p/HIF-1x [74]
XIST Colorectal cancer T increase XIST/miR-93-5p/HIF-1a/AXL [73]
ZEB2-AS1 Gastric cancer T increase ZEB2-AS1/miR-143-5p [72]
HIF-2«x
NEAT1 Osteosarcoma T increase NEAT1/miR-186-5p/HIF-2« [91]

Abbreviations: HOTAIR—HOX transcript antisense intergenic RNA, HIF1A-AS2—hypoxia-inducible factor-1
alpha antisense RNA-2, UCAl—urothelial carcinoma associated 1, CDKN2B-ASl—cyclin dependent kinase
inhibitor 2B antisense RNA 1, DLX6-AS1—distal-less homeobox 6 antisense RNA 1, FEZF1-AS1—FEZ family
zinc finger 1 antisense RNA 1, RoR—regulator of reprogramming, SNHG6—small nucleolar RNA host
gene 6, TMPO-AS1—Thymopoietin antisense RNA 1, TUGl—taurine up-regulated 1, XIST—X inactive specific
transcript, ZEB2-AS1—zinc finger E-box binding homeobox 2 antisense RNA 1, NEAT1—nuclear paraspeckle
assembly transcript.

3.1.2. H19

H19 is a well-known IncRNA described to play a role in several types of cancer [92,93]. Almost
a decade ago Matouk et al. [94] showed that H19 is positively correlated with HIF-1x expression in
hypoxic carcinoma cells. Overexpression of HIF-1« resulted in a significant increase of H19 levels,
whereas suppression of HIF-1x led to the opposite result. Notably, these effects were observed in the
absence of functional p53 tumor suppressor, indicating a regulatory mechanism between p53, HIF-1
and H19 in carcinogenesis [94]. This is in line with another study demonstrating HIF-1x-dependent
expression of H19 by direct binding of HIE-1c to the H19 promoter. In addition, HIF-1« also induced
transcription of specific protein 1 (SP1) which indirectly promoted H19 transcription [95]. Yet, more
recent data implicate that not only HIF-1x is an upstream regulator of H19, but that, vice versa,
H19 may also influence HIF-1ox expression [88-90]. H19 may be involved in the regulation of HIF-1c
through its ability to act as a ceRNA and by sponging multiple miRNAs involved in HIF-1« regulation.
As shown in endometrial cancer cell lines, H19 is sponging miR-20b-5p which directly targets the
3’UTR of HIF-1c and thus inhibits HIF-1ox expression [89]. Consequently, increased levels of H19
lead to elevated HIF-1ox expression and subsequent activation of its downstream effectors [89]. In the
study by Zhu et al. [89] H19 was found to promote endometrial cancer progression in both in vitro and
in vivo experiments through the H19/HIF-1a/AXL pathway [89]. Another pathway involving H19 as a
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ceRNA was demonstrated by Peng and colleagues [88]. By binding miRNA let-7 higher expression of
H19 in hypoxia promotes the release of HIF-1« in hypoxic breast cancer stem cells eventually resulting
in elevated expression of pyruvate dehydrogenase kinase 1 (PDK1) and consequently enhanced
glycolysis and stemness [88]. PDK1 has already been shown to be a direct target of HIF-1x and is
an important factor in adapting mitochondrial function in hypoxia [96]. Interestingly, H19 features
an embedded intragenic miRNA (miR-675-5p) which was demonstrated to directly induce hypoxic
response through HIF-1x expression and activation under normoxic conditions in glioblastoma cells
in vitro and in vivo [97]. Findings of Corrado et al. [90] eventually corroborate the previous studies by
indicating an important involvement of H19 in HIF-1« regulation. They found that knockout of H19
impaired the nuclear translocation of HIF-1& in multiple myeloma cell lines under hypoxic conditions,
thereby inhibiting its capability as a transcription factor. However, the knockdown of H19 was not
found to result in a reduction of HIF-1x expression [90]. Collectively, the data discussed above imply a
potential positive feedback loop between H19 and HIF-1x. However, this remains speculative since
there are no current studies available which directly investigate on this matter.

3.1.3. HOTAIR

To date a growing body of evidence supports the role of IncRNA HOX transcript antisense
intergenic RNA (HOTAIR) in cancer pathogenesis [98]. HOTAIR was reported to be upregulated in
cancer cells under hypoxic conditions and involved in HIF-1«x regulation by acting as a ceRNA [84-87].
Hu et al. [87] demonstrated increased HOTAIR expression in hepatocellular carcinoma which was
increased even further under hypoxia. Via the HOTAIR/miR-130a-3p/HIF-1 axis, HOTAIR positively
regulates HIF-1a expression resulting in enhanced glycolysis in hypoxic hepatocellular carcinoma
cells. [87] As IncRNAs may act as decoys for multiple different miRNAs, HOTAIR also regulates
HIF-1 expression by sponging the tumor suppressor miR-127, as first demonstrated in renal cell
carcinoma (RCC) [84]. Additionally, upregulated HIF-1« resulted in a AXL receptor tyrosine kinase
(AXL) expression, leading to enhanced proliferation, migration and EMT in RCC as demonstrated
both in vitro and in vivo [84]. The proposed HOTAIR/miR-127/HIF-1cc pathway was later confirmed
in a study of Li et al. [86] which focused on HOTAIR’s impact on radioresistance in cervical cancer.
Interestingly, the effect of the knockdown of HOTAIR could not be reversed by overexpression of
HIF-1« indicating HIF-1x to be a definite downstream target [86]. However, these results conflict
with previous data which reported HIF-1o mediated expression of HOTAIR in NSCLC cell lines upon
hypoxia. HIF-1x was shown to directly bind to hypoxia-responsive elements of the HOTAIR promoter
thus increasing HOTAIR expression [85]. Therefore, further research is required and may address the
existence of a potential feedback-loop between HOTAIR and HIF-1c expression.

3.1.4. UCA1

Another IncRNA which is involved in a HIF-1« feedback-loop is urothelial carcinoma associated
1 (UCA1). In breast cancer cell lines, UCA1 upregulation is induced by tamoxifen treatment in
a HIF-1x dependent manner [82]. Increased UCA1 expression by HIF-1x upregulation was also
reported in osteosarcoma as well as hypoxic bladder cancer cells through HREs in the UCA1 promoter
region [99,100]. Subsequently, miR-18a, which would otherwise directly target and therefore inhibit
HIF-1«, is sponged by increasing UCA1 levels leading to a HIF-1o increase. This closes a positive
feedback-loop and in addition promotes tamoxifen resistance in breast cancer cells [82].

3.1.5. LINK-A

Long intergenic non-coding RNA for kinase activation (LINK-A) was found to regulate normoxic
HIF-1x activation in triple negative breast cancer [46]. Briefly, the cytoplasmic IncRNA LINK-A
is necessary for Heparin-binding EGF-like growth factor (HB-EGF)-mediated normoxic HIF-1x
stabilization. Upon HB-EGF stimulation, LINK-A facilitates the recruitment of breast tumor kinase
(BRK) by the epidermal growth factor receptor (EGFR)/transmembrane glycoprotein NMB (GPNMB)
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heterodimer complex to GPNMB resulting in the enzymatic activation of BRK. In addition, LINK-A also
recruits and binds to leucine-rich repeat kinase 2 (LRRK2), which together with BRK phosphorylates
HIF-1x at two specific sites, Tyr565 and Ser797, respectively. On the one hand, phosphorylation at
Tyr565 limits the PHD protein-mediated hydroxylation of HIF-1« at Pro564, therefore inhibiting HIF-1«
degradation under normoxia. On the other hand, Ser797 phosphorylation leads to the activation of the
HIF-1x downstream signaling and transcription of target genes through facilitating the interaction
between HIF-1x and p300 [46]. Interestingly, LINK-A expression was frequently increased in triple
negative breast cancer tissue as compared to hormone receptor positive and HER2+ breast cancers
and additionally was significantly associated with poor outcome [46]. Corroborating the findings of
Lin et al. [46], a relationship of LINK-A and HIF-1« could also be observed in ovarian carcinoma as well
as in osteosarcoma. In cell lines of both cancer types overexpression of LINK-A resulted in likewise
increased HIF-1o levels and proliferation, migration and invasion [44,45]. The connection between
LINK-A and HIF-1oc was also reported in non-malignant diseases such as diabetic nephropathy, further
supporting the existing body of evidence [101].

3.1.6. lincRNA-p21

lincRNA-p21 may participate in HIF-1o regulation by enhancing HIF-1« stabilization [40]. This is
achieved by competitive binding to the VHL protein which interferes with HIF-1«/VHL binding
and consecutive ubiquitination and degradation of hydroxylated HIF-1« through the proteasome
pathway [3,4,40]. Moreover, evidence suggests that HIF-1x and lincRNA-p21 may be connected
in a positive feedback loop under hypoxic conditions. HIF-1la was demonstrated to promote
lincRNA-p21 transcription by binding to hypoxia-related elements at the lincRNA-p21 promoter
region. Yang et al. [40] also validated their results in in vivo experiments. The connection between
lincRNA-p21 and HIF-1e in hypoxia was recently confirmed in liver cancer cells including xenograft
models [102] as well as in a study investigating the influence of lincRNA-p21 on radio sensitivity of
hypoxic cancer cells [103]. Interestingly, lincRNA-p21 may also regulate HIF-2« by direct binding to
VHL as well [40].

3.1.7. HISLA

HIF-1x expression may also be influenced via IncRNAs in the tumor microenvironment.
Tumor associated macrophages (TAM) were repeatedly demonstrated to affect cancer progression
by releasing cytokines and extracellular vesicles [104-106]. Interestingly, TAMs can also participate
in HIF-1« regulation through the myeloid-specific IncRNA HIF-1 stabilizing long noncoding RNA
(HISLA), as reported by Chen et al. [47]. Mechanistically, lactate emitted by glycolytic breast cancer
cells induced HISLA upregulation in TAMs via ERK-ELK2 signaling, which was then released in
the tumor microenvironment in extracellular vesicles and taken up by tumor cells. HISLA promotes
HIF-1« stabilization by directly binding to prolyl hydroxylase domain 2 (PHD2), thereby forming
a stem-loop formation. This interferes with PHD2-mediated HIF-1x hydroxylation and subsequent
degradation, resulting in increased HIF-1« levels and enhanced chemoresistance as well as glycolysis
in breast cancer. The latter may induce a feed-forward loop by leading to accumulation of lactate in the
tumor microenvironment. This was demonstrated in both in vitro and in vivo experiments [47].

3.1.8. GHET1

IncRNA gastric carcinoma high expressed transcript 1 (GHET1) may alter HIF-1o expression
in two ways. On the one hand, GHET1 could activate the HIF-1&/Notch-1 signaling pathway
via downregulating the tumor suppressor and transcription factor Kruppel-like factor 2 (KLF2) [48].
Zhu et al. [48] found that GHET1 is upregulated in prostate cancer cell lines and tissue and knockdown of
GHET1 inhibits cancer cell proliferation and viability. In addition, the impact of GHET1 overexpression
with consecutive inhibition of KLF2 and enhanced activation of HIF-1«/Notch-1 was demonstrated in
a series of in vitro experiments [48]. Corroborating the results of Zhu et al. [48] KLF2 was previously
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reported to be connected to HIF-1a/Notch-1 activation [107] and GHET1 was already implicated in the
regulation of KLF2 [108].

On the other hand, GHET1 may stabilize the HIF-1c protein and prevent it from degradation by VHL
as demonstrated in in vitro experiments in ovarian cancer cell lines [39]. Mechanistically, GHET1 directly
interacts with VHL preventing it from binding to HIF-1x [39]. Notably, both discussed mechanisms,
GHET1/KLF2/HIF-1a/Notch-1 signaling and GHET1/VHL interaction, were investigated under normoxic
conditions demonstrating the relevance of IncRNAs in HIF regulation apart from hypoxia [39,48].

3.1.9. MIR31HG/HIFCAR

IncRNA miR-31 host gene (MIR31HG) is the host gene of miR-31 which is embedded in the first
intron of the MIR31HG sequence [109]. MIR31HG is involved in cancer progression as reported in
numerous studies [49,110-114]. After splicing and thus removal of the miRNA sequence, MIR31HG was
demonstrated to act as a HIF-1oc co-activator in oral cancer. Accordingly, the authors of the study named
the mature IncRNA transcript HIF-1x co-activating RNA (HIFCAR) [38]. HIFCAR directly binds to
HIF-1« thereby enabling enhanced binding of HIF-1« to its cofactor p300 which results in hypoxia-related
gene transcription as demonstrated both in vitro and in vivo experiments. Since HIFCAR was also
upregulated in oral cancer tissue and cells under normoxic conditions, it induced a pseudohypoxic state
in cancer cells. Moreover, upregulated HIFCAR was found to represent an independent biomarker
associated with reduced recurrence-free survival (RFS) (HR = 3.500, 95%CI 1.317-9.302, p = 0.012)
and promotes development of metastases [38]. The role of MIR31HG/HIFCAR in the regulation of
HIF-1 was confirmed in head and neck cancer cells where it also promoted cell proliferation and
impacted apoptosis [49].

3.1.10. DANCR

Differentiation antagonizing non-protein coding RNA (DANCR) was investigated in nasopharyngeal
carcinoma, where it was found to be upregulated in cancer cell lines and tissue [50]. Moreover, a significant
association of DANCR upregulation and poor overall survival (OS) (HR =1.78, 95% CI11.04-3.03, p = 0.034)
and promotion of metastases in vitro and in vivo were reported [50]. This is due to DANCR’s ability to
stabilize HIF-1oc mRNA leading to enhanced HIF-1« expression. Mechanistically, DANCR was found
to directly interact with double-strand RNA binding protein NF90 thus influencing the NF90/NF45
complex [50]. The NFO0/NF45 complex is able to promote mRNA stability, as reported repeatedly [115,116].
NF90 was found to also stabilize HIF-1oc mRNA [41].

3.1.11. CASC9

Cancer susceptibility candidate 9 (CASC9) was shown to be significantly upregulated in both
lung cancer and nasopharyngeal carcinoma cell lines and tissues [51,52]. Interestingly, in an RNA
pull-down assay, CASC9 was demonstrated to directly bind to the HIF-1« protein in nasopharyngeal
carcinoma, subsequently enhancing its stability [52]. Overexpression of CASC9 did not result in a
likewise increase of HIF-1oc mRNA levels, but increased transcription of HIF-1« target genes [52].
The stabilizing effect of CASC9 on HIF-1x was later confirmed in lung cancer by Jin et al. [51] who
additionally proposed the existence of a positive feedback loop between HIF-1« and CASC9. Moreover,
CASC9 overexpression was associated with proliferation and metastasis in lung cancer and enhanced
glycolysis nasopharyngeal carcinoma, [51,52].

3.1.12. MALAT1

Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a highly abundant
IncRNA in cancer and plays role in cancer development and progression [117]. Its involvement in
HIF-1« stabilization was demonstrated by Luo et al. [53]. Arsenite-mediated upregulation of MALAT1
in arsenite-induced malignant transformation of hepatic L-02 cells resulted in dissociation of VHL
from HIF-1x which subsequently inhibited HIF-1o ubiquitination and facilitated its accumulation.
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Furthermore, increased HIF-1a levels induced glycolysis [53]. Interestingly, results of other studies
suggested a positive feedback loop between HIF-1a and MALAT1. Hu et al. [118] found MALAT1
to be upregulated in response to hypoxic conditions in lung adenocarcinoma cells, indicating that
MALAT1 might be a hypoxia responsive IncRNA. Ikeda et al. [119] who showed that HIF-1x-mediated
expression of the H3K9 demethylase lysine demethylase 3A (KDM3A) under hypoxic conditions
caused an upregulation of MALAT1 in multiple myeloma. Reciprocally, MALAT1 then induced
HIF-1x upregulation [119].

3.1.13. MTA2TR

Upregulation of the IncRNA MTA?2 transcriptional regulator RNA (MTA2TR) under hypoxic
conditions was reported to enhance pancreatic cancer progression by increasing HIF-1« levels in a study
by Zeng et al. [54]. Mechanistically, MTA2TR recruits the transcription factor activating transcription
factor 3 (ATF3) to the promotor region of the metastasis associated 1 family member 2 (MTA2) protein
and thereby enhances MTA2 expression [54]. MTA2’s association with HIF-1x was previously shown
in pancreatic cancer, as MTA2 deacetylases HIF-1 and consequently increases HIF-1o stability [120].
In their study, Zeng et al. [54] could verify this relationship and found IncRNA MTA2TR as an upstream
regulator of MTA2 and subsequentially HIF-1x expression and proposed a MTA2TR/ATF3/MTA2/HIF-1x
asis. Moreover, they discovered an interesting positive feedback loop between MTA2TR and HIF-1«,
as the latter acts as a transcriptional enhancer of MTA2TR expression [54].

3.1.14. Other IncRNAs

There are several IncRNAs with a reported connection with HIF-1& but in fact no further data on
the exact nature of the relationship (e.g., direct or indirect) or other involved regulating molecules have
been described. Two of these IncRNAs are discussed in the following paragraph, noting that further
research to clarify their role in HIF-1« regulation is needed.

The IncRNA ubiquitin conjugating enzyme E2C pseudogene 3 (UBE2CP3) was found to promote
the secretion of vascular endothelial growth factor (VEGF) in hepatocellular carcinoma, as demonstrated
in a co-culture system [55]. Subsequent knockdown experiments revealed that this VEGF secretion is
regulated through the activation of the ERK1/2/HIF-1«/VEGF pathway following frequent upregulation
of UBE2CP3 in hepatocellular carcinoma cell. However, specific mechanisms of UBE2CP3 in the
activation of the respective pathway, such as for instance binding sites and other effector molecules,
were not described and are yet to be investigated [55].

The IncRNA associated with poor prognosis of hepatocellular carcinoma (AWPPH), also called
MIR4435-2 host gene (MIR4435-2HG), is an oncogenic IncRNA which has been related to tumor
proliferation and progression in a variety of cancer entities [121-123]. Zhang et al. [56] indicated a role
in HIF-1« regulation in glioma cells, where overexpression of AWPPH came with likewise increase
in HIF-1« levels. In addition, in their study AWPPH levels were successfully used to differentiate
metastatic from non-metastatic glioma [56]. However, no further functional investigations on the
connection between AWPPH and HIF-1ox were conducted so far.

3.2. IncRNAs as Inhibitors of HIF-1a Expression, Activation and Stability

3.2.1. LET

The impact of IncRNA DANCR on HIF stabilization by interacting with NF90 [50] was discussed in
a previous paragraph. Interestingly, another IncRNA and its interaction with NFOO/HIF-1o regulation
was described even earlier [57]. The IncRNA low expression in tumor (LET) is frequently downregulated
in cancer as already indicated by its name and is considered a tumor suppressor [124]. LET interacts
with RNA binding protein NF90, however, in contrast to DANCR [50], it increases ubiquitination and
subsequent degradation of NF90 [57,125]. Therefore, the stabilization of the HIF-1a mRNA through
NF90 is diminished due to increased NF90 degradation. However, since LET is downregulated in
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malignant tissue, this inhibitory effect on HIF-1« is being omitted. Suppression of LET was shown to
increase under hypoxic conditions which is mediated by the hypoxia-induced histone deacetylase 3
(HDACS3) resulting in decreased acetylation of histones H3 and H4 in the LET promoter region [57].
Interestingly, HDAC3 expression is directly increased by HIF-1« itself which indicates the existence
of a positive feedback loop through the HIF-1o/HDAC3/IncRNA-LET/NF90 axis under hypoxia [57].
Moreover, an interesting interaction between the two HIF-1« regulating IncRNAs DANCR and LET
was reported in gastric cancer. DANCR appears to be directly involved in epigenetic LET suppression
through its association with EZH2 and HDACS3 [126]. This provides a second pathway by which
DANCR promotes HIF-1x upregulation and highlights an interesting regulatory relationship between
DANCR and LET, two IncRNAs with opposing effects on HIF-1«.

3.2.2. ENST00000480739

The IncRNA ENST00000480739 was first identified and investigated in pancreatic ductal
adenocarcinoma, where it was is downregulated as compared to non-malignant tissue. ENST00000480739
additionally represents an independent biomarker for OS in pancreatic cancer patients receiving surgery
(HR = 0.028, 95%CI 0.002-0.347, p = 0.005). Moreover, it was found to negatively regulate HIF-1x
expression through transcriptional activation of osteosarcoma amplified 9 (OS-9) [58]. OS-9 has previously
been shown to negatively impact HIF-1x expression by influencing its hydroxylation, VHL binding
affinity, proteasomal degradation, and inhibition of HIF-1cx target genes [58]. Therefore, the predominant
downregulation of ENST00000480739 in pancreatic cancer favors HIF-1o activation and promotes
pancreatic cancer invasion as demonstrated in vitro and in vivo. Upregulation of ENST00000480739
might represent a promising future therapeutic target in cancer treatment [58].

3.2.3. CPS1-IT1

Tumor suppressor IncRNA CPS 1 intronic transcript 1 (CPS1-IT1) may inhibit HIF-1oc activation by
binding to the chaperone heat shock protein 90 (Hsp90) which interferes with Hsp90’s binding affinity to
HIF-1x [61]. As CPS1-IT1 expression is significantly decreased in hepatocellular carcinoma tissue and cell
lines this results in promotion of epithelial-mesenchymal transition (EMT) and increased metastatic potential
in vivo through HIF-1x activation. Additionally, reduced CPS1-IT1 levels represent an independent
biomarker for disease-free survival (DFS) (HR = 0.55, 95%CI 0.34-0.87, p = 0.011) and OS (HR = 0.57, 95%CI
0.34-0.98, p = 0.042) in hepatocellular carcinoma patients [61]. A further study by Wang et al. [60] revealed
that melatonin acts as upstream regulator of CPS1-IT1 through increased forkhead box A2 (FOXA2)
expression in hepatocellular carcinoma cells, proposing a melatonin/FOXA2/CPS-IT1/HIF-1oc pathway.
In addition, reduced CPS1-IT1 expression and its ability of HIF-1« regulation was observed in colorectal
cancer [59], corroborating the results of Wang et al. [60,61].

3.24. HITT

In 2019, IncRNA HIF-1« inhibitor at translation level (HITT) was first described, with its name
already defining one of its key functions. HITT is closely connected to HIF-1« as shown by two
recent studies [35,36]. First, HITT interferes with the translation of HIF-1a by acting as a decoy for
the Y box binding protein 1 (YB-1) protein, which represents a translational regulator of HIF-1x [36].
Consequently, frequent downregulation of HITT in cancer results in increased HIF-1x expression.
Moreover, forming a regulatory feedback loop, HIF-1« induces miR-205 expression, which directly
targets HITT resulting in its degradation and suppression, indicating HITT suppression is a necessary
step for cellular hypoxic response [36]. Second, HITT interacts with polycomb repressive complex 2
(PRC2) core protein EZH2, which conducts chromatin silencing together with its substrate lysine 27 of
histone 3 (H3k27) [36,127]. HITT recruits EZH2 to the promoter of the HIF-1x gene where it forms a
triplex with the promoter sequence resulting in decreased HIF-1« transcription [35]. Therefore, one
the one hand HITT may regulate HIF-1c translation [36], on the other hand it may as well influence its
transcriptional activity [35].
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3.2.5. MEG3

Interesting findings by Zhou et al. [62] suggest a role of the IncRNCA maternally expressed gene 3
(MEGS3) in the malignant transformation of bronchial epithelial cells driven by nickel exposure by affecting
HIF-1o expression. Mechanistically, upon nickel exposure, the authors recognized downregulation of
MEGS3 by hypermethylation through increased expression of DNA methyltransferase 3 beta (DNMT3b).
This resulted in subsequent PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1)
transcription inhibition, as the inhibitory effect of MEG3 on transcription factor c-Jun was reduced
following MEG3 suppression [62]. PHLPP1 is a known inhibitor of the Akt pathway [128]. Consequently,
nickel induced MEG3 downregulation eventually led to activation of the Akt/p70S6K/S6/HIF-1x pathway,
increasing HIF-1o expression as demonstrated by Zhou et al. [62].

3.2.6. IDH1-AS1

Another HIF-1x-suppressing IncRNA was identified by Xiang and coworkers [37], who found
that c-Myc mediated suppression of IncRNA isocitrate dehydrogenase 1 antisense RNA 1 (IDH1-AS1)
in cancer cell lines activates HIF-1x-induced glycolysis under normoxic conditions. A role of c-Myc in
the upregulation of glycolysis in normoxic cancer cells was previously reported [129]. Mechanistically,
IDH1-AS1 seems to promote IDH1 enzymatic activity by homo-dimerization [37]. Subsequently,
induction of x-ketoglutarate, an electron donor of PHD in HIF-1« hydroxylation and degradation [130],
and decrease of ROS production suppress HIF-1a [37]. Thus, upon IDH1-AS1 inhibition by ¢-Myc,
the inhibitory effect on HIF-1x ceases to apply, resulting in HIF-1x upregulation and activation. This
was also demonstrated in xenograft models [37].

3.2.7. PIN1-v2

Interestingly, non-coding variants of otherwise protein-coding RNA sequences may also exert
inhibitory function on HIF-1x expression at the transcriptional level [63]. For instance, the enzyme
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), which itself was suggested to regulate
HIF-1a activity and expression via different proposed functions [131-133], also has three non-protein
coding variants which are considered IncRNAs. Among these, PIN1-v2 is able to inhibit HIF-1a
expression at the transcriptional level via the transcription factor NFAT, as demonstrated by Choi et
al. [63]. However, in their study, upregulation of the protein PIN1 alone had no effect on HIF-1« levels
in contrast to previous studies [131-133].

3.2.8. HOTAIRM1

The spliced HM1-3 isoform of the IncRNA HOXA transcript antisense RNA, myeloid specific
1 (HOTAIRM1) was reported to post-transcriptionally inhibit HIF-1x expression [64]. HM1-3 was
demonstrated to be downregulated in clear cell renal cell carcinoma and upregulation could successfully
inhibit HIF-1oc expression in normoxic cells. However, a detailed analysis to elucidate the exact
mechanisms of HOTAIRM1 and HIF-1« regulation is yet to be performed [64].

4. IncRNA and Regulation of HIF-2«

4.1. HIF2PUT

Hypoxia-inducible factor-2« promoter upstream transcript (HIF2PUT) is a IncRNA which is
located on chromosome 2p21 on the antisense side of the promoter upstream region of the HIF-2«
gene. It was first described in 2015 by Wang et al. [67] who found that HIF2PUT positively correlates
with HIF-2«x expression levels in osteosarcoma tissue and cell lines (R = 0.589, p = 0.013), and that
overexpression and knockout of HIF2PUT could enhance or suppress HIF-2a mRNA levels, respectively.
These results were later confirmed in colorectal cancer where HIF2PUT overexpression was related
to stem cell-like properties [66]. Recently, HIF2PUT expression and its relationship to HIF-2« was
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again investigated in osteosarcoma stem cells. In this study—contrary to the results in colorectal
cancer [66]—the overexpression of the respective IncRNA resulted in the inhibition of osteosarcoma stem
cell proliferation, migration and invasion indicating its role as a tumor suppressor in osteosarcoma [65].
Also in this study the authors observed a positive relation between HIF2PUT and HIF-2& expression
levels, corroborating the results of previous studies [65-67]. In addition, another study proposed
the clinical utility of HIF2PUT as a biomarker in, as HIF2PUT overexpression was significantly
and independently associated with shorter OS (HR = 5.476, 95%CI 1.993-12.286, p = 0.01) and DFS
(HR =5.936, 95%CI 1.312-12.688, p = 0.01) [134]. Even so, this contradicts the previously discussed
findings of HIF2PUT being a potential tumor suppressor in osteosarcoma [65,67]. Furthermore, none
of the aforementioned studies elucidated the specific mechanisms or pathways that underlie the
regulation of HIF-2« by HIF2PUT. Therefore, these results may be considered as first steps towards
unravelling the influence of HIF2PUT on HIF-2« and further research is required to give insight into
how HIF2PUT’s downstream signaling regulates HIF-2«.

4.2. SARCC

Zhai et al. [68] were first to identify another IncRNA in the regulation of HIF-2«, which they
named suppressing androgen receptor in renal cell carcinoma (SARCC). SARCC influences HIF-2«
expression in a VHL-dependent manner, indicating different responses to hypoxia in VHL wildtype
and VHL mutant RCC patients. Mechanistically, SARCC can directly bind to the androgen receptor
(AR) protein leading to its enhanced ubiquitination and thus enhanced degradation. As a result,
HIF-2¢, c-MYC and its further downstream effectors were inhibited [68]. Posttranscriptional influence
of AR on HIF-2« expression had already been demonstrated previously [135,136], and was further
complemented by the findings of Zhai et al. [68] who indicate that AR may also directly interfere with
HIF-2« transcription. Interestingly, HIF-2« itself may bind to HREs in the SARCC promoter region
leading to suppression of SARCC in HIF-2« overexpression. In summary, considering the proposed
VHL-dependent SARCC/AR/HIF-2«/c-MYC axis, VHL-wildtype RCC may experience a proliferation
reduction under hypoxic conditions because of SARCC upregulation, whereas SARCC downregulation
under hypoxia in VHL mutant RCC could lead to enhanced tumor proliferation [68].

4.3. MALAT1

MALAT1 is not only involved in the regulation of HIF-1c [53] (as discussed earlier), but it also
plays a role in HIF-2«x modulation [69]. In arsenite-mediated tumor development in hepatic epithelial
cells, MALAT1 promotes HIF-2« stabilization by enhancing its dissociation from VHL. This results
in HIF-2oc accumulation, which is mechanistically, similar to its role in HIF-1x regulation [53,69].
Likewise, a positive feedback mechanism was proposed with HIF-2« regulating the transcriptional
activity of MALAT1 [69]. This is in line with another study demonstrating HIF-2« mediated expression
of MALATT1 in hepatocellular carcinoma cells [137].

4.4. NEAT1

Nuclear-enriched abundant transcript 1 (NEAT1) is an important IncRNA with known influence
on carcinogenesis and tumor progression in various cancer entities [138,139]. Moreover, its role as a
hypoxia responsive IncRNA transcriptionally induced by HIF-2« has been evaluated in a variety of
studies, demonstrating its influence on invasion, metastasis or apoptosis [140-143]. Vice versa, NEAT1
may also regulate HIF-2x by acting as a ceRNA and sponging miR-186-5p, which directly targets
HIF-2x. Therefore, upregulation of NEAT1 comes with decreased miR-186-5p and increased HIF-2«
levels as shown in osteosarcoma cell lines [91]. This could indicate a feedback loop and regulatory
relationship between HIF-2« and NEAT1.
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4.5. lincRNA-p21

As already discussed earlier, incRNA-p21 may stabilize HIF-1ccand preventing it from ubiquitination
and degradation by competitively binding to VHL [40]. The same mechanism also results in the
stabilization of HIF-2¢ [40].

5. Conclusions

In this review, the broad influence of IncRNAs on HIF-1x and HIF-2x expression, stability and
activation as well as on its further downstream signaling has been summarized. IncRNAs may function
as direct or indirect regulators of HIFs in cancer and are able to enhance or inhibit its function through
diverse mechanisms under both normoxic and hypoxic conditions. Furthermore, regulatory feedback
loops between HIFs and several IncRNAs may exist. However, we could not find any related studies
that demonstrated IncRNAs in the regulation of HIF-3«, specifically. Thus, this remains the subject of
further investigations.

In conclusion, since the activation of the HIF-pathway in cancer changes the metabolic state
towards glycolysis in addition to aerobic metabolism and promotes proliferation, angiogenesis and
drug resistance in cancer cells [12-15], IncRNAs could represent promising therapeutic targets to
influence HIF signaling in both hypoxic and normoxic conditions in human cancer.
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