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Abstract: A numerical simulation of the Herschel–Bulkley laminar steady state shear flow around a
stationary particle located on a sedimentation layer was carried out. The surface of the sedimentation
layer was formed by hemispheres of the same radius as the particle. The drag force, lift force,
and torque values were obtained in the following ranges: shear Reynolds numbers for a particle
ReSH = 2–200, corresponding to laminar flow; power law index n = 0.6–1.0; and Bingham number
Bn = 0–10. A significant difference in the forces and torque acting on a particle in shear flow in
comparison to the case of a smooth wall is shown. It is shown that the drag coefficient is on average
6% higher compared to a smooth wall for a Newtonian fluid but decreases with the increase in
non-Newtonian properties. At the edge values of n = 0.6 and Bn = 10, the drag is on average 25%
lower compared to the smooth wall. For a Newtonian fluid, the lift coefficient is on average 30%
higher compared to a smooth wall. It also decreases with the increase in non-Newtonian properties
of the fluid, but at the edge values of n = 0.6 and Bn = 10, it is on average only 3% lower compared
to the smooth wall. Approximation functions for the drag, lift force, and torque coefficient are
constructed. A reduction in the drag force and lifting force leads to an increase in critical stresses
(Shields number) on the wall on average by 10% for incipient motion (rolling) and by 12% for particle
detachment from the sedimentation bed.

Keywords: particle; sedimentation; rough surface; shear flow; Herschel–Bulkley fluid; drag force; lift
force; Shields number

1. Introduction

The problem of optimal flow regime determination for liquids carrying a solid compo-
nent often arises and is extremely important in medicine, the food industry, river hydraulics,
and in petroleum engineering. The force characteristics of a single particle in the flow
are used as a rule to describe the behavior of an ensemble of particles in a moving fluid.
Of particular interest is the beginning of the movement of a grain located on the sedimen-
tation layer. Incipient motion from the surface should start when the local flow velocity
exceeds some critical value. An alternative method for determining the beginning of the
particle motion is the Shields number, which characterizes the local shear stress on the
wall. The parameters of the incipient motion are necessary, for example, in the oil and gas
industry when drilling wells to effectively describe the cuttings carried out by the drilling
fluid. The problem of determining forces and torque for a spherical particle in a fluid flow
has been known for a long time in fluid dynamics. More than 150 years ago, Stokes [1]
derived a formula for the drag force acting on a sphere in a plane-parallel unrestricted flow.
Almost a century later, Rubinow [2], in addition to the Stokes force, presented expressions
for the lift and torque acting on a spinning sphere moving in a viscous fluid. For the shear
flow, Saffman [3] determined the value of the lift force for a spherical particle. The corrected
expression for calculating the Saffman force is given in [4].
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Since the flow of suspensions occurs, as a rule, in bounded channels, an important
subject is the influence of the wall on the particle’s behavior. Thus, Goldman et al. [5]
derived asymptotic solutions of the Stokes equations for the case of a rotating particle
moving parallel to a smooth wall in a shear flow. The authors used lubrication theory
methods to estimate the forces acting on the sphere with small Reynolds numbers and
distances to the surface.

McLaughlin [4] and Cherukat [6] derived the velocity of transverse migration of a
particle in a shear flow of Newtonian fluid bounded by one and two walls. Comparison
with experimental data on lift force measurements showed satisfactory agreement.

Krishnan and Leighton in their paper [7] generalized the mathematical calculations
of Cherukat and McLaughlin to the case where the particle touches the wall. The authors
obtained six integral coefficients for determining the lifting force by considering rotation,
movement of the particle parallel to the wall, and shear flow of the surrounding fluid.
The study showed that the particle is expected to be located at a stable distance above the
wall in the channel due to the reduction in the lift force produced by the rotation.

Zeng et al. [8] presented a systematic numerical simulation of hydrodynamics around
a stationary particle over a smooth wall in a shear flow of Newtonian fluid and results for
a particle moving parallel to the wall. The calculations were performed for particle shear
Reynolds numbers from 2 to 250, at which the flow has a laminar character. The authors
obtained correlations for the drag and lift force coefficients.

In a continuation of the studies by Zeng et al., Ignatenko et al. [9] extended the
simulation for a stationary, moving, and rotating particle on a smooth wall to the case
of a Herschel–Bulkley shear fluid flow. In the variant where the sphere is stationary,
the correlations of the drag and lift force coefficients in the range of Reynolds numbers
from 2 to 200 were developed. These correlations agree with the formulas of Zeng et al. for
a Newtonian fluid [8].

When a particle moves over the sediment bed, it rolls from one cavity to another
over the other particles. At the same time, there is a rotation around the contact point
of the underlying particles. The positivity of the tilting or rollover torque of the forces
relative to the contact points is the condition for the movement initiation. If we refer to the
detachment of the particle, then the lifting force combined with the Archimedean force must
be greater than the force of gravity. Thus, Clark and Bickham, in [10], derive an expression
for the critical local velocity near the particle; once this is exceeded, the detachment occurs.
An alternative criterion of detachment is determining the Shields number for a particle [11]
and comparing it with the critical values. In [12], the critical Shields numbers corresponding
to rolling and detachment were calculated based on the force characteristics of a particle
located on a smooth wall in a Herschel–Bulkley shear fluid flow. In the real situation, when
cuttings start to move, the particles are located on a sedimentation layer that consists of the
same particles, so their force characteristics may differ significantly due to the roughness
of the surface. Lee and Balachandar [13] presented the results of modeling of the shear
Newtonian fluid flow around a sphere located on a substrate of hemispheres of the same
diameter. It was found that the drag force coefficient increased up to 10% when approaching
a rough surface compared to the case of a smooth wall. The authors noted a decrease in
the lifting force in the shear flow with small Reynolds numbers, of the order of two, as the
distance from the sphere to the surface decreased. It should be noted that work both
supporting such experimental observations [14] and in disagreement with them [15,16] can
be found in the literature.

In a continuation of the studies of particles moving over a rough surface in a Newto-
nian fluid flow, Balachandar et al. [17] simulated a turbulent flow for the shear Reynolds
numbers Reτ of the order of 180. It should be emphasized that for the particle size relative
to the computational domain in [13], the shear Reynolds number ReSH has been found to
be 661. The roughness was described using an extended (in comparison to that presented
in [13]) hemispheres pattern with a diameter equal to the particle. Direct numerical simula-
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tion of the turbulent flow around the sphere on the rough surface was used to establish the
fact that the lift force significantly increases due to the sweep events.

In [18], a simulation of the flow of an ellipsoidal particle in a shear flow of Newtonian
fluid over a surface of hemispheres was performed. The coefficients of the drag and lift
forces and the torque as a function of the shear Reynolds number, ellipsoid orientation
angle, and distance from the surface were determined. The authors constructed approxi-
mation formulas for the forces and torque that depend on the main flow parameters and
geometric characteristics.

The works described above are mainly devoted to the flow of a particle in Newtonian
fluid flow, both on smooth and on rough surfaces. This study is a continuation of the
work of [13], related to the flow over a sphere on a rough surface in a Newtonian fluid
shear flow, and the work of [9], related to the flow over a particle on a smooth surface in a
Herschel–Bulkley fluid shear flow. In the present work, we study the forces and the torque
acting on a sphere located on a rough surface in laminar shear flow of a Herschel–Bulkley
fluid. The rough surface is modeled as in [13] as hemispheres located in nodes of hexagonal
honeycombs. The fluid parameters are consistent with the characteristic parameters of
drilling fluid flow in well bores. The shear particle Reynolds numbers ReSH vary within
the range 2–200, which corresponds to the laminar flow regime. The study of the influence
of a rough surface and rheology on the drag force, lifting force, and torque forces and the
development of corresponding approximation functions are the main goals of the current
work. Analyses of the criteria of incipient motion (rolling) and detachment of a particle
from a rough surface are also carried out.

This article is structured as follows. The article starts with the Introduction in Section 1,
followed by the Problem Statement and Numerical Algorithm and Computational Mesh in
Sections 2 and 3. These are followed by the Results and Discussion in Section 4, which is
divided into subsections devoted to the discussion of Forces and Torque (Section 4.1), their
Approximation (Section 4.2), and an Analysis of Incipient Motion and Lift-Off Conditions
(Section 4.3). Section 5 provides the Conclusions. A list of the main notation is given in the
Nomenclature at the end.

2. Problem Statement

The steady state laminar shear flow of a Herschel–Bulkley fluid over a rigid sphere with
diameter d placed over a rough wall is considered. The sphere is fixed in space. The rough
surface is formed by hemispheres of equal diameter d arranged in a honeycomb sequence;
see Figure 1. The incoming flow has a constant shear rate G directed along the x axis with
zero velocity at the x–y surface and hemispheres. The fluid viscosity depends on the local
shear rate and is described by the Herschel–Bulkley rheological model µ = (kγ̇n + τy)/γ̇,
where k is the flow consistency factor, n is the power law index, τy is the yield stress,
and γ̇ is the second invariant of the strain rate tensor SSS = 0.5(∇uuu +∇uuuT). The laminar
steady state flow of a viscous incompressible fluid is described by the Navier–Stokes and
continuity equations, which can be written in dimensionless form:(uuu · ∇)uuu = −∇p +

1
Re

∇(2µSSS);

∇ · uuu = 0,
(1)

where uuu is a dimensionless velocity vector; p is dimensionless pressure, and Re = ρuch Lch/µch,
uch, Lch, and µch are the characteristic velocity, length scale, and viscosity, respectively. Tak-
ing Lch = d, uch = Gd and µch = µ(γ̇ = G), we obtain the particle shear Reynolds number

Re = ReSH ≡ ρ · Gd · d
(kGn + τy)/G

that can be transformed to ReSH =
ρG2−nd2

k(1 + Bn)
; here,

Bn =
τy

kGn is the Bingham number. Thus, the problem can be characterized by three dimen-
sionless parameters that are varied in the ranges ReSH = 2–200, n = 0.6–1.0, and Bn = 0–10.
The specified ranges of these parameters were taken in accordance with the data on real
drilling fluids and flow regimes in wells.
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Figure 1. (a) Hemisphere pattern on the substrate and the particle location above the lacuna between
three hemispheres; (b) computational domain scheme.

The main integral force characteristics for a sphere located on a rough surface are
the drag force FD = Fx, the lift force FL = Fz, and the torque M = My relative to the axis
passing through the center of the particle parallel to o–y. In engineering program complexes
for cuttings transportation estimation [10], the dimensionless coefficients of the drag force
CD, the lift force CL, and the torque CM determined with the following formulas are used:

CD = FD/FS, CL = FL/FS, CM = 2M/FSd, (2)

where FS is the characteristic force acting on the diameter cross-section of the particle, and
FS = 0.5u2

pρπ(d/2)2, where up is the velocity in the flow at the center of the particle in
the absence of the particle, which is the undisturbed velocity. The value of up is actually
determined via the local flow velocity near the rough wall, which even for a Newtonian
fluid can differ significantly from the value usmooth

p = Gh0 (for h0, see Section 3), as shown
in [13]. Thus, the computation of the shear flow for the particle-free configuration was
carried out in addition to each numerical computation of the particle on the rough surface.

3. Numerical Algorithm and Grid

The numerical algorithm is based on the finite volume method for an unstructured
mesh. Laminar steady state fluid flow was simulated using the OpenFOAM CFD package
(simpleFoam solver) [19]. The SIMPLE-C algorithm [20] was applied for the pressure
correction procedure and grid placement with Rhie–Chow interpolation. The system
of linear algebraic equations for the pressure correction equation was solved using an
algebraic multigrid solver. A second-order linear upwind scheme was applied for the
discretization of convective terms. The simulation was considered convergent when the
residuals of velocity and pressure were less than 10−9 for Newtonian and power law fluids
and less then 10−7 for Bingham and Herschel-Bulkley fluids. It is harder to achieve very
low residuals for fluids with yield stress.

To correctly describe the viscosity behavior for small values of shear rate γ̇, the reg-
ularization µ =

[
kγ̇n + τy(1 − e−mγ̇/G)

]
/γ̇ proposed in [21] by Papanastasiou was used,

and the regularization parameter m was taken as 1000.
The minimum distance from the center of the sphere to the plane on which the

hemispheres are located is h0 =
√

2/3d ≈ 0.816d. Let us denote δ = h − h0, where h is the
distance from the center of the particle under study to the x–y plane. Thus, when δ = 0,
the particle touches the three hemispheres lying under it. The particle is located on the
substrate after the fourth row of hemispheres along the x axis and after the third row along
the y axis, as well as above the lacuna formed by the three hemispheres (Figure 1); the
center of the sphere has the coordinates (xp, yp, h). Assuming that the center of the first
hemisphere is at the point (0.5d, 0.5d, 0), we have xp = 4d, yp = 0.5d(1 + 2

√
3 + 1/

√
3).
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As shown in [13], in the chosen position, the structure of the laminar shear flow is fully
formed over the rough surface. For the particle incipient motion from the substrate, the most
interesting case is when the particle is located at the minimum distance δ = 0.005d from
the rough surface, but for the purpose of modeling verification, other values of δ have also
been considered.

The computational mesh was constructed in the ANSYS meshing package [22]. The
computational domain was parallelepiped of dimensions 30d× 15d× 7d (Figure 1), in which
a coarse mesh with a cell size of the order of 0.2d was constructed (Figure 2a). The bedload
and the particle were surrounded by a small parallelepiped of 9d × 6.8d × 3d with a finer
grid with a cell size of the order of 0.02d in the region itself and inflation layers near the
particle surface (Figure 2b). The shapes of the elements were tetrahedrons and prisms.
After the grid parameter adjustment, the surface size of the tetrahedra on a particle was
chosen to be 0.005d. The thickness of the particle’s inflation layers was 0.005d, the size
of the tetrahedra in the small parallelepiped was 0.15d, the size of the tetrahedra in the
large parallelepiped was 0.4d, and the total mesh size was 6 million cells. Computation on
such a grid produced satisfactory results compared to the data of [13], but to increase the
accuracy of simulation of the non-Newtonian fluid flow, the surface size of the elements
on the particle was reduced to 0.003d, and the thickness of the first cell in the inflation
layers was reduced to 0.001d (Figure 2c), while the number of grid cells was increased to
19 million.

x

z

(a)

x

z

(b)

x

z

(c)

Figure 2. A grid in the x–z plane passing through the center of the sphere. (a) Inlet part of computa-
tional domain; (b) mesh around the sphere; (c) inflation layers around the sphere.

The incoming fluid flow was characterized by a constant shear G and directed along
the x axis; thus, the velocity at the inlet was (ux, uy, uz) = (G · z, 0, 0). On the x–y plane and
the hemispheres, a no-slip boundary condition was applied. On the side faces of the large
parallelepiped, the symmetry boundary condition was used. A zero velocity gradient was
set at the outlet. Figure 1 shows the geometry and boundaries.

The correctness of the computations was verified through the comparison of the
Newtonian shear flow calculation results with the data presented in [13]. In [13], the authors
validated the choice of the number of hemispheres for the formation of steady flow over a
rough surface. The particle was at distances δ = 0.005, 0.1, 0.5, 1.0d from the rough surface;
the Reynolds numbers were ReSH = 2, 10, 100. Hydrodynamics simulations for the particle
positions δ = 0.005, 0.1d did not reveal the lift force coefficient decrease as observed in [13]
but demonstrated an increase in the CL by 16% compared with the results for the particle
on the smooth wall [8]. For Reynolds numbers of 10 and 100, the difference between the CL
coefficient with that calculated by Balachandar [13] did not exceed 5%. For the parameters
CD and up, results consistent with the data of the article were obtained. The comparison is
presented in Table 1.

A grid study was carried out. The regime with the highest demand on the grid flow of
ReSH = 200, Bn = 10, and n = 0.6 was chosen for testing. Control simulations were carried
out on four grids: the basic grid and three finer grids. During grid construction, all linear
values in the settings were changed by 1, 0.85, 0.7, and 0.5 times with respect to the basic
grid. As can be seen from Table 2, the drag force and lift force behaved monotonically, while
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the torque varied substantially. The deviations in the drag force, lifting force, and torque
from the most detailed grid were −1.5%, −2.4%, and 8.5%, respectively.

Table 1. Comparison of simulation results for a particle on a rough surface in a shear flow of
Newtonian fluid.

ReSH δ
Lee (2017) [13] Current Study Deviation

CD up CD up CD, % up, %

2

0.005 43.894 1.1 44.434 1.13 1.2 2.7
0.1 33.157 1.3 34.451 1.305 3.9 0.4
0.5 16.236 2.3 16.812 2.299 3.5 0.06
1 10.34 3.5 10.264 3.496 0.7 0.1

10

0.005 11.018 5.6 11.258 5.678 2.2 1.4
0.1 8.462 6.8 8.709 6.986 2.9 2.7
0.5 4.53 11.9 4.628 12.105 2.2 1.7
1 3.163 17.8 3.249 17.996 2.7 1.1

100

0.005 2.158 66.4 2.204 67.745 2.2 2
0.1 1.763 80.3 1.825 81.215 3.5 1.1
0.5 1.146 129 1.162 129.91 1.4 0.7
1 0.918 181.3 0.933 181.965 1.6 0.4

Table 2. Grid study. CD, CL, and CM obtained using meshes with different refinement. Values in
brackets are deviations in % from finest mesh.

Settings Grid
Refinement Ratio

Number of Cells
(106)

Effective Grid
Refinement Ratio CD CL CM · (102)

1 19.02 1 0.7170 (−1.5%) 0.2752 (−2.4%) −1.368 (8.5%)
0.85 26.23 0.9 0.7205 (−1.0%) 0.2777 (−1.5%) −1.350 (7.0%)
0.7 37.93 0.79 0.7238 (−0.6%) 0.2802 (−0.7%) −1.308 (3.7%)
0.5 71.36 0.64 0.7279 (0.0%) 0.2820 (0.0%) −1.261 (0.0%)

It should be noted that the chosen algorithm implies the construction of an unstruc-
tured mesh in a rather complex geometry. That is, the grids are no longer embedded. It
is impossible to guarantee the same mesh quality even with a simultaneous proportional
change in the linear parameters of the grid builder setting. Accordingly, it is also impossible
to expect monotonic dependence of the solution when making the grid finer. We can
only find the effective grid refinement ratio, which does not fully reflect the change in the
average cell size from grid to grid. So, the application of Richardson extrapolation is quite
difficult, and therefore, it is not possible to analyze the numerical error. Only qualitatively
can we discuss the adequacy of the grid. Based on the deviations of the integral charac-
teristics obtained on the basic grid compared to the most detailed grid, we consider the
grid satisfactory.

On average, the simulation process took 4.5 days with eight cores parallelized using
an Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20 GHz processor.

4. Results and Discussion
4.1. Force and Torque Coefficients

Let us consider the effect of rheology and the Reynolds number on the free-stream
velocity on a particle center over a rough surface. In the case of a smooth wall, the velocity
is given as follows: usmooth

p = Gh0. In the case of a rough wall, this value is distorted by
the particle bed. The ratio of the free-stream velocity in front of the particle over a rough
surface to the velocity over a smooth surface is denoted by

θ(ReSH , n, Bn) = up/usmooth
p , (3)
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as shown in Figure 3. It is quite obvious that the particle bedding reduces the velocity
of the free stream; thus, the value θ is always less than one. The θ value tends toward
one with increases in the Reynolds number, Bingham number, and decreases in the power
law index. The decrease in the power law index and increase in the Reynolds number
decrease the apparent viscosity; hence, this results in the decreasing influence of the particle
bedding. It may seem that increasing the Bingham number Bn should lead to an increase
in the yield stress τy and apparent viscosity. However, since the Bingham number Bn is
included in the denominator of the shear Reynolds number ReSH , the opposite effect is
observed. An increase in the Bingham number Bn leads not only to a nominal increase in
the yield stress τy but also to an increase in the shear rate G of the free stream. Of course,
increasing the yield stress while fixing other parameters would lead to an increase in the
apparent viscosity, but the introduced dimensionless parameters make the analysis slightly
more complex. Thus, the effect of the Bingham number is inverted by the introduced
dimensionless parameters.

2 5 10 20 50 100 200
ReSH

0.70

0.75

0.80

0.85

0.90

0.95

θ

Bn\n
0.1
1
5
10

0.8 0.6

Figure 3. Dependence of the free-stream velocity coefficient θ on the Reynolds number ReSH , Bingham
number Bn, and power law index n.

It was shown in [9] that as the Bingham number Bn increases and the power law
index n decreases, the drag coefficient CD decreases for a smooth wall. The same behavior
is true for a rough wall (Figure 4a). A decrease in the power law index n decreases
the fluid viscosity; thus, the drag force CD decreases. As noted above, the effect of the
Bingham Bn number’s influence is inverted, so the drag force CD decreases as the Bingham
number increases. Nevertheless, taking into account the decreasing CD coefficient, we can
preliminarily conclude that roughness for pseudoplastic fluids with significant yield stress
prevents particle motion at the surface.
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Figure 4. (a) Dependence of the drag force coefficient CD on the Reynolds number ReSH , Bingham
number Bn, and power law index n. (b) Influence of the rough wall on the drag force depending on

rheological parameters n and Bn. Ratio CD,rough
CD,smooth

averaged over ReSH .
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Let us consider the effect of roughness depending on the rheological properties of
the fluid on the drag force. Since there are three variables in the problem, for simplicity
of presentation we averaged the ratio of the drag force on a rough wall to the force on a
smooth wall over the Reynolds number, thereby leaving the influence of the rheological
properties only. The same was performed for the lifting force and the torque acting on
the particle. As shown earlier in [13] for a Newtonian fluid, a rough surface increases the
resistance in comparison with a smooth wall by up to 10%. This conclusion was confirmed
by our simulations; we found that, on average, the drag force was 6% higher over a rough
wall (Figure 4b). As the non-Newtonian properties of the fluid increase, the drag force
coefficient decreases over the rough surface compared to the smooth wall. Thus, the effect
of the rough wall on the drag force is opposite to that of the non-Newtonian fluid rheology.
Apparently, this is due to the large velocity gradients caused by the particle bed, which
reduce viscosity and drag. It should be noted that applying correlations for smooth walls
will overestimate the drag force.

The deviation analysis for determining the drag force over a rough surface using the
simulations for smooth walls is given below. The correlation for a spherical particle at a
distance from the wall as a function of the Reynolds number and distance to the wall was
developed by Zeng et al. [8]. The reduced expression when the particle touches the wall is
shown below:

CD =
24 · 1.3255

Re

(
1 + 0.104Re0.753

)
, (4)

where the particle Reynolds number is Re = ρGd2/2µ. Using Formula (4) gives the average
absolute error 25 ± 12%, and the total error range is from −53% to 48%. In [9], data on
the drag force for the case of the Herschel–Bulkley fluid and smooth wall are presented.
The average absolute error when using this result is 19 ± 7%, while the relative error varies
from −3% to 62%. As an example, Table 3 compares the drag coefficient obtained in this
work for a rough wall to that in [9] and from Zeng’s correlation for the case of n = 0.6, with
Bn = 10 as the case with the highest expression. As expected, both correlations noticeably
overestimate the drag force.

Table 3. Drag force, lift force, and torque coefficient for Bn = 10 and n = 0.6 simulated for rough and
smooth walls, which were calculated from correlations. Values in brackets are deviations in % from
rough wall.

ReSH
CD CL CM

Rough Smooth Zeng 1 Rough Smooth Zeng 2 Rough Smooth

2 15.39 24.95 (+62%) 18.69 (+21%) 1.712 1.906 (+11%) 2.683 (+57%) 2.306 3.566 (+55%)
5 6.725 10.28 (+52%) 8.585 (+28%) 1.306 1.301 (−0.3%) 1.802 (+38%) 0.856 1.245 (+46%)
10 3.821 5.673 (+49%) 5.055 (+32%) 1.09 1.114 (+2.2%) 1.330 (+22%) 0.365 0.579 (+59%)
20 2.309 3.221 (+40%) 3.169 (+37%) 0.936 0.895 (−4.3%) 0.980 (+5%) 0.124 0.215 (+74%)
50 1.318 1.658 (+26%) 1.895 (+44%) 0.851 0.689 (−20%) 0.655 (−23%) −0.011 0.009 (+177%)

100 0.931 1.119 (+20%) 1.379 (+48%) 0.63 0.644 (+2.2%) 0.483 (−23%) −0.026 −0.039 (+50%)
200 0.717 0.805 (+12%) 1.053 (+47%) 0.275 0.45 (+63%) 0.356 (+29%) −0.014 −0.039 (+184%)

1 using Formula (4) from [8]. 2 using Formula (5) from [8].

The characteristic of the rheology dependence of the lifting force coefficient CL is the
same as that of the drag force CD, i.e., it decreases with the increase in the Bingham number
Bn and decrease in the power law index n (Figure 5a). The lifting force coefficient CL
also decreases with the increase in the Reynolds number ReSH but not as fast as the drag
coefficient. It is interesting that at Reynolds numbers of ReSH = 50–200, the dependence on
rheology becomes noticeably smaller, and the curves become close to each other.
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Figure 5. (a) Dependence of the lift force coefficient CL on the Reynolds number ReSH , Bingham
number Bn, and power law index n. (b) Influence of the rough wall on the lift force depending on

rheological parameters n and Bn. Ratio CL,rough
CL,smooth

averaged over ReSH .

As well as the drag force, we analyzed the effect of roughness on the lift force. As can
be seen, the lifting force for the Newtonian fluid is on average up to 30% higher in the
case of the rough wall (Figure 5b). For the non-Newtonian fluid, as well as in the case
of drag force, decreasing the power law index n and increasing the Bingham number Bn
leads to a decrease in the effect of the rough wall. The lift force coefficient CL for almost all
of the considered cases is greater than the CL obtained for the particle on a smooth wall.
This effect is connected, in particular, to the increase in hydrodynamic pressure value p
and its redistribution. The visualization in Figure 6 is made in such a way that the bottom
point of the sphere can be taken as zero pressure. In both cases, the negative pressure
region occupies a slightly larger area; thus, there is a deflection region above the upper
point of the particle. In the case of the rough wall, the negative pressure region increases,
thus spreading slightly upstream on the sphere. As a result, the lift force acting on the
sphere over the sedimentation layer increases compared to the particle on the smooth wall.
To visually estimate the change in pressure distribution during the transition to a rough
surface, Figure 6 shows the isolines corresponding to p = 30 in the frontal zone of the
particle and p = −40 in the rarefaction region behind the sphere.

In a study by Zeng et al. [8], the formula for describing the lift force coefficient CL for
a particle over a smooth surface is given. In the case of a particle touching the surface, it
can be written as follows:

CL =
3.663

(Re2 + 0.1173)0.22 , (5)

where the Reynolds number Re is determined from the flow velocity at the center of the
particle. Let us apply it for the case of the rough wall and assess the difference. Using
Formula (5) gives an average difference of 22 ± 9%, with the whole difference ranging
from −36% to 56%. An estimation of the lifting force CL for a smooth wall and a Herschel–
Bulkley fluid from [9] gives an average difference of 14 ± 12% and a full difference range
from −24% to 63%. As an example of the largest deviation of the estimates of CL for a
smooth wall from a rough wall, we give this example for n = 0.6 and Bn = 10 (Table 3).
If for most regimes the estimates for a smooth wall give an underestimated value of CL,
i.e., the deviation is negative; then here, both Zeng’s Formula (5) and the simulation in [9]
can give errors of different signs.
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x

z

(a)

x

z

(b)

Figure 6. Distribution of dimensionless pressure in the case of Herschel–Bulkley fluid flow with
parameters n = 0.8 and Bn = 1 around a sphere on (a) a smooth and (b) a rough surface. Isolines
(black solid curves) show p = 30 in the frontal zone of the particle and p = −40 in the rarefaction
region behind the sphere.

As for the drag and lift coefficients, CM decreases with the decrease in the power law
index n, thereby increasing the Bingham Bn and Reynolds numbers ReSH . It should be
noted that CM decreases very rapidly with the increase in the Reynolds number, so that
at ReSH > 50, the value of CM becomes close to zero and even negative (Figure 7a). This
can be explained by the observation that with the increase in yield stress, the torque on
the particle decreases due to the velocity magnitude growth at the front of the sphere,
with the velocity vector directed downward to the lacuna between the three hemispheres.
As a result, a torque opposite to the clockwise rotation of the particle is created. When the
Bingham number reaches 5–10 and n is decreased to 0.8–0.6, the contribution of this torque
becomes so significant that negative values of the integral torque M acting on the sphere
are recorded.
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Figure 7. (a) Dependence of the torque coefficient CM on the Reynolds number ReSH , Bingham
number Bn, and power law index n. (b) Influence of the rough wall on the torque depending on

rheological parameters n and Bn. Ratio CM,rough
CM,smooth

averaged over ReSH .

Comparing the Bingham fluid flow visualization around the particle on the rough
surface at ReSH = 200 and different Bn values, it was observed that at a low value of τy
(Bn = 0.1; Figure 8a), there were streamlines behind the particle passing from the front
through the lacuna between the three hemispheres. As a result, on the lower back side of the
particle for Bn = 0.1, we have an upward velocity, thus creating a reverse torque M̃. When



Fluids 2024, 9, 65 11 of 18

the particle was located in the shear flow with Bn = 10 (Figure 8b), a stagnation zone was
formed in the lacuna, through which a small volume of liquid passes; as a result, the velocity
on the back side of the particle was entirely directed toward the surface. It might seem that
the torque M̃ should decrease the total parameter M for Bn = 0.1 compared to Bn = 10,
but this does not happen due to the fact that the magnitude of the velocity behind the
particle near the surface is two orders of magnitude lower than the velocity induced at the
sphere front.

x

y
z

(a)

x

y
z

(b)

Figure 8. Streamlines for Bingham fluid with (a) Bn = 0.1 and (b) Bn = 10.

The torque coefficient CM of a particle on a rough surface in all considered simulation
cases was less than that for a particle on a smooth wall. The fluid that flowed over the
particle created a positive torque acting on the particle. Correspondingly, the fluid flowing
under the particle created a negative torque acting on the particle. In the case of a rough
surface, the lacuna under the particle reduced the total torque compared to a smooth
surface, because more fluid is able to flow under the particle. The smooth wall torque
was 10% greater than the torque on the rough wall in the case of the Newtonian fluid,
and this difference increased with the increase in the Bingham number Bn and decrease
in the power law index n (Figure 7b). The average difference between the torques on the
rough wall and smooth wall was around 51%.

4.2. Approximation of Forces and Torque
4.2.1. The Drag Force Coefficient CD

The dependence of CD on ReSH in the bilogarithmic scale is almost linear, so CD(Re)
should be well described by a power function. An approximation in the form of Formula (6)
is sought, which is similar to the known Schiller–Naumann correlation [23] for an un-
bounded medium and the Zeng et al. correlation (Formula (4)). Coefficients A, B, and C of
Formula (6) are assumed to depend on the power law index n and Bingham number Bn and
are approximated in the form of Functions (7), (8), and (9), respectively, with appropriate
coefficients in Table 4.

CD = A
(

1 + B · ReC
SH

)
(6)

A = exp
(

a0 + a1Bn + a2Bn3/2 + a3eBn/a4 + a5e−Bn + a6/
√

n + a7 ln n/n + a8/n
)

(7)

B = exp
(

b0 + b1n + (b2n2 + b3n + b4)Bn + (b5n2 + b6n + b7)Bn3/2 + (b8n + b9)
√

Bn
)

(8)

C = c0 + c1Bn + c2n + c3Bn2 + c4n2 + c5Bn · n + c6Bn3 + c7n3 + c8Bn · n2 + c9Bn2n (9)

The approximation (6) of CD gives an average error of 2.5 ± 2%, with the maximum
not exceeding 9%. The distribution of the error is shown in Figure 9a.
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Table 4. Coefficients of approximation formula for the drag force coefficient CD (Formulas (6)–(9)).

i ai bi ci

0 −112.56593 −4.2837156 0.6749968
1 15.401215 2.2809931 0.023630196
2 −2.0707175 −0.024535228 0.33005892
3 156.19872 0.92007397 −0.014190415
4 −12.22632973 −0.54858251 −0.5982012
5 2.0488369 0.14570464 0.11350501
6 −147.1652 −0.37801647 9.341168 · 10−4

7 32.832341 0.18962019 0.19515689
8 105.83532 −2.1212564 −0.035606101
9 – 1.1468118 −3.177588 · 10−3
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Figure 9. Histogram of approximation error of (a) CD for Formula (6), (b) CL for Formula (10), and
(c) CM for Formula (11).

4.2.2. The Lift Force Coefficient CL

The approximation formula for the lift force coefficient CL is found in the same way
as for the drag coefficient CD, i.e., we first find the universal dependence on the Reynolds
number ReSH and then approximate the coefficients. The dependence of the lift force
coefficient CL on the Reynolds number ReSH is more complex compared to the drag force
coefficient CD. Using an approximation formula for CL in a Newtonian fluid, similar to
Formula (5) and with arbitrary coefficients gives a large error, and the dependence of the
free coefficients on n and Bn is highly nonlinear. To approximate the lift force coefficient
CL, expression (10) with coefficients A, B, C, and D, was chosen. These coefficients are
described in the same way as in expression (9). The coefficients for them are given in
Table 5.

CL = A + B · ReSH +
C

ReSH
+

D
Re2

SH
(10)

Table 5. Coefficients of approximation formula for the lift force coefficient CL (Formula (10)).

i ai bi ci di

0 0.91355258 −2.627284 · 10−3 −0.73318047 33.637812
1 0.073666872 −7.489556 · 10−4 −3.4818427 3.3643489
2 −0.064727027 1.449468·10−3 25.874692 −154.9099
3 −7.389389·10−3 8.302351·10−5 0.8370182 −0.93646073
4 0.047693492 −1.604971·10−3 −14.962358 179.25061
5 −0.094994519 6.396882·10−4 −2.1984015 4.0141986
6 2.533976·104 −3.407309·10−6 −0.05002062 0.059314397
7 0.15321461 −1.169344·10−4 3.6677747 −73.136321
8 −0.016809973 8.652267·10−5 0.84560024 −1.4517147
9 6.579130·10−3 −4.242128·10−5 0.051772368 −0.141001253
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The approximation (10) of CL gives an average error of 3 ± 2.5%, with the maximum
not exceeding 10%. The distribution of the error is shown in Figure 9b.

4.2.3. The Torque Coefficient CM

In contrast to the coefficients CD and CL, no example of an approximation formula for
the torque coefficient CM was found. Since the torque coefficient CM decreases quickly with
the increase in the Reynolds number ReSH , the proposed expression consists of a constant
and the sum of slowly increasing and rapidly decreasing functions:

CM = A + B
√

ReSH +
C

ReSH
+ D · exp(−ReSH). (11)

The approximation of the coefficients A, C, and D are given in Formulas (12)–(14).
The function B for the torque is described in the same way as in expression (9). The coeffi-
cients for them are given in Table 6.

A =
a0 + a1Bn + a2Bn2 + a3 ln n

1 + a4Bn + a5Bn2 + a6 ln n + a7 ln2 n
(12)

C =
c0 + c1Bn + c2Bn2 + c3ln(n) + c4 ln2 n

1 + c5Bn + c6Bn2 + c7Bn3 + c8 ln n
(13)

D = d0 + d1 ln Bn + d2n + d3 ln2 Bn + d4n2 + d5n ln Bn + d6 ln3 Bn + d7n3 + d8n2 ln Bn + d9n ln2 Bn (14)

The approximation (11) of CM gives an average error of 3.2 ± 3%, with the maximum
not exceeding 19%. The distribution of the error is shown in Figure 9c.

Table 6. Coefficients of approximation formula for the torque coefficient CM.

i ai bi ci di

0 2.864166·10−3 0.013313068 32.20391 178.72147
1 −1.247596·10−2 −4.563881·10−3 1.315694 0.46516483
2 −6.825300·10−4 0.061773494 −0.03373 −710.19627
3 7.696991·10−2 −1.202564·10−4 41.63685 −0.014039359
4 8.356225·10−2 −0.17901219 27.47855 916.98635
5 7.686759·10−3 0.013726357 0.738348 −0.39068685
6 3.0697927 −7.9884·10−7 −0.05171 −2.11435·10−5

7 3.2006677 0.10828134 0.002346 −387.41501
8 – −9.178116·10−3 0.101589 0.15712562
9 – 1.505406·10−4 – −2.513205·10−43

4.3. Particle Incipient Motion Conditions

Let us first consider the incipient motion condition of the spherical particle. In the
three-dimensional case, when the particle is located above the lacuna at the minimum
distance, it touches the three lower hemispheres at points A, B, and C (Figure 10a). We
place the center of the coordinates at the point where the hemispheres touch, as shown
in Figure 10a. Since the flow is directed along the x axis, it makes sense to consider only
the rolling condition at points A and B. For this, we need to write down the equation
for the torque with respect to the contact points. Let us denote D as the center of the
particle and E as the center of the circle of radius R passing through the centers of the
hemispheres (Figure 10b). Consider that the integral forces FD and FL are applied at the
point D, and the torque

−→
M has the components (Mx, My, Mz), of which only My ≡ M

is relevant. In addition, there is a gravity force
−→
F g = (0, 0,−ρpgV) applied at point D,

where V = (4/3)π(d/2)3 is the particle volume, ρp is the particle material density, and

the buoyancy force is
−→
F A = (0, 0, ρgV). From geometrical considerations, R = d/

√
3,

ED = H =
√

2/3d, and OE = d/2
√

3. Point A has coordinates (δx, δy, δz), where δx = d/4,
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δy = d/4
√

3, and δz = d/
√

6. Point B = (0, d/
√

3, d/
√

6). Let us denote the torque of forces
−→
M A

of the particle with respect to point A:

−→
M A =

−→
M +−→a ×−→

F +−→a ×
(−→

F g +
−→
F A

)
, (15)

where
−→
F = (FD, Fy, FL), Fy is the force acting on the particle perpendicular to the fluid flow,

and −→a ≡ −→
AD = (−d/4, d/4

√
3, d/

√
6). Since we are interested in a particle rolling out of the

lacuna in the flow direction, we consider the condition for the y component of the torque−→
M A, which, after the appropriate calculations, has the form

M +
d
4

FL +
d√
6

FD +
d
4
(ρ − ρp)Vg ≥ 0. (16)

Then, using representation (3), Formula (2), and considering FS = 0.5u2
pρπ(d/2)2 =

(1/3)θ2G2d2ρπ(d/2)2, we obtain

G2d2θ2ρ

(
CM +

1
2

CL +

√
2
3

CD

)
≥ (ρp − ρ)dg. (17)

The dimension of the right- and left-hand sides of the inequality is stress. The char-
acteristic local shear stress on the wall in the vicinity of the particle can be estimated
as follows:

τw = µγ̇n
local + τy = k

(
up

h0

)n
+ τy = kGn (θn + Bn). (18)

(a) (b)

Figure 10. (a) Points of contact of a particle with hemispheres and (b) the scheme of action of the
force and torque vectors.

Inequality (17) can be transformed to a dimensionless form by dividing each part of it
by τw:

τw(
ρp − ρ

)
dg

≥ 1

Reu

(√
3
2 CM + 1

2

√
3
2 CL + CD

) , (19)

Here, we denote by Reu the Reynolds number, which is constructed based on the local
undisturbed flow velocity up:

Reu =

√
2
3

ρG2−nd2θ2

k(θn + Bn)
=

√
2
3
(1 + Bn)θ2

(θn + Bn)
ReSH . (20)
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Note that in inequality (19), the left-hand side is the Shields number for the particle,
and τB = τw/(ρp − ρ

)
dg. The critical value of τB, at which the particle begins to roll out of the

lacuna, is reached when the inequality turns into the equality

τB = τR ≡
{

Reu

(√
3
2

CM +
1
2

√
3
2

CL + CD

)}−1

, (21)

where we denote by τR the critical rolling Shields number.
Let us consider next the torque

−→
MB in relation to the point B:

−→
MB =

−→
M +

−→
b ×−→

F +
−→
b ×

(−→
F g +

−→
F A

)
, (22)

where
−→
b ≡ −→

BD = (0,−d/2
√

3, d/
√

6). The condition for the particle’s rotation around the
axis passing through B parallel to the y axis is

M +
d
2

√
2
3

FD ≥ 0, (23)

and is always satisfied in the range of parameters under study. Thus, for the beginning of
the particle rolling out of the lacuna, it is only necessary to fulfill the condition (19).

The condition of complete detachment of the particle from the substrate and entrain-
ment into the flow has a similar form for points A and B in terms of forces:

FL +
∣∣∣−→F A

∣∣∣− ∣∣∣−→F g

∣∣∣ ≥ 0. (24)

Using transformations similar to those performed with torque, we obtain

τB ≥ 1
1
2

√
3
2 CL · Reu

≡ τL. (25)

Thus, particle detachment is achieved when the Shields number reaches the critical
value τL.

It is undoubtedly important to separately determine the drag force, lift force, and torque
coefficients, but in an actual simulation, similar to the mechanistic approach, these quan-
tities are included together in the final expressions of particle motion. The critical shear
stresses τR and τL have the same behavior as in the case of the smooth wall. The crit-
ical stresses decrease with the Reynolds number ReSH and increase with the increase
in non-Newtonian properties. Furthermore, it should be noted that the critical stresses
strongly depend on the rheological parameters n and Bn with small Reynolds numbers
ReSH , but with an increase in ReSH , the dependence on rheology significantly decreases or
becomes negligible (Figure 11). The more non-Newtonian properties a fluid has, the greater
the stress that must be applied to initiate movement or lift a particle off from other set-
tled particles.

The increasing level of non-Newtonian properties leads to decreases in the drag force
coefficient CD, lift force CL, and torque CM, which in turn increase the critical stresses
for particle motion initiation and detachment from the sediment bed. Thus, in a non-
Newtonian fluid, a higher local Reynolds number and shear rate are required to initiate
particle motion and detachment in horizontal flow. Let us discuss the difference in critical
shear stresses between smooth and rough walls. The average difference (underestimation)
in the critical wall stress τR for the incipient motion between smooth and rough walls was
10 ± 8%, while the maximum difference reached 35%. To detach a particle from a rough
wall, an average of 12± 9% more stress τL is required but not more than 47%. The difference
can be either positive or negative. The differences in τR and τL between the smooth and
rough wall were noticeably smaller than the differences in the coefficients CD, CL, and CM,
since the latter were included in the expressions as a combination of each other and of
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the Reu together. Zeng et al.’s [8] correlations (Equations (4) and (5)) can also be applied
to calculate the critical stresses τR (Equation (21)) and τL (Equation (25)) for the incipient
motion and detachment. Unfortunately, the deviation in this case was significantly higher
compared to the data [9] for a smooth wall with a Herschel–Bulkley fluid. For motion
initiation, the average deviation was 43± 30%, and for detachment, it was 30± 17%. Table 7
summarizes the values of the τR and τL coefficients for the smooth and rough surfaces for
n = 0.6, Bn = 10 as one of the regions of highest deviation.

2 5 10 20 50 100 200
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0.00

0.05

0.10

0.15

0.20

τ R

steady sediment bed

moving sediment bed

n\Bn

0.8
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(a) (b)

Figure 11. Dependence of critical Shields numbers for (a) rolling τR and (b) detachment from a rough
surface τL on the Reynolds number ReSH , Bingham number Bn, and power law index n.

Table 7. Comparison of simulation results for a particle on a rough surface in a shear flow of a
Newtonian fluid.

ReSH
τR τL

Rough Zeng 1 Smooth Rough Zeng 2 Smooth

2 0.2011 0.1979 (−2%) 0.1305 (−35%) 1.5576 0.9939 (−36%) 1.3994 (−10%)
5 0.1727 0.1578 (−9%) 0.1220 (−28%) 0.8169 0.5918 (−28%) 0.8196 (0.3%)

10 0.1435 0.1256 (−12%) 0.1054 (−26%) 0.4891 0.4011 (−18%) 0.4787 (−2%)
20 0.1106 0.0949 (−14%) 0.0888 (−20%) 0.2850 0.2720 (−5%) 0.2978 (5%)
50 0.0667 0.0600 (−9%) 0.0644 (−4%) 0.1253 0.1628 (30%) 0.1548 (24%)

100 0.0469 0.0417 (−11%) 0.0428 (−9%) 0.0847 0.1105 (30%) 0.0829 (−2%)
200 0.0396 0.0277 (−30%) 0.0307 (−23%) 0.0969 0.0749 (−23%) 0.0593 (−39%)

1 using Formula (21) with (4) and (5) from [8]. 2 using Formula (25) with (5) from [8].

5. Conclusions

The present study is devoted to analyzing the conditions of particle incipient motion
from a sedimentation layer formed by hemispheres of the same radius as the particle.
The main force parameters were sufficient for determining that the conditions of motion
initiation were obtained as a result of numerical simulation of the Herschel–Bulkley shear
flow around a particle located as close as possible to a rough surface. Based on the data
obtained, the following conclusions can be drawn:

• The drag force was on average 6% higher in the case of the Newtonian fluid compared
to the smooth surface. The hemisphere underlay increased the shear rate, thereby
reducing the viscosity of the non-Newtonian fluid and decreasing the Cd compared to
the smooth wall. As the non-Newtonian properties of the fluid increased, the drag
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force over the rough surface became smaller than over the smooth surface. Thus,
the drag force was on average 25% lower for the case Bn = 10 and n = 0.6.

• The lacuna of the hemispheres under the particle increased the lifting force by 30%
on average for a Newtonian fluid compared to a smooth wall. In the case of a non-
Newtonian fluid, this effect was reduced due to viscosity reduction, but only at
extreme values of n and Bn did the lifting force over a rough surface become lower
than over a smooth one.

• The rough surface reduced the rotational torque of forces for a Newtonian fluid by
10% on average, and when the non-Newtonian properties of the fluid were increased
in the considered regimes, the reduction was up to 40%.

• The application of forces obtained for a smooth wall in a non-Newtonian fluid under-
estimated the critical stresses for incipient motion and particle detachment for a rough
wall by an average of 10% and 12%, respectively, with a maximum deviation of 35%
and 47%, respectively.

• Applying the available correlations of Zeng et al. [8] to the forces obtained for a smooth
wall and Newtonian fluid to a rough wall gave a noticeable difference in determining
the critical stresses on the wall.

Approximation formulas have been suggested to describe the coefficients of the drag
force CD, lift force CL, and torque CM acting on the particle. The average errors in the
values were 2.5%, 3%, and 3.2%, respectively.
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Nomenclature

γ̇ The second invariant of the strain rate tensor
δ Vertical distance between the particle and the rough surface
θ Ratio of the free-stream velocity over the rough surface to the smooth surface
µ Fluid viscosity
ρ, ρp Density of fluid and particle
τy Yield stress of fluid
τB Shields number
τw Shear stress on the wall
τL Critical Shields number to detach particle
τR Critical Shields number to roll particle
A, B, C, D Coefficients of approximation formulas
a0...9, b0...9, c0...9, d0...9 Coefficients of approximation formulas
CD, CL, CM Dimensionless coefficients of the drag and the lift force and the torque
FD, FL, FS The drag force, lift force, and characteristic force
G Shear rate of the incoming free stream
g The gravity constant
h Distance of sphere to the x–y plane (flat surface)
h0 Minimum distance of the sphere to the x–y plane in case of rough surface
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k Consistency factor
m Parameter for Papanastasiou regularization
n Power law index
Re Reynolds number
ReSH Shear Reynolds number
SSS Strain rate tensor
uuu Fluid velocity vector
up Free-stream velocity in the front of the particle
usmooth

p Smooth wall free-stream velocity in the front of the particle
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