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Abstract: Data obtained using direct numerical simulations (DNS) of pressure-driven turbulent
channel flow are studied in the range 180 ≤ Reτ ≤ 10,000. Reynolds number effects on the mean
velocity profile (MVP) and second order statistics are analyzed with a view of finding logarithmic
behavior in the overlap region or even further from the wall, well in the boundary layer’s outer
region. The values of the von Kármán constant for the MVPs and the Townsend–Perry constants
for the streamwise and spanwise fluctuation variances are determined for the Reynolds numbers
considered. A data-driven model of the MVP, proposed and validated for zero pressure-gradient
flow over a flat plate, is employed for pressure-driven channel flow by appropriately adjusting Coles’
strength of the wake function parameter, Π. There is excellent agreement between the analytic model
predictions of MVP and the DNS-computed MVP as well as of the Reynolds shear stress profile. The
skin friction coefficient Cf is calculated analytically. The agreement between the analytical model
predictions and the DNS-based computed discrete values of Cf is excellent.

Keywords: wall-bounded turbulence; turbulent boundary layers; higher order statistics; direct
numerical simulation (DNS)

1. Introduction

The study of wall turbulence is one of the most challenging topics in turbulence
research. Theoretical, experimental, and computational approaches encounter insurmount-
able difficulties, especially in the high Reynolds number regime. However, the great
importance of wall turbulence in engineering applications and the challenging nature of
the physics involved have maintained a continuous string of efforts to understand, model,
and compute such flows.

Fundamental research has focused on several turbulent flows in simple geometries
usually referred to as canonical flows. Canonical turbulent flows include turbulent Couette
and Poiseuille flows between parallel plates, flows in straight pipes of constant circular
cross-section, liquid flows of uniform depth in wide open channels and zero pressure-
gradient external flow over a flat plate. The mean flow field in wall-bounded cases (such as
flow in channels and pipes) is parallel and the thickness of the boundary layers formed
is constant. Furthermore, in planar and axisymmetric Poiseuille flows the gradient of the
wall pressure in the streamwise direction is a negative constant. In contradistinction, in the
canonical flat-plate boundary layer, the mean flow is not parallel, it is developing under
zero pressure gradient (ZPG) and the boundary layer thickness, δ, is a weak function of the
streamwise coordinate.

Canonical flows have been studied extensively by experimental methods. Important
improvements in experimental techniques have been made over the years. However, the
complexity of the turbulent flows is such that accuracy is still below the desired level,
especially very close to solid walls. On the other hand, direct numerical simulations (DNS)

Fluids 2024, 9, 62. https://doi.org/10.3390/fluids9030062 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids9030062
https://doi.org/10.3390/fluids9030062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0009-0002-1879-6249
https://doi.org/10.3390/fluids9030062
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids9030062?type=check_update&version=1


Fluids 2024, 9, 62 2 of 23

provide us with high-quality, high-resolution data for turbulent flows in simple geometries.
Although direct numerical simulations are currently limited to relatively low Reynolds
numbers their accuracy, especially close to a rigid wall boundary, makes them invaluable
in studying wall turbulence. Nowadays, various authors have reported DNS studies of
canonical turbulent flows (see [1–5] and references cited therein).

Despite the plethora of relevant publications in the scientific literature, there are
still many open questions related to wall turbulence. In this work we have compiled a
number of DNS datasets in the range of friction Reynolds number Reτ [180 to 10,000]. We
have treated the datasets as having roughly the same accuracy level and proceeded in
their analysis. Reynolds number effects on the mean velocity profile (MVP) and second
order statistics have been analyzed with a view of finding logarithmic behavior in the
overlap region or even further from the wall, well into the boundary layer’s outer region.
Values of the von Kármán constant for the MVPs and the Townsend–Perry constants for
the streamwise and spanwise fluctuation variances were determined for the Reynolds
numbers considered. A mathematical model of the MVP, thereinafter referred to as AL84,
is presented together with its direct consequences. AL84 was developed for zero pressure-
gradient turbulent boundary layers (ZPG-TBL) [6] and recently validated with DNS data
for ZPG-TBLs [7]. Several analytical results are derived. The analytic model provides an
excellent means for the imposition of boundary conditions near solid surfaces via the wall
functions methodology.

The paper is structured as follows. In Section 2 we summarize some aspects of the
pressure-driven channel flow which are needed for the discussion of the results in the
remainder of the paper. In Section 3 we present the findings based on the DNS datasets
with a view to compare them with the mathematical model predictions which are presented
in Section 4. Conclusions are summarized in Section 5.

2. Pressure-Driven Channel Flow

We consider pressure-driven turbulent flow in a channel formed by two parallel, large,
motionless plates. The channel is sufficiently long that after a developing length near the
channel entrance, the turbulent flow field becomes homogenous in the streamwise (x) and
spanwise (z) directions. Considering the symmetry of the flow about the channel midplane
we denote the distance between the two plates as 2h. In the equations that follow overbars
denote averages in time (equivalent to ensemble averages) and primes denote fluctuations
in time.
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Figure 1. Channel geometry and coordinate system.

In this paper ( u, v, w) denote the streamwise, wall-normal, and spanwise averaged-
in-time velocity components at a point, ( u′, v′, w′) the corresponding velocity fluctuations,
and p the time-averaged pressure. The time-averaged flow is parallel, i.e., the mean velocity
field is (u, 0, 0), and the mean streamwise velocity component u is a function of the distance
from the lower wall.

Simplifying the Reynolds-averaged Navier–Stokes (RANS) equations for fully devel-
oped incompressible turbulent flow, one obtains the following:

(x − component)− ∂p
∂x

+ µ
∂2u
∂y2 − ρ

∂u′v′

∂y
= 0 (1)
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(y − component)− ∂p
∂y

− ρ
∂v′2

∂y
= 0 (2)

We note that the Reynolds shear stress term in Equation (1) cannot be neglected and
that the mean pressure p at a cross-section x = const. is a function of y due to Equation (2).

After some mathematical manipulations of Equations (1) and (2) one finds the following:

ν
du
dy

+
(
−u′v′

)
= u2

∗

(
1 − y

h

)
(3)

where u∗ =
√

τw/ρ is the friction velocity, τw is the mean shear stress at the wall, ν the
kinematic viscosity, and ρ the fluid density. The wall pressure gradient in the streamwise
direction dpw/dx is related to the mean shear stress at the wall, τw, by the relation:

τw = −h
dpw
dx

(4)

Equation (3), expressed in terms of the inner-law variables y+ = yu∗/ν, u+ = u/u∗,
is put in the dimensionless form:

du+

dy+
+

(
−u′v′

)+
= 1 − y+

Reτ
(5)

where Reτ = u∗h/ν is the friction Reynolds number formed using the channel half
height as characteristic length and the friction velocity as characteristic velocity. The term(
−u′v′

)+
= −u′v′/u2

∗ corresponds to the normalized Reynolds shear stress
(
−ρu′v′

)
/u2

∗.

3. Analysis of DNS Datasets

In this work we consider DNS data published by Lee and Moser [1], Bernardini,
Pirozzoli and Orlandi [2], Lozano-Durán and Jimenez [3], Yamamoto and Tsuji [4], and
Hoyas, Oberlack et al. [5] and discuss their salient features. The specific DNS datasets
analyzed in the present work are listed in Table 1 together with the friction Reynolds
number corresponding to each dataset.

Table 1. Datasets analyzed in the present study. Reτ = u∗h/ν.

Case Datasets Reτ

LM180 Lee and Moser, 2015 [1] 180
LM550 Lee and Moser, 2015 [1] 550

LM1000 Lee and Moser, 2015 [1] 1000
LM2000 Lee and Moser, 2015 [1] 2000
BPO4079 Bernardini, Pirozzoli and Orlandi, 2014 [2] 4079
LDJ4179 Lozano-Durán and Jiménez, 2014 [3] 4179
LM5200 Lee and Moser, 2015 [1] 5200
YT8016 Yamamoto and Tsuji, 2018 [4] 8016

HO10,000 Hoyas, Oberlack et al., 2022 [5] 10,000

3.1. Mean Velocity Profiles (MVPs) and Integration-Based Quantities

Figure 2 shows the velocity profiles in law of the wall variables (u+, y+) while Figure 3
presents the same data in the standard velocity defect form. The Reynolds number in-
dependence of u+(y+) near the wall is captured with perfect accuracy for all Reynolds
numbers listed in Table 1. On the other hand, the Reynolds number independence far
from the wall in velocity defect variables shows small deviations (especially for the smaller
Reynolds number cases) from the theoretical collapse to a single curve demanded by
similarity considerations.
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Based on the DNS mean velocity profiles, one can calculate the cross-sectional average
velocity, V, and the dimensionless ratio V/u∗. As it is customary, in canonical wall-bounded
flows (straight pipes and channels of constant cross-section) we calculate the resistance law
in the form of the friction factor f , or equivalently the skin friction coefficient, C f . In the
case of channel flow, the Darcy–Weisbach equation [8] takes the following form:

∆p = f
L

Dh
ρ

V2

2
or − ∂pw

∂x
= f

1
Dh

ρ
V2

2
(6)

where Dh is the hydraulic diameter of the channel cross-section and V denotes the bulk
(cross-sectional average) velocity. For the 2D channel shown in Figure 1 (cross-section
of “infinite” aspect ratio), the hydraulic diameter Dh = 4h and consequently considering
Equation (4):

f = −
(4h) ∂pw

∂x
1
2 ρV2 =

8τw

ρV2 = 8
u2
∗

V2 (7)
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Alternatively, we can work with the skin friction coefficient defined as follows:

C f = 2
u2
∗

V2 (8)

The calculated values of C f for each dataset of Table 1 are shown as filled circles in
Figure 4. Least-squares fit reveals the power-law relation:

C f = 0.03Re−0.26
τ (9)

valid in the range 180 ≤ Reτ ≤ 10,000.
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The relation between the bulk Reynolds number as Reb = V(2h)/ν and Reτ is found
to be Reτ = 0.07Re0.9

b with excellent accuracy (see Figure 5). It follows that

C f = 0.06Re−0.23
b (10)

based on least-squares fit.
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The skin friction coefficient expressed as function of Reb differs slightly from Dean’s
formula [9]:

C f = 0.073Re−0.25
b (11)

Dean based his formula on selected experimental measurements of high Reynolds
number flows in channels with cross-section aspect ratio greater than 1:12 [9,10]. The
comparison is shown in graphical form in Figure 6.
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In a recently published work, Nucci and Absi [11] analyzed DNS data for low Reynolds
numbers in the range 110 ≤ Reτ ≤ 2000. Their computed values for C f differ slightly from
the skin friction Equation (9).

Next, we consider the lower half of the channel flow as a boundary layer of thickness
δ = h and introduce the skin friction coefficient Ĉ f = τw/ 1

2 ρU2 where U = u (y = h) = umax.
Introducing the friction velocity, u∗, in the local skin friction coefficient definition we obtain
the following:

Ĉ f = 2
u2
∗

u2
max

=⇒ Ĉ f =
2(

u+
max

)2 (12)

A least-squares fit of the Ĉ f values, computed based on the DNS datasets of Table 1, is
shown in Figure 7.

It is worth commenting on the mean velocity profile in the central region of the channel
flow. We define the following:

ξ =
umax − V

u∗
= u+

max − V+ (13)

and list the computed values in Table 2.
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Table 2. Reynolds number dependence of ξ = u+
max − V+.

Case Reτ ξ

LM180 180 2.73
LM550 550 2.69

LM1000 1000 2.67
LM2000 2000 2.65
BPO4079 4079 2.57
LM5200 5200 2.50

HO10,000 10,000 2.41

A least-squares fit of the values ξ(Reτ), calculated for the DNS datasets of Table 1, is
shown in Figure 8.
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The linear relation ξ = 2.71 − 3.25 × 10−5(Reτ) gives a fair approximation of the
function ξ(Reτ) in the range of the Reτ values considered in this work. It clearly shows the
correct trend since in the limit of infinite Reynolds number ξ should tend to zero.

3.2. Diagnostic Functions Ξ and Γ for the MVP

A great deal of research has been conducted and lively discussions have arisen in the
scientific literature as to whether a logarithmic or a power function describes better the
overlap region of the MVP. To decipher where these approximations fit the data better, two
diagnostic functions may be used.

The first function, defined as Ξ = y+(du+/dy+), serves to detect intervals where u+

is a logarithmic function of y+. It is easy to prove that when Ξ attains a constant value, u+

exhibits a logarithmic behavior of the following form:

u+ = Alny+ + B = Aln
(

y+

yo

)
=

1
κ

lny+ + B (14)

The second diagnostic function, defined as Γ = (y+/ u+)(du+/dy+), is useful in de-
tecting intervals where u+ is approximated well by a power function of the following form:

u+ = αy+
λ

(15)

In the interval where Γ = const., u+ is approximated by a function of the form (15)
with λ = Γ.

Both diagnostic functions require the computation of the derivative du+/dy+. Since
numerical differentiation acts as an error amplifier, analyzing the DNS data in terms of the
two diagnostic functions helps us to indicate the interval of the appropriate approximation
with greater confidence and accuracy.

To avoid misunderstandings in the remainder of this section it should be stressed that
the logarithmic law, Equation (14), is theoretically valid only asymptotically for Re → ∞.
The logarithmic law has been derived based on various sets of assumptions. The well-
known Millikan’s [12] argument is based on the notion that, in the intermediate region
(layer), both the wall law and the velocity defect laws should be valid. In the limit of
infinite Reynolds number this leads to the existence of a logarithmic layer in the overlap
(inertial) region. Landau’s [13] treatment of the infinite flat plate in terms of the notion
of “logarithmic accuracy” also provides a firm ground for the existence of logarithmic
behavior. There are two schools of thought with respect to the constant A = 1/κ (κ is the
von Kármán constant) in Equation (14). One insists that κ is a universal constant while the
other maintains that the value of κ depends on the type (geometry) of the flow [14–22].

For finite Reynolds number turbulent flows, several researchers [23–27] have argued
that a power law (with Reynolds number dependent coefficients) fits the experimental and
DNS results better.

In this work the numerical evaluation of the derivative is performed using the follow-
ing formula for unequally spaced data:

du+

dy+
= u+

(
y+i−1

) 2y+−y+i −y+i+1

(y+i−1−y+i )(y+i−1−y+i+1)
+ u+

(
y+i

) 2y+−y+i−1−y+i+1

(y+i −y+i−1)(y+i −y+i+1)

+u+
(

y+i+1

) 2y+−y+i−1−y+i
(y+i+1−y+i−1)(y+i+1−y+i )

(16)

3.2.1. Diagnostic Function Ξ

Figure 9 depicts the calculated Ξ = (y+; Reτ) curves for the cases listed in Table 1. As
Reτ increases the y+ intervals where Ξ is approximately constant become longer, which
implies an increase of the log-law region. In Table 3 our estimates of κ are listed together
with the intervals where Ξ = const. = 1/κ.
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Table 3. Estimation of the von Kármán constant.

Case Reτ κ [y+
low,y+

high] [(y/h)low, (y/h)high]

LM180 180 0.40 [52, 72] [0.29, 0.40]
LM550 550 0.429 [65, 75] [0.12, 0.14]
LM1000 1000 0.429 [70, 95] [0.07, 0.095]
LM2000 2000 0.429 [75, 100] [0.0375, 0.05]
LDJ4179 4179 0.385 [550, 750] [0.13, 0.18]
LM5200 5200 0.383 [400, 800] [0.08, 0.15]
YT8016 8016 0.386 [500, 1100] [0.06, 0.14]

HO10,000 10,000 0.397 [1000, 2400] [0.1, 0.24]

For Reτ = 180 our estimate of the von Kármán constant is κ = 0.40 while for Reτ = 550,
1000, 2000 κ = 0.429. For higher values of friction Reynolds number in the range [4000–10,000],
a good representative value for κ is 0.388. Finally, a good overall approximation of κ in
the Reτ range [180–10,000] is found to be 0.405 (see Figure 10). These values are in general
agreement with some of the most recent von Kármán constant estimates reported in the
literature. For further details the reader is referred to references [28–30].
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3.2.2. Diagnostic Function Γ

Figure 11 depicts the variation of Γ function for each dataset listed in Table 1. An-
alyzing the behavior of these curves we identify intervals [ y+low , y+high

]
where Γ attains

a constant value. These intervals together with the implied values of the exponent λ in
Equation (15) are listed in Table 4.
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Table 4. Estimates of the λ exponent in the power-law Equation (15).

Case Reτ λ [y+
low,y+

high] [(y/h)low, (y/h)high]

LM180 180 0.156 (≈1/6) [60, 110] [0.33, 0.61]
LM550 550 0.153 (≈1/7) [80, 200] [0.15, 0.37]
LM1000 1000 0.148 (≈1/7) [100, 550] [0.10, 0.55]
LM2000 2000 0.139 (≈1/7) [100, 1000] [0.05, 0.50]
LDJ4179 4179 0.115 (≈1/9) [1000, 1500] [0.24, 0.36]
LM5200 5200 0.117 (≈1/9) [800, 3200] [0.15, 0.62]
YT8016 8016 0.114 (≈1/9) [1200, 4500] [0.15, 0.56]

HO10,000 10,000 0.11 (≈1/9) [2000, 6500] [0.20, 0.65]

3.3. Second Order Statistics

Typical profiles of the normal and shear Reynolds stresses as well as of the turbulence
kinetic energy are shown in Figure 12 for Reτ = 5200.

In the remainder of Section 3 we explore the Reynolds number effects on second order
statistics of turbulence fluctuations. A logarithmic region is expected in the streamwise
and spanwise normal Reynolds stresses at sufficiently high Reynolds number [31–36]. We
also discuss below the Reynolds number dependence (or independence) of the Reynolds
stresses and turbulence kinetic energy [37–39].
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3.3.1. u′2

The normalized variance profiles of the streamwise fluctuations are shown in Figure 13.
A clear maximum characterizes each curve. Least-squares fit gives the following expression
for the near wall maxima of the normalized variance profiles of streamwise fluctuations:(

u′u′
)+

max
= 0.56ln(Reτ) + 4.2 (17)
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Turning now to the search for logarithmic behavior in
(

u′u′
)+

, we search for a relation
of the following form:

u′2

u2∗
= B1 − A1ln

(y
h

)
(18)
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where A1 is the Townsend–Perry constant and B1 an additive parameter that depends on
Reynolds number [34]. The term “sufficiently high Reynolds number” in this case means
Reτ > 7000 [4]. Calculating and plotting the indicator function

T = y+
d
(

u′2
)+

dy+
(19)

we have identified regions of logarithmic variation in the cases YT8016 and HO10,000 (see
Figure 13 and Table 5).

Table 5.
(

u′u′
)+

. Estimates of Townsend–Perry parameters.

Case A1 B1 “Region” (y+) “Region” (y/h)

HO10,000 1.56 1.45 [1200–2000] [0.119–0.199]
YT8016 1.65 1.24 [1200–2000] [0.149–0.249]

HO10,000 1.76 1.13 [2000–3000] [0.199–0.299]
YT8016 1.83 0.98 [2000–2800] [0.249–0.349]

HO10,000 1.91 0.93 [3400–4000] [0.339–0.398]
HO10,000 2.01 0.85 [4000–5400] [0.398–0.538]

YT8016 2.07 0.72 [4000–4800] [0.499–0.599]
HO10,000 2.42 0.63 [6400–7000] [0.637–0.697]

The values on the top two lines compare quite well with the values given in the
literature for A1(Reτ) and B1(Reτ) [4,31–33]. However, we have opted to list additional
intervals at larger distances from the wall where behavior of the form (18) can be identified.

3.3.2. w′2

The variance profiles of the spanwise fluctuations are shown in Figure 14. A near wall
maximum characterizes each profile. Least-squares fit gives the following dependence
on Reτ : (

w′w′
)+

max
= 0.41ln(Reτ)− 0.78 (20)
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Next, we search for regions of logarithmic behavior of the following form:

w′2

u2∗
= C1 − D1ln

(y
h

)
(21)

With the help of the appropriate indicator function we estimate the constant D1 and
the additive parameter C1 as shown in Table 6.

Table 6.
(

w′w′
)+

. Estimates of Townsend–Perry parameters.

Case D1 C1 “Region” (y+) “Region” (y/h)

YT8016 0.31 1.37 [140–260] [0.0175–0.032]
HO10,000 0.35 2 [150–400] [0.015–0.04]
LM5200 0.41 1.04 [200–500] [0.04–0.096]
LM2000 0.47 0.82 [180–400] [0.09–0.20]
YT8016 0.50 0.85 [1100–1500] [0.137–0.187]

HO10,000 0.50 0.80 [1400–2000] [0.139–0.199]
HO10,000 0.90 0.42 [5400–6200] [0.538–0.617]
LM5200 0.99 0.35 [3100–3500] [0.598–0.676]
LM2000 0.99 0.32 [1270–1400] [0.635–0.70]
YT8016 1.01 0.34 [4600–4900] [0.574–0.611]

Obviously, some regions can be merged by relaxing the tolerance allowed on deviations

from the requirement of constancy of the diagnostic function. We also note that in
(

w′w′
)+

we observe logarithmic behavior for Reτ as low as 2000. As in Table 5, we have opted to
list additional intervals where behavior of the form (21) can be identified.

3.3.3. v′2

The variance profiles of wall-normal fluctuations (Figure 15) exhibit a different behav-
ior for high Reynolds number:

v′2

u2∗
= Bν ≈ 1.30 (22)

in the interval 150 ≲ y+ ≲ 550 for Reτ =8016 and Reτ = 10,000. In particularly, case
YT8016 displays a constant Bv = 1.29 in the region 250 ≤ y+ ≤ 550 while in case HO10,000
Bv = 1.30 in the interval 150 ≤ y+ ≤ 450.
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In the lower Reynolds number cases a plateau is not formed. Instead, clear maxima are

formed for 180 ≤ Reτ ≤ 5200. A least-squares fit approximates the
(

v′v′
)+

max
dependence

on Reτ , as follows: (
v′v′

)+
max

= 0.07ln(Reτ) + 0.642 (23)

in the range 550 ≤ Reτ ≤ 10,000.

3.3.4. Turbulence Kinetic Energy, k

Each nondimensional turbulence kinetic energy profile is characterized by a maximum
at approximately y+ ≈ 18. The exact location of the maximum is weakly influenced by Reτ

(see Table 7). The normalized k+max value is strongly influenced by Reτ in the range of the
Reynolds number values considered (see Figure 16 and Table 7).

Table 7. Reynolds number effect on k+max.

Case. Reτ k+
max y+ Location of k+

max

LM180 180 4.15 15.84
LM550 550 4.72 15.87

LM1000 1000 5.08 17.45
LM2000 2000 5.44 17.45
LM5200 5200 5.87 18.66
YT8016 8016 5.81 18.96

HO10,000 10,000 6.09 18.98
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Least squares fit of the (k+max, Reτ) pairs of values gives the following relation:

k+max = 0.46ln(Reτ) + 1.8 (24)

and describes the function k+max = f (Reτ) with very good approximation.
Turning to the question of existence or not of logarithmic behavior in the turbulence

kinetic energy profiles of the following form:

k+ =
k

u2∗
= E1 − F1ln

(y
h

)
(25)

we have identified the regions listed in Table 8.
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Table 8. Logarithmic behavior regions in k+ = k/u2
∗.

Case F1 E1 “Region” (y+) “Region” (y/h)

HO10,000 1.03 1.73 [1200–1300] [0.119–0.129]
YT8016 1.18 1.45 [1400–1600] [0.175–0.20]

HO10,000 1.35 1.21 [2850–3000] [0.284–0.299]
YT8016 1.40 1.13 [2350–2450] [0.293–0.306]

HO10,000 1.74 0.86 [5100–5350] [0.508–0.532]
YT8016 1.79 0.76 [3600–4200] [0.449–0.524]

HO10,000 1.99 0.72 [6500–7300] [0.647–0.727]

3.3.5. Reynolds Shear Stress

Profiles of the normalized covariance of streamwise and wall-normal fluctuations are
shown in Figures 17 and 18. They are strongly influenced by Reynolds number. For Reτ

equal to 8016 and 10,000 a clear plateau is formed. Specifically,
at Reτ =8016: −u′v′/u2

* = 0.963 in the interval y+ = [100–200]
at Reτ =10,000: −u′v′/u2

* = 0.969 in the interval y+ = [100–250]
The maxima of the curves in the range 550 ≤ Reτ ≤ 10,000 follow the relation:(

−u′v′
)+

max
= 0.03ln(Reτ) + 0.66 (26)

obtained by least-squares fit, while the location of the
(
−u′v′

)+
max

varies with Reτ according
to the following relation:

y+wheremaxappears = 0.01ln(Reτ) + 41.21 (27)

for the same range of Reτ .
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For large values of y+/Reτ = y+/δ+ the derivative of the mean velocity is small
compared to the Reynolds stress term in Equation (5). Consequently, we expect

(−u′v′)
+ ≈ 1 − y+

Reτ
(28)
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i.e., the Reynolds shear stress varies linearly with distance from the wall in the region
further than the layer closest to the wall [40]. This behavior is captured very accurately by
the DNS data, as shown in Figure 18.
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4. The AL84 Model

In this section the most important aspects of the AL84 model are outlined. The reader
is referred to [6] for detailed description of the model construction and to reference [7]
for a discussion on the accuracy of the AL84 model predictions for ZPG-TBL flows over a
flat plate.

In the AL84 model the nondimensionalized mean velocity profile (MVP) is approxi-
mated by superposing two functions f and g, i.e.,

u+ = f
(
y+

)
+ g

(
Π,

y
δ

)
(29)

where

f (y+) = ln

 (y+ + 11)4.02

(y+2 − 7.37y+ + 83.3
)0.79

+ 5.63tan−1(0.12y+ − 0.441
)
− 3.81 (30)

g
(

Π,
y
δ

)
=

1
κ
(1 + 6Π)

(y
δ

)2
− 1

κ
(1 + 4Π)

(y
δ

)3
(31)

κ is the von Kármán constant and Π Coles’ [41] parameter.
Considering the channel cross-section as a whole, the flow rate per unit width of

the channel is given by q =
∫ 2h

0 udy or, in terms of inner law variables, q = 2νq+a where

q+a =
∫ h+

0 u+dy+. This integral is calculated as the sum of two terms, i.e., q+a = q1/ν+ q2/ν
where

q1

ν
=

∫ h+

0
f
(
y+

)
dy+ and

q2

ν
=

∫ 1

0
gdη (32)
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In the case of fully developed channel flow the boundary layer thickness δ is equal
to the half-channel “height” (δ = h) and in wall-law variables δ+ = h+ = u∗h/ν = Reτ .
Analytical evaluation of the two integrals leads to the following expressions:

q1
ν = (33.91 − 5.63Reτ)tan−1(0.441 − 0.12Reτ)

− (20.55 + 0.79Reτ)ln
(

Re2
τ − 7.37Reτ + 83.3

)
+ (44.22 + 4.02Reτ)ln(Reτ + 11)− (6.25Reτ + 29.26)

(33)

and
q2

ν
=

Reτ

κ

(
Π +

1
12

)
(34)

The average velocity at a channel cross-section is then given as V = q/2h and taking
again into account the symmetry of the channel flow, the following is true:

V
u∗

=
q+a
δ+

=
q+a
Reτ

(35)

In turn, the Darcy–Weisbach friction factor defined as f = 8u2
∗/V2 can be calculated

analytically based on Equation (35). The same information can be expressed in terms of the
skin-friction coefficient C f = 2u2

∗/V2.
We note that for pressure-driven channel flow, Equation (5) allows us to evaluate the

Reynolds shear stress based on the AL84 model by inserting the derivative of the mean
velocity with respect to y+ (evaluated analytically based on Equations (30) and (31)) into
Equation (5). This topic is discussed further in Section 4.3.

The authors believe that the model can be extended to compressible turbulent flows
with minor but appropriate modifications using Favre averaging [42–44].

4.1. Global Absolute Error and Local Relative Error in AL84 Predictions

As explained in Reference [6], the values κ = 0.41 and the additive constant in the
MVP logarithmic law B = 5.0 (see Equation (14)) are incorporated in Equations (30) and (31)
while the third parameter in AL84, Π, is free to vary with Reynolds number. Estimates of
Π obtained from the DNS datasets analyzed are listed in Table 9.

Table 9. Estimates of Coles’ parameter Π for channel flow.

Case Reτ Π (Coles’ Parameter)

LM180 180 0.10
LM550 550 0.14

LM1000 1000 0.14
LM2000 2000 0.14
BPO4079 4079 0.13
LM5200 5200 0.13

HO10,000 10,000 0.10

The AL84 model performance is evaluated with these parameter values. The error at a
distance y+ from the lower channel wall is defined as e(y+) = u+(y+)− [ f (y+) + g(y/h,
Π)].

Representative local relative error profiles are shown in Figure 19 for three cases (low,
moderate, and high) Reτ = 550, 4079 and 10,000.
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Figure 19. Profiles of relative error in u+ computed with AL84.

The maximum local relative error is located approximately at y+ ∼= 26 as shown in
Table 10. In the range 2000 ≤ Reτ ≤ 10,000 it is less than 3‰.

Table 10. Maximum local relative error in AL84-based u+.

Reτ 180 550 1000 2000 4079 5200 10,000

Max relative error 0.057 0.036 0.035 0.032 0.023 0.031 0.028

Position y+, where max appears 25.69 25.70 26.46 27.20 26.97 27.33 27.02

The global statistics of the absolute error in the MVP approximation are summarized
in Table 11.

Table 11. Statistics of absolute error in the lower half of the channel 0 ≤ y ≤ h.

Statistics Reτ = 180 Reτ = 550 Reτ = 1000

Mean 0.2708 0.0535 0.0861
Standard error 0.0277 0.0127 0.0078

Root-mean-square error 0.3827 0.1834 0.1518
Mean-square deviation 0.2719 0.1759 0.1253

Variance 0.0739 0.0309 0.0157
Range 0.8101 0.5841 0.4792
Min −0.0397 −0.1040 −0.0220
Max 0.7704 0.4801 0.4572

Number of data points 96 192 256

Statistics Reτ = 2000 Reτ = 4079 Reτ = 5200 Reτ = 10,000

Mean 0.1522 0.0873 0.1530 0.1049
Standard error 0.0040 0.0030 0.0034 0.0036

Root-mean-square error 0.1714 0.1105 0.1792 0.1561
Mean-square deviation 0.0789 0.0679 0.0935 0.1156

Variance 0.0062 0.0046 0.0087 0.0134
Range 0.4498 0.2998 0.4316 0.3968
Min −0.0222 0.0009 −0.0237 −0.0283
Max 0.4276 0.3007 0.4079 0.3686

Number of data points 384 512 768 1051
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4.2. Cf Based on AL84

Comparing AL84-based results with those based solely on DNS we find that the
agreement is excellent. The analytically computed C f curve passes exactly through the
filled circles representing the C f values calculated directly from the datasets of Table 1 (see
Figure 20).

Fluids 2024, 9, x FOR PEER REVIEW 20 of 24 
 

Number of data points 384 512 768 1051 

4.2. Cf Based on AL84 
Comparing AL84-based results with those based solely on DNS we find that the 

agreement is excellent. The analytically computed 𝐶  curve passes exactly through the 
filled circles representing the 𝐶  values calculated directly from the datasets of Table 1 
(see Figure 20). 

 
Figure 20. Skin friction coefficient Cf. Comparison of AL84 model predictions with Cf computed for 
the DNS datasets of Table 1. 

4.3. Reynolds Shear Stress (−𝑢 𝑣 ) 
Using Equation (5), the covariance of fluctuations 𝑢  and 𝑣  as function of the dis-

tance from the wall can be calculated providing us with an AL84-based analytic approxi-
mation of the Reynolds shear stress profile. Such profiles are shown in Figure 21 together 
with DNS Reynolds shear stress data per se for three Reynolds numbers. 

The approximation is excellent in all three cases. We note that the approximation is 
best for the moderate Reynolds number 𝑅𝑒 = 5200 while the agreement between AL84 
prediction and DNS data for 𝑅𝑒 = 10,000 is better than the one for the low Reynolds 
number case 𝑅𝑒 = 550. 

 

Figure 20. Skin friction coefficient Cf. Comparison of AL84 model predictions with Cf computed for
the DNS datasets of Table 1.

4.3. Reynolds Shear Stress (−u′v′)

Using Equation (5), the covariance of fluctuations u′ and v′ as function of the distance
from the wall can be calculated providing us with an AL84-based analytic approximation
of the Reynolds shear stress profile. Such profiles are shown in Figure 21 together with
DNS Reynolds shear stress data per se for three Reynolds numbers.
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The approximation is excellent in all three cases. We note that the approximation is
best for the moderate Reynolds number Reτ = 5200 while the agreement between AL84
prediction and DNS data for Reτ = 10,000 is better than the one for the low Reynolds
number case Reτ = 550.

5. Conclusions

In the first part of the paper, we concentrated on high accuracy DNS datasets in the
range 180 ≤ Reτ ≤ 10,000. We have identified logarithmic regions in the mean velocity
profiles and the corresponding values of the von Kármán constant for each Reynolds
number based on the diagnostic function Ξ. Von Kármán constant estimates based on the
DNS data range from κ = 0.429 for 550 ≤ Reτ ≤ 2000 to κ = 0.388 for 4179 ≤ Reτ ≤ 10,000.
Similarly, based on the diagnostic function Γ, we identified the intervals where the power
law approximates well the MVP and determined the corresponding exponent as function
of the Reynolds number ranges from 1/6 to 1/9.

For the higher order statistics, we have determined the logarithmic regions in the

variance profiles of streamwise
(

u′u′
)+

and spanwise
(

w′w′
)+

fluctuations and the cor-
responding values of the Townsend–Perry constants. We have listed logarithmic regions
beyond the one expected by the Townsend’s attached eddy hypothesis. In the region

150 ≲ y+ ≲ 450 the variance of the wall-normal fluctuations
(

v′v′
)+

takes the value
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Bv = 1.30 for Reτ = 8016 and 10,000. The peak values of the
(

u′u′
)+

,
(

w′w′
)+

,
(

v′v′
)+

,

k+max have been approximated as functions of Reτ with logarithmic dependence. In con-
tradistinction, the normalized Reynolds shear stress attains a constant value (approxi-
mately ≈ 0.96) in the interval 100 ≲ y+ ≲ 250 for Reτ higher than 8000.

In the second part of the paper, a data-driven model (AL84), developed for ZPG-TBL, is
calibrated for pressure-driven channel flow. It is shown that AL84 describes very accurately
the mean velocity profile as well as the Reynolds shear stress profile for pressure-driven
channel flow. In the framework of AL84 the skin friction coefficient is expressed analytically
as function of Reτ and, in various comparisons, it is in excellent agreement with DNS data
least-squares fits.

The AL84-Model accuracy can be further improved, and its range of applicability can
be extended as higher Reynolds number DNS data become available. We expect that the
accuracy of the AL84 model will be further enhanced since it incorporates the logarithmic
law in the overlap region of the boundary layer which is expected to be approached
asymptotically as Re → ∞ .

We conclude that, in addition to its pertinence to theoretical developments and in
providing guidance in searching for the asymptotic structure of turbulent boundary lay-
ers the AL84 model is useful in the development of turbulence models valid very close
to solid walls [43,45] as well as in the imposition of boundary conditions near solid sur-
faces via the wall functions methodology. Furthermore, due to its explicit form, the AL84
model is ideally suited for the imposition of initial conditions in the numerical integra-
tion of the parabolized Navier–Stokes equations and Prandtl’s equations for turbulent
boundary layers.
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