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Abstract: Machine learning based on neural networks facilitates data-driven techniques for handling
large amounts of data, either obtained through experiments or simulations at multiple spatio-temporal
scales, thereby finding the hidden patterns underlying these data and promoting efficient research
methods. The main purpose of this paper is to extend the capabilities of a new solver called re-
alFluidReactingNNFoam, under development at the University of Perugia, in OpenFOAM with a
neural network algorithm for replacing complex real-fluid thermophysical property evaluations,
using the approach of coupling OpenFOAM and Python-trained neural network models. Currently,
neural network models are trained against data generated using the Peng–Robinson equation of
state assuming a mixture’s frozen temperature. The OpenFOAM solver, where needed, calls the
neural network models in each grid cell with appropriate inputs, and the returned results are used
and stored in suitable OpenFOAM data structures. Such inference for thermophysical properties
is achieved via the “Neural Network Inference in C made Easy (NNICE)” library, which proved to
be very efficient and robust. The overall model is validated considering a liquid-rocket benchmark
comprised of liquid-oxygen (LOX) and gaseous-hydrogen (GH2) streams. The model accounts for
real-fluid thermodynamics and transport properties, making use of the Peng–Robinson equation
of state and the Chung transport model. First, the development of a real-fluid model with an arti-
ficial neural network is described in detail. Then, the numerical results of the transcritical mixing
layer (LOX/GH2) benchmark are presented and analyzed in terms of accuracy and computational
efficiency. The results of the overall implementation indicate that the combined OpenFOAM and
machine learning approach provides a speed-up factor higher than seven, while preserving the
original solver accuracy.

Keywords: OpenFOAM; real-fluid model; machine learning; neural network; NNICE

1. Introduction

This introduction provides an overview of the historical and evolving role of machine
learning (ML) in computational fluid dynamics (CFD), highlighting its transformative
potential across numerous applications. As we delve deeper into the intersection of ML
and CFD, we will explore specific methodologies, case studies, and emerging trends that
underscore the symbiotic relationship between these two fields, ultimately reshaping our
understanding of fluid dynamics and propelling innovation in diverse industries.

Admittedly, much progress has been made in recent years to promote our understand-
ing of combustion from a computational perspective, for example by analyzing hydrogen
high-pressure injection and mixing processes [1], including the assessment of a model
which accounts for real-fluid thermodynamics and transport properties, making use of
the Peng–Robinson equation of state (PR-EoS) and the Chung transport model [2]. Reitz
and co-workers focused on a thermodynamic analysis of mixture states [3]. The challenges
primarily come from real-gas effects, which have significant effects on these processes,
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introducing nonlinearities into thermodynamic systems resulting in non-physical pressure
oscillations that can substantially affect accuracy. Accurate data in states near critical point
are also difficult to obtain from both experiments and models.

Numerous theoretical and experimental studies, such as Puissant et al.’s investigations
on shear coaxial injection [4] and Mayer’s understanding of LOX/GH2 rocket engine
combustion processes [5], have been conducted on high-pressure flows. These studies aim
to gain insight into chemical and physical processes, providing a database for improved
modeling and the validation of simulation codes for combustor design and optimization [6].
Analyzing hydrogen high-pressure injection in the near-nozzle region, investigating the
formation process and the structure of the Mach disks and the transition to turbulent
jets, has been undertaken by Rahantamialisoa et al. [7], and Oschwald et al. [8] present
experiments on inert binary injection and mixing processes.

To accurately model these behaviors with thermodynamic non-idealities and transport
anomalies [9], a generalized EoS valid for the entire thermodynamic fluid regime is neces-
sary. However, employing such a highly nonlinear EoS, especially in problems involving
multiple species and multiscale physics, is computationally expensive. For instance, in
large eddy simulations (LESs) of supercritical reacting jets or mixing layers, significant
computational time is dedicated to evaluating real-fluid properties using EoSs like PR or
Soave–Redlich–Kwong (SRK) [10–13].

In response to these challenges, a deep-learning based approach, termed deep feedfor-
ward neural network (NN) with boundary conditions, has been developed for the efficient
evaluation of thermophysical properties in complex real-fluid flows [14]. This approach
replaces the direct calculation of the EoS with a NN trained with appropriate boundary
information, significantly improving computational efficiency. Furthermore, addressing
the fundamental Riemann problem in CFD codes for simulating compressible flows, fully
connected feedforward NNs have been employed to find solutions for real fluids, including
calorically imperfect gases, supercritical fluids, and high explosives [15]. These NNs, em-
bedded into a one-dimensional finite volume CFD code, yield remarkable speed-ups of up
to five orders of magnitude compared to exact solvers, with prediction errors below 0.8%.

Using tabulation, ML and artificial NN models for tackling the complex issue of trans-
critical sprays, which are relevant to modern compression-ignition engines, can assist the
speeding up of calculations. Direct simulations can incur significant CPU costs, whereas
tabulation may be memory-intensive and challenging to expand as the number of chemical
species grows [16,17]. In contrast, NNs have emerged as a remarkably efficient technique
for classification and response prediction. In high-pressure, high-temperature conditions,
NN methods are used to predict thermodynamic properties [18], and the tabulation method
offers high-precision calculation results in a wide temperature and pressure range [16,17].
ML techniques are rapidly advancing in this era of big data, and there is high potential in
exploring the combination between ML and combustion research and achieving remarkable
results. Much of this interest is attributed to the remarkable performance of deep learning
architectures, which hierarchically extract informative features from data [19]. R. Maulik
et al. demonstrate the deployment of a deep neural network for compressing flow-field
information using an autoencoder to demonstrate the ability to use state-of-the-art ML tools
in the Python ecosystem [20,21]. In the realm of fluid mechanics, NNs are currently being
explored as a complementary tool of CFD to expedite design processes [18]. Recent compre-
hensive reviews have highlighted various applications in fluid mechanics, encompassing
flow feature extraction, turbulence modeling, optimization, and flow control [19]. Also in
the energy sector, iterative-learning approaches are used to enhance model reliability by
iteratively updating supervised training datasets to refine correlations, or by adopting deep
learning-based prediction methods [22,23]. In the near future, the necessity will arise for
designing adaptable energy production and propulsion systems that can efficiently utilize
a wide range of fuels, including synthetic, bio-derived, and fossil fuels, or various com-
binations thereof. Modeling these fuels, especially when their properties are not initially
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known, will demand flexible methods that can describe essential operational traits with
minimal input data.

Present Contribution

To achieve the above objectives, extending the work by Koukouvinis et al. [18],
we propose the application of ML to provide quantitative CFD predictions involving
real-fluid mixtures under unknown conditions, with reduced computational costs and
comparable accuracy.

Specifically, this work discusses the capabilities of a new solver called realFluidReact-
ingNNFoam, using a NN algorithm for replacing complex real-fluid thermophysical
property evaluations using the approach of coupling OpenFOAM-v2112 and Python-
developed models.

2. Mathematical Models and Implementations
2.1. CFD Model

The governing equations for a fully conservative, homogeneous, multicomponent,
and compressible non-reacting two-phase flow are the conservation equations for mass,
momentum, energy, and species, which are written below [2,21,24,25]:

∂ρ

∂t
+∇ · (ρU) = 0 (1)

∂(ρU)

∂t
+∇ · (ρUU) = ∇ · (−pI + τ) (2)

∂(ρhT)

∂t
+∇ · (ρhTU) =

∂p
∂t

+∇ · (U · τ)−∇ · q (3)

∂(ρYk)

∂t
+∇ · (ρYkU) = −∇ · Jk (4)

In the above equations, ρ is the mixture density, U is the mixture velocity vector, p is
the pressure shared by all species, τ is the viscous stress tensor of the mixture, Yk is the
mass fraction of species k, and Jk and q refer to diffusion flux of species k and heat flux,
respectively. Also, hT = h + 1/2U2 is the total enthalpy of the mixture.

Additionally, for the evaluation of thermodynamic fluid properties under supercritical
pressure, the PR-EoS is employed:

p(v, T) =
RT

v − bm
− am

v2 + 2bmv − b2
m

(5)

where v is molar volume, T is the temperature, bm is the effective molecular volume, am
is the attractive force between molecules (note that the subscript m refers to the mixture),
and R is the universal gas constant. In such an approach, a local mechanical and thermal
equilibrium between the two phases is always enforced. As for transport properties, Chung
correlations are used for viscosity and thermal conductivity [26]. Nonlinear mixing rules
are used to calculate any mixture coefficients appearing inside the PR and Chung models.
More details about all the aspects of the real-fluid thermophysical model can be found in
reference [2].

It is important to emphasize that this modeling approach does not account for phase
splitting when retrieving the temperature from the mixture enthalpy. Instead, it calculates
the so-called frozen adiabatic mixing temperature, without considering phase stability and
splitting. In other words, phase volume fractions are not considered for the calculation of
local temperature, which is an approximation in terms of model accuracy, but this does not
have any impact on the objective of the present work.

It is also worth stating explicitly that this paper does not focus on the physical accuracy
of the numerical results; its sole objective is to evaluate the proposed NN model in contrast
to the direct solution based on the cubic EoS for multicomponent systems.
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2.2. Artificial Neural Networks and Multilayer Perceptrons (MLP)

The multilayer perceptron is a widely used NN model for function approximation
consisting of multiple layers with each layer containing several neurons [27]. The multilayer
perceptron models nonlinear relationships between input and output vectors, utilizing
simple nonlinear functions in a feed-forward NN [28]. The backpropagation algorithm is
commonly used for training and adjusting weights based on the local gradient of the error
surface. In summary, the network is initialized with weights, processes input vectors to
generate output, calculates error signals, and iteratively adjusts weights to minimize errors
until an acceptable level is reached [29].

In the present case, the NN used consists of one input layer including three proper-
ties (composition, temperature, and pressure), two hidden layers with 100 neurons, and
one output layer including one parameter, as shown in Figure 1a, for predicting density.
Figure 1b shows the typical structure of a neuron.
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and U2 numbers of units, or neurons (a), and typical structure of a neuron showing input weights,
bias, and activation function (b).

The mathematical representation of a single hidden-layer unit, often referred to as a
single-layer unit, is straightforward. It involves a linear combination of inputs processed
through a nonlinear ‘activation’ function, typically a simple elementary mathematical
function. In general, we will denote such units as follows [30]:

f (1)j (x) = a
(
vj(x)

)
(6)

vj(x) = w(1)T
j x = w(1)

0,j +
N

∑
n=1

w(1)
n,j xn, j = 1, . . . , U1 (7)

in which f (1)j is the first layer output, j is the index of each unit in the layer, vj is the linear

combination, w(1)
j =

[
w(1)

0,j , w(1)
1,j , w(1)

2,j , . . . , w(1)
n,j , . . . , w(1)

N,j

]
is the weight vector where w(1)

0,j is

the bias and w(1)
n,j are the weights from each single input, and x = [1, x1, x2, . . . , xn, . . . , xN ]

is the input layer. Then, a(v) is the nonlinear activation function applied to the value v,
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which is the Rectified Linear Unit (ReLU) activation function in our case. The following
equation shows the ReLU activation function:

a(v) = ReLU(v) = max(0, v) (8)

As expressed by the formula, ReLU acts as a feature detector. To make the concept of
extending from a single-layer to a multilayer NN clearer, let us break down the sequence
into two key operations: combining inputs linearly and passing the result through a non-
linear activation. This approach is essential for creating single-layer perceptron units [30].
The following equations show the output value for the second layer and the Lth layer,
respectively. f (2) and f (L) show the outputs of the second and the Lth layers.

f (2)j (x) = a

(
w(2)

0,j +
U1

∑
i=1

w(2)
i,j f (1)i (x)

)
(9)

f (L)
j (x) = a

(
w(L)

0,j +
UL−1

∑
i=1

w(L)
i,j f (L−1)

i (x)

)
(10)

2.3. Training Database

As is shown in Table 1, the considered inputs are composition (YH2), temperature (T),
and pressure (p) for predicting density (ρ), viscosity (µ), thermal diffusivity (α), enthalpy
(h), and compressibility (ψ). For predicting temperature (T) as the output, composition
(YH2), pressure (p), and enthalpy (h) are considered as inputs. The full definitions and units
of the outputs are shown in Table 2.

Table 1. List of inputs used for predicting output values.

Inputs
Outputs

Variable Symbol (Code Name) Definition [Units]

YH2 (Y) Fuel mass fraction [-] All output variables (except T)
T (T) Temperature [K] All variables (except T)
p (p) Pressure [Pa] All variables (except T)
h (he) Enthalpy [J/kg] T

Table 2. List of output properties with their definitions and units.

Variable Symbol (Code Name) Definition [Units]

ρ (rho) Density [ kg/m3]
µ (mu) Viscosity [Pa s]

α (alpha) Thermal diffusivity [Pa s]
h (he) Specific enthalpy: h = sie + p/ρ [J/kg]

ψ (psi) Compressibility ψ = 1/(ZRT)
[
kg/

(
m3 Pa

)]
T (T) Temperature (K)

In order to generate data, we use the same OpenFOAM library for real fluids that is also
implemented in the full original CFD solver. The generated dataset contains 250,000 points,
obtained by discretizing the selected temperature and composition ranges with 50 levels
each, and the pressure range with 100 levels. In general, the range of each input variable is
chosen based on the CFD test case. In the current work, we first consider a large data range
where T is between 70 and 200 K, YH2 is between 0 and 1, and p is between 10 and 200 bar.
A reduced, or adapted, data range in which T ranges from 70 to 170 K, YH2 from 0 to 1, and
p from 50 to 150 bar will also be considered for the final application.

In this specific test case, the properties exhibit highly nonlinear distributions. Conse-
quently, various data transformations are experimented with to enhance network perfor-
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mance. Figure 2 illustrates that the data distributions for enthalpy and temperature are
notably smoother, indicating fewer challenges in training these specific properties.
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2.4. Model Training

As training tools, Keras and Tensorflow libraries are used, which are open-source
libraries that provide a Python interface for NNs. To effectively train a network, data
featuring properties relevant to the main problem are required, such as consistent thermo-
physical properties.

Precision in tuning or optimizing parameters poses a challenge. Hyperparameters,
especially learning rate (α), play a crucial role, impacting computational cost, execution
time, and network structure. The learning rate is vital in minimizing the loss function
during backpropagation, where it iteratively updates biases and weights in hidden layers.
This process, involving multiplying the learning rate by the output error of neurons,
continues until an acceptable error is achieved for the specified data in each iteration,
influencing prediction accuracy and generalization capability.

In the following, all the methods tested to improve the efficiency of the network are
elaborated. For all the properties, the min–max scalar is applied for inputs and outputs to
facilitate training. As mentioned before, ReLU is considered as an activation function. The
optimizer algorithm is Adam, and the loss metric is the mean squared error (MSE). The
final values of other hyperparameters like hidden layer size, epochs, and batch size are
obtained by experience for each output parameter. Table 3 reports the number of epochs
and the loss metrics for each output parameter. The learning rate is 0.0015, the batch size is
256, and the hidden layer size is considered 100 × 100 for all of the outputs. The influences
of choosing different hyperparameters to train the network can be seen in Figures 3 and 4.
As is shown in Figure 3, by increasing the number of epochs the relative error decreases
for the density, but for a greater number of epochs there will be no change, and also it is
likely to end up in overfitting. Also, the effects of using different learning rates are shown
in Figure 4. A good way of choosing the hyperparameters is to use previously tested ones,
or by experience.
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Table 3. Main hyperparameters chosen to train deep networks using Keras library.

Output
(Applied Min-Max

Scalar)

Inputs (Applied
Min-Max Scalar)

Hidden
Layer Size

Activation
Function Solver Learning

Rate
Loss

Metrics Epochs Batch-Size

rho, mu, alpha, he, psi YH2, T, p 100 × 100 ReLU ADAM 0.0015 MSE 1000 256
T YH2, p, he 100 × 100 ReLU ADAM 0.0015 MSE 1000 256
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The training algorithm aims to minimize the sum of square errors [27]. This implies
that the training minimizes absolute errors across all MLP outputs, regardless of relative
errors. However, upon closer examination, as an example, within the compressibility
output value range (1.12 × 10−6–1.18 × 10−3 kg/(m3 Pa)), as visible in Figure 5 concerning
large data range, it becomes evident that relative errors are notably high, reaching up to
100% at certain points. It is crucial to note that these suboptimal outcomes do not necessarily
indicate inadequate MLP training. Instead, they underscore the importance of selecting
an appropriate indicator of MLP performance. The substantial relative errors for smaller
target outputs could significantly impact the application of MLPs in real simulations [27].

For instance, in our model, temperature serves both as an input and as an output. A
substantial relative error in temperature propagates errors in calculating other variables,
leading to rapid divergence after a few time steps due to the cumulative effect. To mitigate
this, it becomes imperative to diminish the prediction errors of the NN for outputs with
small magnitudes. One viable approach is to partition the data into ranges and train the
network separately for each output within those ranges.
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As illustrated in Figure 5, for the compressibility values within the full dataset range of
1.12 × 10−6–1.18 × 10−3 kg/(m3 Pa), certain points, despite multiple attempts to optimize
performance, exhibit relative errors reaching up to 100%, as already mentioned, on the
small-value side. However, the objective is to achieve the least relative error. To address
this, the data are split into two ranges: the first encompasses 90% of the data, and the second
covers the remaining 10%. A log transformation is employed before scaling the data within
0–1 in the first sub-range (1.12 × 10−6–6 × 10−5 kg/(m3 Pa)). By normalizing the input and
output parameters according to their respective characteristics, we can optimize the learning
process, resulting in more efficient predictions and improved overall performance [31].
Also, the logarithmic distribution accommodates the specific characteristics and value
ranges associated with output parameters, contributing to enhanced model performance
and accuracy [31].

In addition, from the learning curves which are shown in Figure 6, the higher effi-
ciency of this split approach can be seen. Learning curves serve as a frequently employed
diagnostic tool for algorithms that iteratively learn from a training dataset. Throughout
the training process, the model’s performance is assessed on both the training dataset and
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a separate validation dataset. The ultimate objective is to achieve a well-fitting model,
indicated by a training and validation loss that decreases and stabilizes with minimal
disparity between the final loss values. Typically, the model’s loss will be lower on the
training dataset than on the validation dataset. Consequently, a gap is expected between
the learning curves of training and validation losses, like the curve related to the first range
of compressibility, which is shown in Figure 6, but not too much loss, like the curve related
to the whole range of compressibility. So, for compressibility after data splitting, the curves
related to two different ranges show the training development. An unrepresentative dataset
in a specific domain often arises when a dataset’s sample size is insufficient relative to
another dataset. An example of this behavior is the curve of compressibility in the second
range (6 × 10−5–1.17 × 10−3 kg/(m3 Pa)) in Figure 6, in which the oscillations of the loss
show that the training dataset is unrepresentative, which means that it does not provide
enough information for effective learning in comparison to the validation dataset used for
evaluation [32,33].
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However, this approach poses concerns for inference, as there are no predefined
criteria for guessing a priori the range of interest. While the analytical thermophysical
library of OpenFOAM could be utilized within the CFD solver to guess the output value
and make the choice before starting each solver loop, this is a heavy calculation; therefore,
it cannot be considered as a general method. Another possibility is using information
provided by NN models from a previous timestep, but finding a consistent criterion for
subsequent iterations and time steps proves challenging. Another approach would be
calling several NNs per cell to begin with, as mentioned in reference [27], in which the
training data were clustered into 400 subdomains, and each subdomain was fitted by an
individual MLP. Data clustering using the K-mean method, which is a non-supervised
clustering algorithm, was performed by Xi Chen et al. [34]. Consequently, this method
is set aside, and an alternative approach involving the use of a single network for each
property is adopted for the present CFD test case. In essence, for the accuracy and stability
of the overall solution algorithm, it has been found that it is easier to have just one network
for each property, but with careful selection of the range needed.

As depicted in Figure 7, the relative error consistently meets less than 1% for each
variable in the selected reduced range. This successful outcome is observed across density,
compressibility, diffusivity, and viscosity. Here, the logarithm transformation is applied,
together with the adapted data range close to the needs of the CFD test case (detailed
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in Section 3). Temperature and enthalpy result in low values of relative errors without
logarithm transformation. An essential lesson learned from experience is the careful
selection of input and output ranges, particularly those proximate to the test case where
the modules will be implemented. In these modules, various data manipulations such
as min–max scaling and log transformation are performed. The interplay of these data
treatments hinges on the chosen min–max values. Therefore, the judicious selection of a
suitable range for training proves pivotal to the overall performance of the network in the
following implementation step within the OpenFOAM framework.
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Fluids 2024, 9, 56 11 of 19

2.5. Implementation of NN Models in OpenFOAM

In this study, ML is used to estimate changes in the thermodynamic properties of
fluids during the numerical simulation of injection in modern fuel systems and to create
surrogate models for two-phase flow predictions. To accomplish this, an NN is established
for each fluid property and trained using data derived from dedicated codes, such as 0D
thermodynamic simulation models. In the realFluidReactingNNFoam solver, evaluations
via Python-trained NN models replace direct evaluations via the original thermophysical
libraries for each thermophysical and transport property. To achieve the implementation of
the NN models in OpenFOAM, the “Neural Network Inference in C made Easy” (NNICE)
code is employed for inferences [35]. NNICE is a simple C++ library designed to provide
NN inference capabilities without the complexities associated with compiling traditional
ML library C++ APIs. Initially developed for seamless integration into 3D CFD codes, this
library is utilized in scenarios where calls to NNs are made in a constrained parallelization
environment [35].

Real-fluid thermodynamics and transport are integrated into a solver which utilizes
the PIMPLE algorithm. This algorithm uses a pressure-based segregated approach that
combines elements of both SIMPLE and PISO methods [2]. To tackle severe pressure
and velocity oscillations, a modified reactingFoam solver in OpenFoam is used, called
realFluidReactingFoam, which includes a modification of the pressure equation to include
linear formulations of density and changes in the frequency of updates of enthalpy and
species [24]. This solver with a direct evaluation of real-fluid properties will be considered
as the reference.

In the following, a description of the overall CFD solution algorithm is provided,
focusing on the points where properties need to be evaluated, and therefore also when NN
inference replaces direct evaluation.

• In the initialization stage, (YH2, T, p) fields are read from dictionaries and values are
used to infer each fluid property through Python-trained NN models via NNICE.

• Then, as shown in the flow chart in Figure 8, at the beginning of a time step, the conti-
nuity equation is first solved, and the PIMPLE iteration begins with the momentum
predictor step.

• By entering the PISO loop, the species and energy equations are solved. Then, the
thermodynamic properties, inferred through the Python-trained NN models with
NNICE, replace the original thermo.correct() OpenFOAM function call. In more detail,
temperature T is first retrieved after the enthalpy equation is solved using (YH2, p, h)
information; then, all other properties (density ρ, viscosity µ, thermal diffusivity α,
and compressibility ψ) are updated using the most recent values of (YH2, T, p).

• Other inferences are then needed inside each PISO loop. Density is first updated
with the corresponding NN model before the pressure equation is solved (details of
the pressure equation can be found in Figure 8b). Afterwards, density is explicitly
updated, solving the continuity equation, and, after checking the continuity error, the
velocity field is updated.

• The last step with the PISO loop concerns a new recalculation of the density field via
its NN model.

• Outside the PISO loop, turbulence equations are solved, but no additional inferences
are needed there. In addition, in this paper we do not include a turbulence model and
assume a laminar flow to show the application of the ML method in OpenFOAM.
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2.6. CFD Case Setup

The assessment of the numerical framework is carried out on a cryogenic two-species
mixing layer under a transcritical state, which incorporates liquid oxygen (LOX) and
gaseous hydrogen (GH2). The case study has already been considered by many researchers,
and serves as a well-known benchmark test [2,6,36–42].

Specifically, we analyze a two-dimensional mixing layer with an injector lip that di-
vides streams of liquid oxygen (LOX) and gaseous hydrogen (GH2), both at supercritical
pressure. As shown in Figure 9, this setup serves as a general representation of a cryogenic
coaxial injector, where a central dense oxygen jet interfaces with high-speed coaxial hy-
drogen flow, creating conditions for effective control mixing and flame stability in actual
rocket engines [41].

Fluids 2024, 9, x FOR PEER REVIEW 13 of 20 
 

 
Figure 8. Extended PIMPLE solution flow chart for the multiphase transport equations with real-
fluid properties (a) and pressure equation flow chart (b). 

2.6. CFD Case Setup 
The assessment of the numerical framework is carried out on a cryogenic two-species 

mixing layer under a transcritical state, which incorporates liquid oxygen (LOX) and gas-
eous hydrogen (GH2). The case study has already been considered by many researchers, 
and serves as a well-known benchmark test [2,6,36–42]. 

Specifically, we analyze a two-dimensional mixing layer with an injector lip that di-
vides streams of liquid oxygen (LOX) and gaseous hydrogen (GH2), both at supercritical 
pressure. As shown in Figure 9, this setup serves as a general representation of a cryogenic 
coaxial injector, where a central dense oxygen jet interfaces with high-speed coaxial hy-
drogen flow, creating conditions for effective control mixing and flame stability in actual 
rocket engines [41]. 

 
Figure 9. Schematics of the case geometry and boundary conditions, adapted from [41]. 

The simulation setup involves an injector lip with a height (h) of 0.5 mm, segregating 
high-speed gaseous hydrogen (GH2) in the surroundings from dense liquid oxygen (LOX) 

Figure 9. Schematics of the case geometry and boundary conditions, adapted from [41].

The simulation setup involves an injector lip with a height (h) of 0.5 mm, segregat-
ing high-speed gaseous hydrogen (GH2) in the surroundings from dense liquid oxygen
(LOX) in the center. A two-dimensional layout is considered. The area of interest of the
computational domain spans 15h in the axial direction and 10h in the transversal direction.
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An additional 15h in the streamwise region serves as sponge layer, designed to mitigate
pressure oscillations arising from the outlet. For this study, a relatively coarse mesh is em-
ployed with a uniform grid spacing such that h/∆x = h/∆y = 20. The specified resolution is
applied up to 15h in the x-direction and extends to 2.5h on both sides of the lip center in the
y-direction. The remaining downstream section (from 15h to 30h) of the domain undergoes
stretching in the axial direction with a global expansion ratio of 10 [2]. The boundary
conditions and computational domain are based on the description provided in [41], but
unlike the original benchmark description, no turbulence modelling is employed. As a
matter of fact, the present calculations are not meant for assessing model accuracy, but for
proving the effectiveness of the NN approach for the fast evaluation of real-fluid properties.
Therefore, direct numerical simulation, not including a turbulence model with a relatively
coarse grid, makes the test case even stronger and more discerning.

At the injector lip, we implement an adiabatic no-slip wall condition, while the top and
bottom boundaries are treated as adiabatic slip walls. Furthermore, we apply a Dirichlet
pressure boundary condition at the outlet [2].

As discussed in reference [2], regarding the time discretization, a first-order Euler
scheme is applied, while second-order accurate Gauss limited linear schemes are employed
for both advection and diffusion.

3. Results and Discussion

This paper extensively explains the development of a model that seamlessly combines
a real-fluid model (RFM) with a NN. In terms of surrogate models for approximating
thermodynamic functions, NNs demonstrated good performance in predicting properties as
functions of pressure, temperature, and mass fractions of a two-component mixture. When
used in simulations, since NN regression requires minimal time during evaluation, the
computational cost is small. On the other hand, the only alternatives are either evaluating
complex thermodynamic models through the RFM, which is rather demanding on the fly,
or performing interpolations from tables, the latter being the only practical way in complex
cases. However, tables have a large storage footprint and become very cumbersome as the
interpolation dimensionality increases (interpolating data among pressure, temperature,
and the mass fractions of multiple components) [18,31]. Therefore, the NN seems to be a
very attractive option, as the trained network has a size of KBs, which is over a thousand or
million times smaller than a table. A further application where the NN can be used is in the
development of surrogate models that can be trained using existing, validated data. In the
current demonstration case, networks with two hidden layers and 100 neurons each can
describe properties as a function of pressure, temperature, and mass fraction adequately
well for a LO2/GH2 transcritical mixing layer. It is important to mention that training for a
single vector output network takes about 30–60 min (depending on the number of epochs).
Its evaluation happens instantaneously—much faster than any simulation could produce.

Another noteworthy aspect is the remarkable versatility of ML. The methods discussed
here, even when employed in tandem with simulations, exhibit flexibility in terms of input
types. ML can effectively handle diverse forms of data presented in suitable formats. It
is crucial to emphasize that this work does not assert to have exhaustively explored the
full potential of ML. Admittedly, there are numerous avenues for integrating ML, given its
expansive range of techniques adaptable to a multitude of problems. It is only very recently
that such ML techniques have begun to be explored in the context of multiphase flows [7].

The open-source code OpenFOAM-v2112 is employed to build distinct solvers, whose
results and performance are then presented and discussed. Specifically, such CFD model
variants are termed as follows:

• The original CFD model is referred to as realFluidReactingFoam solver. As already
explained, it is a real-fluid pressure-based multi-species solver using PR-EoS and
Chung models with nonlinear mixing rules coded in OpenFOAM [2,7,24,42].



Fluids 2024, 9, 56 14 of 19

• The second CFD model is referred to as realFluidReactingNNFoam_1 which adopts a
NN approach (referred to here as NN_1 variant) wherein Python-trained NN models
and NNICE inference are used to replace original calculations through the RFM.

• The third CFD solver is referred to as realFluidReactingNNFoam_2, which is similar
to the second model, but incorporates log transformations for density, compressibility,
viscosity, and thermal diffusivity to achieve target accuracy criteria (referred to here as
NN_2 variant).

• The last model is referred to as realFluidReactingNNFoam. It is like the previous
one, but uses an adapted data range, which means that the data range for training is
chosen to be as close as possible to the case study needs to improve network accuracy
(referred to here as NN variant).

We start by showing in Figure 10 comparison of the results obtained at 0.1 ms by the
codes listed above, namely, the NN variants vs. the original code (realFluidReactingN-
NFoam_1, realFluidReactingNNFoam_2, realFluidReactingNNFoam, and the reference
realFluidReactingFoam). Contours are shown for H2 mass fraction, temperature, velocity,
and density at 0.1 ms. Overall, all fields appear reasonable, and the three ML variants have
similar features compared to the original code. Of course, no exact correspondence can be
expected, as each simulation produces its own instantaneous results. However, by further
scrutinizing these results, it is shown that the first model variant (NN_1) starts generating
noisy fields for temperature, velocity, and density, which are attributed to insufficient ML
model accuracy. The second variant (NN_2), with transformed input variables, improves
the velocity field quality but does not improve other fields. Conversely, the final model
variant (NN) preserves clean and smooth fields for all quantities.
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The primary objective of this work is to demonstrate the impact of employing NN
methods in enhancing RFM simulations by substituting the NN algorithm. Considering
the final and more accurate solver version, named realFluidReactingNNFoam, which as
explained uses a tailored dataset for training, the results reported in Table 4 show that the
code based on NNs is about 3 times faster for total execution time, and about 7.5 times
faster on a time-step basis. This performance is measured considering 0.1 ms of simulated
physical time on one compute node with 20 cores, as the test case is not very large in terms
of mesh size, to avoid including scalability aspects related to node communication. The
tolerances for solving governing equations are kept the same, and in particular 1 × 10−8 is
used for the velocity field, which is quite strict. The NN version of the code requires some
more iterations per time step to reach convergence, so although more iterations are needed
in general, each one is much faster. Further work can be completed on further improving
the accuracy of NN models and optimizing the overall code coupling so that the number of
iterations does not increase to obtain an even better speed-up, but the current result already
appears promising.

Table 4. Summary of realFluidReactingNNFoam speed-up vs. realFluidReactingFoam measured
on 0.1 ms of physical time and one compute node with 20 cores. (Note that speed-up factors are
calculated as the ratio of the time taken by the original code and the time taken by the NN code).

Solver

Total Execution Iteration

Time (s) Speed-Up Total Number of
Iterations

Time/Iter
(s/Iter) Speed-Up

realFluidReactingFoam 511,096 1 200,550 2.548 1
realFluidReactingNNFoam 179,317 2.850 523,200 0.343 7.5

To assess the simulations, result quality comparisons with those from the original
approach proposed in [2,25] are presented. Figure 11 shows a scatter plot of mixture
temperature vs. hydrogen mass fractions for an instantaneous field at 1 ms, which based
on the low speed stream velocity (30 m/s) corresponds already to four flow-through
times (FTT) over a distance of 15 h (cf. Figure 9). The NN solver reproduces exactly the
thermodynamic states of the reference model, without any appreciable discrepancies.
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The corresponding instantaneous fields for H2 mass fraction, temperature, velocity,
and density at 1 ms are shown in Figure 12 for the NN solver realFluidReactingNNFoam
and the original solver realFluidReactingFoam. The current numerical solution effectively
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captures the three prominent vortical structures in the velocity fields, anticipated within
x/h = 10, along with the steep density gradient. Kelvin–Helmholtz mechanisms initiate
the formation of the initial eddies in the mixing layer, downstream of the lip, prominently
on the hydrogen side. These structures, due to interfacial instabilities, contribute to the
development of thicker vortices in the oxygen stream [2]. The results of the NN solver are in
good agreement with those obtained by the direct RFM solver. These findings showcase the
proficiency of the current numerical NN-CFD framework in managing mixing processes
involving real-fluid thermodynamic and transport properties under transcritical conditions
under the assumption of frozen temperature [26].
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Additionally, as a further assessment, a quantitative comparison of statistics collected
over time for axial velocity, temperature, and density are presented in Figure 13. These
transverse profiles of mean and fluctuating root-mean-square statistics (rms) are obtained
by time-averaging instantaneous fields from 1 to 4 FTTs, and are taken at various axial
locations, namely at x/h = 3, 5, and 7. Overall, there is very good agreement with the
reference trends provided by the realFluidReactingFoam solver.
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4. Conclusions

This paper presents a comprehensive exploration of the integration of NN models
within the RFM approach for efficiently simulating complex thermodynamic functions
in CFD code for a non-evaporating binary mixture under transcritical conditions. The
study demonstrates the efficiency of NNs as surrogate models, emphasizing their ability
to approximate complex thermodynamic properties with very affordable training times
compared to traditional dataset derivation, and significant savings during CFD runtime.
The paper highlights the advantages of using NN models in CFD simulations, where
computational costs, though present during evaluation, are notably smaller than the orig-
inal method using direct evaluation from the EoS. The versatility of ML is underscored,
particularly in handling various data types and distributions. The work acknowledges the
vast potential of ML in the context of multiphase flows and suggests numerous avenues
for further exploration. The application of the developed NN models in OpenFOAM to
simulate a transcritical mixing case reveals the potential of NNs to replace traditional
RFM, offering faster execution times and very good fit, as evidenced by contour plots
and averaged transverse profiles. The comparison of realFluidReactingNNFoam results
with the original realFluidreactingFoam results indicates that, despite the latter requiring
fewer iterations, the NN model outperforms in terms of execution time at the same level of
solution accuracy.

In summary, the successful application of NNs in conjunction with RFM in simulating
real-fluid thermodynamic and transport properties signifies a promising direction for future
research in the field of accelerating computational fluid dynamics models. The study opens
avenues for exploring the full potential of ML techniques in addressing complex problems
related to multiphase flows with more than just two species.
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