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Abstract: tRNA-derived small RNAs (tDRs) are a group of small, non-coding RNAs derived from
transfer RNAs (tRNAs). They can be classified as tRNA halves and tRNA-derived small RNA
fragments (tRFs). Accumulating experimental evidence suggests their functional roles in cells and
in various biological processes. Advances in next-generation sequencing (NGS) techniques allow
a large amount of small RNA deep-sequencing data to be generated. To investigate tDRs from these
data, software to identify tDRs and databases to retrieve or manage tDR data have been devised.
In this review, we summarized the tools and databases for tDR identification and collection, with the
aim of helping researchers choose the best tools for their analysis and inspiring the invention or
improvement of tools in the field.

Keywords: next-generation sequencing; tRNA-derived small RNA; tRNA halves; tRNA-derived
small RNA fragments; identification; database

1. Introduction

The last decade witnessed the discovery of an enormous number of tRNA-derived small RNAs
(tDRs) in almost all branches of life [1–12]. It has been suggested that these tDRs are not products of the
random degradation of transfer RNAs (tRNAs), but are generated by precise processes. Accumulating
experimental evidence suggests that they have important regulatory roles in translation, viral infections
and tumor development [13–18].

tDRs are classified as tRNA halves and tRNA-derived small RNA fragments (tRFs). tRNA halves
are generated by a single cleavage at the anticodon of mature tRNAs, and their lengths range from 30 nt
to 35 nt [1]. The biogenesis of tRNA halves is mostly induced by stress, such as oxidative stress [1]. tRFs,
however, are generated from both precursor (pre-tRNAs) and mature tRNAs through Dicer-dependent
or -independent processes, and are approximately 20 nt in size. However, this classification of tDRs
is not definite. The features used to classify tRNA halves and tDRs are not unambiguous, and their
functions and mechanisms overlap.

Early studies investigated tDRs individually and revealed that they are highly expressed in
cells [19]. Recently, deep sequencing tools have been developed to comprehensively detect tDRs
in silico [20]. The discovery of tDRs has raised the need for the storage and management of massive
amounts of tDR data. Recent tDR identification tools and databases are mostly designed for eukaryotic
cells. Consequently, in this review, we focus only on eukaryotic tDRs, and discuss the computational
approaches and tools for identifying and managing the data for eukaryotic tDRs.
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2. tDRs

In eukaryotic cells, tRNA genes are transcribed by RNA polymerase III, and the resulting products
(precursor tRNAs or pre-tRNAs) undergo further processing before maturation (mature tRNAs). These
processes remove the 5’ end (5’ leader, by RNase P) and the 3’ end (3’ trailer, by RNase Z) of pre-tRNAs
and then add the 5’-CCA-3’ (CCA) trinucleotide to the 3’ end of the tRNAs after cleavage. The splicing
of tRNA transcripts and the extensive chemical modification to generate non-canonical bases also
occur with these processes [21–23].

tDRs can be roughly classified as tRNA halves and tRFs. tRNA halves are formed by cleavage at
the anticodon of mature tRNAs. Rny1p, a member of the RNase T2 family, and angiogenin, a member
of the RNase A superfamily, are responsible for the cleavage to produce tRNA halves in yeast and
mammalian cells, respectively [13,24,25]. Rny1p and angiogenin possess little substrate specificity.
Rny1p is contained within the vacuole of the yeast cells and is released into the cytoplasm during
stress-induced situations [26,27]. Angiogenin is secreted and endocytosed into the cytoplasm [28].
Typically, these enzymes are inhibited, and stress induces their release from the inhibitors [29].

Two groups of tRNA halves have been discovered, namely 5’ halves and 3’ halves [29]. Besides,
sex hormone-dependent tRNA-derived RNAs (SHOT-RNAs) were found to be constitutively expressed
in human breast and prostate cancers [17]. They were considered tRNA halves, share counterparts of 5’
and 3’ halves, and possess biogenesis factors similar to those of tRNA halves. However, the expression
of SHOT-RNAs is induced by sex hormones, and they are generated from tRNA species different from
those of tRNA halves [17]. Diverse functional mechanisms of tRNA halves were suggested. It has
been shown that endogenous 5’ tRNA halves inhibit translation through the displacement of elF4G/A
(eukaryotic translation initiation factors) from the mRNA transcripts [13,30]. Thompson and Parker
proposed four possible functional models of tRNA halves: the inhibition of translation through nicked
tRNAs, the formation of a repression complex with other unknown proteins, guiding the inhibition of
translation through their association with Argonaute or Piwi, and guiding the cleavage of mRNAs via
their interaction with the tRNA processing enzymes RNase Z or RNase P [29].

tRFs, however, are produced from pre-tRNAs as well as mature tRNAs. Up until now, four types
of tRFs have been identified and characterized by their provenance on tRNAs: tRF-1s, tRF-5s, tRF-3s,
and i-tRFs. tRF-1s result from the cleavage of 3’ trailer fragments of precursor tRNAs by RNases,
including Dicer and RNase Z [11,19,31], and they usually begin exactly after the 3’-ends of mature
tRNAs (5’-CCA-3’ tails excluded) and possess poly-Us at their 3’-ends [19]. tRF-5s are generated by
cleavage in the D-loop of tRNAs by Dicer, oftentimes with adenine as their 3’-ends [19,31]. tRF-3s result
from cleavage in the T-loop by Dicer, angiogenin and other members of the RNase A superfamily
and are fragments of the 3’ end of mature tRNAs (with CCA at the 3’ end); the cleavage usually
occurs between A/U and A/U near the 3’-end of the tRNAs [19,30,31]. i-tRFs are enriched within the
internal regions of mature tRNAs, and they usually straddle the anticodon and begin right after the
second or downstream nucleotide of the 5’-ends of tRNAs [32]. Recently, a previously undescribed 5’
leader-exon tRNA fragment type was discovered to be associated with the loss of spinal motor neurons
in CLP1-kinase dead mice [30,33]. These fragments straddle the 5’ leader sequence of pre-tRNAs and
the 5’ end of mature tRNAs. The mechanism of the tRF regulation of gene expression remains elusive.
tRFs were shown to associate with Argonautes similar to siRNAs and miRNAs and were thus assumed
to silence gene expression [31,34]. It has also been shown that the displacement of pro-oncogenic
transcripts with tRFs from the RNA-binding protein YBX1 might account for the suppression of human
breast cancer progression by the tRFs [18]. In addition, the tRNA 3’ external transcribed spacers might
be excised and function as a sponge to reduce noise in transcription [35]. Figure 1 shows the general
pathways for tDR biogenesis.
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Figure 1. Biogenesis of tRNA-derived small RNAs (tDRs) . In eukaryotic cells, precursor tRNAs
undergo processing and become mature tRNAs. The cleavage of precursor tRNAs generates
tRNA-derived small RNA fragments (tRF-1s) and 5’ leader-exon tRFs. tRF-5s, tRF-3s, i-tRFs, 5’ halves
and 3’ halves are generated by the cleavage of mature tRNAs.

The functions of tDRs are not well understood. It was found that tDRs are correlated to the
differentiation, development and metabolism of primitive eukaryotes [36,37]. In the mouse, the mature
sperm enrichment of tDRs was discovered, and the tDRs were thought to act as epigenetic factors or as
regulators of endogenous retro-elements prior to implantation of the embryo [10,38,39]. In humans,
tDRs have been found in several human cancer cell lines, but their correlation to tumorigenesis and
progression remains elusive [16–19,40–42]. Compared with those in animals, the tDRs in plants are
less investigated. tDRs were found to accumulate in the roots of Arabidopsis thaliana or in the shoots of
barley during phosphate deprivation [43,44]. A more recent study revealed the existence of conserved
tDRs in Arabidopsis thaliana, Oryza sativa and Physcomitrella patens [45].

3. Identifying tDRs and Managing tDR Data

Research on tDRs requires tools that facilitate the identification or retrieval of information on tRFs.
In general, studies on tDRs could be classified into three categories:

• identifying the tDRs;
• analyzing tDR functions;
• storing or managing and manipulating data.

Computational approaches aimed at assisting researchers with these steps arose, and the following
is a general review of the tools and databases for tDRs.
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3.1. Identifying tDRs

In this review, three types of computational solutions to tDR identification will be summarized:
general tools not specific to tDR identification in early studies, the command-line pipelines designed
for tDR identification, and the integrated web server tRF2Cancer with user-friendly interfaces.

The main goal of small RNA deep-sequencing data analysis is to find the source types of RNAs
and quantify their expression. Therefore, the mapping of reads is an important step. Early studies used
BLAST [16,19,37,46,47], bowtie/bowtie2 [48,49], exonerate [40], and the self-made string matching
alignment algorithm to map small RNAs from the NGS data and identify tDRs from them [50].

Recent studies began to raise concerns regarding the subtleties of mapping to the genome versus
to the tRNA alone. These concerns arose from the proposal of two different strategies to detect
tDRs in 2015: the strategy proposed by Telonis et al., and the tDRmapper developed by Selitsky
and Sethupathy. Telonis et al. proposed to identify candidate tRNA-fragment reads by mapping
them to the genome, whereas the tDRmapper maps the trimmed reads directly to tRNAs [32,50].
Telonis et al. mapped the reads to the whole genome and sought those reads with exact matches only
to the tRNA sequences. In particular, they allowed for only exact matches in mapping. They claimed
that with the limited lengths of tDRs and the sequence similarities among copies of tRNAs of the
same anticodon, and even of different anticodons specifying the same amino acids, the allowance
for mismatches might possibly confound the origins of tDRs. With regard to the requirements of
exact matches, the three nucleotides immediately downstream of the 3’ ends of tRNAs are replaced
by CCA prior to mapping, to reserve CCA-trinucleotide-tail containing reads. Additionally, they
permitted multiple hits on genomic tRNAs and retained the reads spanning exon–exon junctions but
not those stepping partially on the introns. In their study, they identified a fourth class of tRFs, i-tRFs,
and encouraged scepticism to the rationality of mapping the reads to the tRNA space alone in tRF
identification. However, this study did not provide off-the-shelf software [32]. Almost at the same time,
Selitsky and Sethupathy released tDRmapper, a command-line tool for the identification, naming and
quantification of tDRs [50]. Of particular note is that tDRmapper adopted an “error type” hierarchical
alignment scheme to handle possible mismatches attributed to chemical modifications. In each step,
tDRmapper takes the reads that were unmapped in the last step as inputs. The inputs are then aligned
with pre-tRNAs or tRNAs with some defined requirements, such as exact matches with mature or
pre-tRNAs, as one to two mismatches or one to three base pair deletions with mature tRNAs. The
resulting mappable reads in each step are collected, annotated and quantified as candidate tRFs.

The striking difference between the strategy of Telonis et al. and tDRmapper is whether or not
the reads are mapped to the reference genome. In tDRmapper, the incomplete annotations of tRNA
genes in the genome and the computational capacity are mentioned as reasons for not mapping to the
genome. Specifically, reads mappable to both tRNAs and other regions in the genome are possibly
indicative of new unannotated tRNA loci but are not reads derived from genomic templates other
than tRNAs [50]. In contrast, Telonis et al. proposed that, due to tRNA lookalikes of nuclear and
mitochondrial tRNAs and partial tRNA sequences, the reads mappable both to tRNAs and other
known non-tRNA sequences should be excluded because their origins are dubious. Accounting for the
number of loci in the genome with lengths and sequences similar to known tRNAs, the mapping to
tRNAs alone would generate higher false positives and exaggerate the expression of certain tRFs from
given tRNAs [32,50]. Thus, all these controversies can be reduced to the balance between obtaining
false positive and false negative results [51]. tDRmapper aimed at identifying more potential tRFs at
the cost of increased false positives, whereas the Telonis study aimed at providing more accurate tRFs
and excluded reads that were unlikely to derive from tRNAs.

To strike a balance between the total inclusion and total exclusion of dubious reads, we recently
designed tRF2Cancer, an integrated web server for identifying tRFs from small RNA sequencing data
and evaluating their expression in cancers [48]. tRF2Cancer consists of tRFfinder (tRF identification
from small RNA deep-sequencing reads), tRFinCancer (inspect expression of tRFs across cancer types)
and tRFBrowser (origins and chemical modifications of tRFs). Prior to mapping, tRFfinder maps
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the processed reads to the human genome and human transcript sequences to remove exogenous
reads and reads other than tRFs (such as mRNAs, miRNAs, snoRNAs, snRNAs, rRNAs and repeats).
This step helps to reduce the false positive results derived from non-tRF reads. tRFfinder then maps
the reads to tRNA sequences to reduce false negative results. To evaluate the enrichment of reads on
tRNAs after mapping, a binomial test was introduced. Although mismatches and indels are allowed
in mapping by making use of bowtie/bowtie2, tRFfinder is cautious, and a scoring scheme was
introduced. In this scheme, reads with mismatches or indels are given lower scores than those with
exact matches, and mismatches resulting from chemical modifications are thus distinguished by way
of differing scores. tRFfinder is the first web-based, user-friendly tool for the identification of tRFs.
It strikes a balance between the total inclusion and total exclusion of dubious reads by giving reads
of sceptical origins a lower score. tRFfinder is designed specifically for identifying human tRFs and
their expression in multiple types of cancers. At the current stage, it only provides the web-based
version for researchers to upload their sequencing data to the server; the command-line version is
under development. Table 1 shows the comparison between the work of Telonis et al., tDRmapper
and tRFfinder.

Table 1. List of tools specific to RNA-derived small RNA (tDR) identification.

Name Mapping to Potential Effects Mapping Tools Mismatches, Indels, and
Chemical Modification

tDR Types
Detectable User Interface

Telonis et al., [32,50]
Genome to exclude
reads mappable
outside tRNAs

Potential false
negative –

Mismatches/indels
not allowed All four tRF types

No packaged
pipelines
provided

tDRmapper tRNAs alone
Potential false
positive

Built-in
algorithms Error type hierarchy Multiple tRFs

and tRNA halves Command line

tRFfinder

First to genome
and known
transcripts,
then to tRNAs

Moderate
false positive
& negative

bowtie/bowtie2

Allowed (with options),
but given different
weights (scores)
in result page

Multiple tDR
including all
tRF types

Website
interface

To conclude, identifying tRFs from random degradation will remain a challenge. In addition
to probability-based methods for evaluating the enrichment of reads on the genome or
tRNAs, machine-learning algorithms might prove promising. In microRNA identification,
machine-learning-based methods have been adopted to identify microRNAs based on known
sequences and structural properties [52]. In addition, the lengths or cleavage site preferences are
features that might be used in machine-learning-based methods to identify tDRs.

3.2. Databases of tDRs

Databases of tRFs help researchers obtain tRF sequences and evaluate expression counts in
multiple experiments [47]. However, only a limited number of tRF databases are available in the field.
In this review, four databases are introduced: tRFdb, tRFinCancer (in the tRF2Cancer), MINTbase,
and the Olvedy et al. repertoire of prostate cancer.

tRFdb is a relational database of tRFs and other tRNA-related RNA fragments [47]. tRFdb contains
tRF records from eight species ranging from bacteria to human. The database provides a uniform
nomenclature and unique tRF ID for the tRFs. tRFdb provides information on tRF (original organisms,
type, source tRNAs, sequence) and samples that contain the corresponding tRF reads, with interfaces
to the GEO (Gene Expression Omnibus) and SRA (Sequence Read Archive) database. In addition,
tRFdb displays the distribution of reads on tRNA sequences. To construct the database, tRFdb mapped
the reads from the GEO/SRA database to the tRNA sequences, and the reads that were enriched in
the tRNA sequences were further mapped to the whole genomes to exclude those reads mappable to
outside tRNAs. The database contains tRF records from eight species, and therefore, it is suitable for
research on tRF evolution or comparisons among species. However, the database contains only records
of tRF-5s, tRF-3s, tRF-1s; it contains no records of i-tRFs or other tDRs. Furthermore, all the records in
the database are results of bioinformatic prediction and require further experimental validation.
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tRFinCancer is a database for viewing the expression of tRFs in multiple cancer types [48].
In tRFinCancer, the tRFs are predicted from TCGA (The Cancer Genome Atlas) data that contain the
small RNA deep-sequencing data of 32 human cancer types and subtypes. The tRFs are identified
using the tRFfinder. One feature of tRFinCancer is that users can determine the expression of tRFs in
32 cancer types; through comparisons of the expression in multiple cancers, researchers might be able
to spot correlations between cancers and tRF expression levels. We hope that tRFinCancer can provide
a starting point for functional studies of tRFs and their correlation with cancers.

tRFs can be generated from both nuclear tRNAs as well as mitochondrial tRNAs [53]. MINTbase
is a database for tRFs of mitochondrial and nuclear origin [54]. In MINTbase, users can access
five types of tDRs: tRF-5s, tRF-3s, i-tRFs, 5’-halves and 3’-halves of mitochondrial and nuclear
origin. Different from the probability-based search methods used by tRFdb, MINTbase adopted
the deterministic and exhaustive approach to search for all possible tRF candidates and retain those
fragments mappable exclusively to tRNAs. In MINTbase, two methods are provided to users to view
tRFs. Users can select and view tRFs according to tRF types, precursor tRNAs, and the precursor
tRNA anticodon. Users can also search tRFs by tRNA names, fragment sequence, and by fragment
label (defined by MINTbase). In addition to ordinary information on tRFs (i.e., sequence information,
expression information, parental tRNA information and genomic information), based on the results
page returned by MINTbase, users can view tRFs by five so-termed “vistas”: genomic loci, RNA
molecule, tRNA alignment, expression and summary. The two most striking features of MINTbase are
that (1) it provides all-inclusive information on exhaustive tRF species of nuclear or mitochondrial
origin and that (2) it provides interfaces for the submission of new tRF records. The ability to submit
new records is important for updating a database. Currently, all the tRF records in MINTbase are
produced from bioinformatic prediction and need to be validated by experiments in the future.

Olvedy et al. designed a repertoire of tRFs that focused exclusively on prostate cancer [55]. In the
study, they examined and identified differentially expressed tRFs and their compositions in clinical
prostate cancer samples representing different stages of the cancer. They also quantified the expression
of tRFs across samples. The study provides a comprehensive catalogue (termed “database”) of tRFs in
different stages of prostate cancer; however, it does not provide a user-friendly interface.

As mentioned, tRFdb and MINTbase contain almost all tDR records in a given species, but do
not provide a more focused view of tDRs in certain diseases. tRFinCancer offers options to view the
expression of a given tDR across cancer types, which makes comparisons among cancers convenient;
however, it does not provide a general overview of all tDRs in a given disease. The Olvedy et al.
repertoire, however, is helpful for users to view the expression of tDRs in a given disease, namely
prostate cancer. Therefore, the Olvedy et al. repertoire complemented by tRFinCancer might be helpful
to researchers in that they offer a comprehensive view of tDR expression and their correlation to
diseases. A comparison between the databases is shown in Table 2.

Table 2. List of databases of tDRs.

Name Records Methods Species User Interface

tRFdb
tRF-3s, -5s, -1s
from nucleus Bioinformatic prediction Eight species A website to search

and view tRFs

tRFinCancer
All four types from
nucleus across
cancer types

Bioinformatic prediction 32 human
cancer types

A website to view tRFs
expression across cancers

MINTbase
All types from
mature, nuclear and
mitochondrial tRNAs

Bioinformatic prediction Human Website to search
and view tRFs

Olvedy et al.
repertoire

All types in
prostate cancer

Bioinformatic prediction,
with qPCR quantification to
validate differential
expression of selected tRFs

Human prostate
cancer A catalogue
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4. Perspectives

tDRs are experiencing intense research, and their biological functions are gradually being revealed.
Currently, off-the-shelf computational tools for identifying these small RNAs and databases to manage
their information are available. However, as an integrated field of tDRs, many other areas of study
are in need of tools for the analysis of tDRs. Three notable fields are the prediction of targets of
tDRs, the study of their correlation to diseases, and the study of circulating tDRs. Currently, there
are no tools for target prediction of tDRs. In retrospect, CLIP-Seq (cross-linking and Argonaute
immunoprecipitation coupled with high-throughput sequencing) can be used to search for microRNA
targets utilizing the microRNA:mRNA interaction mediated by Argonaute (AGO) proteins [56–58],
and databases for these data are present (for instance, starBase [59,60]). Similar techniques
have been applied to study tDR:RNA interactions; for instance, meta-analysis of data generated
by PAR-CLIP (photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation),
CLASH (crosslinking, ligation, and sequencing of hybrids) and HITS-CLIP (high-throughput
sequencing of RNA isolated by crosslinking immunoprecipitation, also referred to as CLIP-Seq)
revealed the tRF association preferences for AGOs and mRNAs [46,61]. These are promising methods to
unravel the interactive dynamics between tDRs and their target proteins or RNAs. Tools to analyze and
manage these data can facilitate the exploration of tDR biological functions by providing information
on the targets of tDRs.

Insufficient tools are in place for the study of the correlations between tDRs and diseases.
In retrospect, there are two dimensions in the study of correlations between tDRs and some given
diseases. The first dimension highlights that given a sample from a disease of interest, the expression of
different tDRs in this sample is detected to assess the up- or down-regulation of tDRs and to determine
their expression patterns [16,19,40–42]. This dimension gives the overall patterns of tDR expression in
the disease and offers some indications on the interactive dynamics between tDRs. This dimension
of study requires pipelines and databases that focus on the disease under study, and Olvedy et al.’s
repertoire is one example of this type of database [55]. The raw deep-sequencing data and analysis
results provided by the tDR studies in different diseases, and the use of bioinformatic pipelines to
predict tDRs from small RNA deep-sequencing data from samples of different diseases, are resources to
build this type of database. The second dimension highlights the cross-comparison of tDR expression
profiles in different types of diseases that can be used to study whether up- or down-regulation of
the given tDRs is common to all related diseases or is unique to one specific case. This dimension
indicates the potential of tDRs as diagnostic biomarkers in disease detection. One example of this type
of database is tRFinCancer, which enables users to compare the expression of the tDR of interest in
multiple cancers [48]. The first dimension lacks databases or computational pipelines that focus on
the diseases under study, and the second dimension requires more inclusive databases. More work is
required to tailor the pipelines or databases on the tDR for adequate study of diseases.

Accumulating evidence suggests the presence of circulating, functional tDRs in mouse
serum [62,63], dairy cows [63,64], and humans [25,63,65]. The functions of circulating tDRs are not
well characterized, and their potential as diagnostic biomarkers remains to be elucidated. In view
of this, the databases to collect tDRs from circulating small RNA fragments from normal or disease
samples, by bioinformatic prediction or collection of results from previous studies, might be helpful to
the study of circulating tDRs.

In addition to new requirements from novel fields of study, several problems in the recent
development of pipelines and databases remain. To systematically study tDRs and facilitate
communication in the literature, it is important to establish a standard nomenclature for tDRs. However,
the nomenclatures of tDRs are inconsistent among the different tools and different databases [48,50,53].
The difficulties of establishing a standardized tRF nomenclature lie in that only a small fraction of
tDRs are validated by experiments. In addition, the origin of tDRs cannot be deterministically traced
to one particular precursor tRNA due to tRNA isotypes; some common sequence motifs are shared
among tRNAs with different anticodons coding for the same amino acid, and even allowing for one
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mismatch/insertion/deletion would probably confound the origin of tDRs. Thus, before establishing
a uniform nomenclature for tDR, more research is needed to identify methods to trace tDRs back to
their tRNA precursors.

Chemical modifications on tRNAs affect the RT-PCR amplification of tDRs and thus the false
positive rates of tools in the field. Extensive chemical modifications of the small RNAs would abort
the reverse transcription in RT-PCR and thus generate truncated reads whose 3’ ends overlap exactly
with these sites [66,67]. Additionally, reverse transcriptase might pause at the chemically modified
sites, which would enhance the likelihood of inserting the wrong nucleotides at these sites. Therefore,
chemical modifications of the tRNAs and the corresponding tDRs might lead to increased truncated
reads and higher chances of mismatch. However, recent computational tools to identify tDRs rarely
take into account the effect of chemical modifications. To reduce the effect of truncated reads on
identification, in tRFfinder we discarded the prediction results of tDRs whose 3’ ends overlap with the
chemically modified sites [48]. It is more difficult to address the problem of mismatch from chemical
modifications. tRFfinder introduces the scoring matrix to distinguish the sources of mismatches. If the
mismatches occur at the sites of chemical modification, 0.5 point per site is subtracted from the total
score, and 1 point per site otherwise [48].

Telonis et al. prevented mismatch from mapping reads to the genome, indicating that even one
mismatch might confound the origin of tDRs [32,50]. This might introduce high false negative rates,
since mismatches resulting from chemical modifications prevent the true tDR reads from mapping.
However, tDRmapper allowed mismatches according to a hierarchical alignment scheme, which might
confound mismatches of different origins. To address this contradiction, mismatches of different
origins should be set apart, and in tRFfinder, a scoring scheme could help [48]. There are also new
sequencing methods to handle the effect of chemical modifications. For instance, the AlkB-facilitated
RNA methylation sequencing (ARM-Seq) method treats the samples with de-alkylating enzymes to
remove methylations from tRNAs before RT-PCR [66]. This way, the effect of chemical modifications
can be eliminated at the beginning, and RT-PCR can provide more accurate reads representative of
small RNAs.

Nowadays, computational tDR tools mainly focus on identification and databases. The
introduction of more reliable computational and statistical methods, or novel methods based on
machine learning, is desired to accurately identify tDRs from small RNA sequencing data. Besides,
more specialized databases are also expected to satisfy the diverse requirements of the researchers.
In addition, new fields of study on tDRs are growing, while the tools are lacking in these fields. So
the development of novel computational methods for tDR research will be a challenging but fruitful
endeavour.
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