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Abstract: This study discusses the influence of the composition of a ternary gas mixture on the
possibility of occurrence of convective instability under isothermal conditions due to the difference
in the diffusion abilities of the components. A numerical study was carried out to study the change
in “diffusion–concentration gravitational convection” modes in an isothermal three-component gas
mixture He + CO2 − N2. The mixing process in the system under study was modeled at different
initial carbon dioxide contents. To carry out a numerical experiment, a mathematical algorithm based
on the D2Q9 model of lattice Boltzmann equations was used for modeling the flow of gases. We show
that the model presented in the paper allows one to study the occurrence of convective structures
at different heavy component contents (carbon dioxide). It has been established that in the system
under study, the instability of the mechanical equilibrium occurs when the content of carbon dioxide
in the mixture is more than 0.3 mole fractions. The characteristic times for the onset of convective
instability and the subsequent creation of structural formations, the values of which depend on the
initial content of carbon dioxide in the mixture, have been determined. Distributions of concentration,
pressure and kinetic energy that allow one to specify the types of mixing and explain the occurrence
of convection for a situation where, at the initial moment of time, the density of the gas mixture in
the upper part of the diffusion channel is less than in the lower one, were obtained.

Keywords: convection; diffusion; instability of mechanical equilibrium; ternary gaseous mixtures;
isoconcentration lines; lattice Boltzmann method; D2Q9 model

1. Introduction

Modern production technologies of various materials, forecasting natural phenomena,
require an adequate description of the processes of heat and mass transfer in liquid and
gaseous media, which, as a rule, are mixtures of various substances with a large number
of components [1,2]. Difficulties in describing multicomponent mixtures are determined
by the presence of several mechanisms of heat and mass transfer (convection, thermal
conductivity, diffusion, thermal diffusion, diffusion thermal conductivity) and the need to
take into account cross effects [3]. To control the behavior of such systems, new knowledge
of the features of combined mass transfer is required, not only in the diffusion or in
convective stages of mixing but also at the boundary of the kinetic transition between these
regimes. In this case, the occurrence of convective flows is associated with the instability
of the mechanical equilibrium of a multicomponent system and has some characteristic
features that require more detailed study.

The results on the study of the stability of binary mixtures in a nonuniform temperature
field in vertical cavities were generalized in monographs [4,5] and showed that monotonic
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and oscillatory instabilities can arise in such systems. In these works, it was noted that the
generation of a convective flow in a gravity field is associated not only with the distribution
of the density of the studied mixture in a channel of a given geometry but also with
the thermo-concentration characteristics of the mixture. With an initially unstable density
stratification of the system, which assumes the condition when a heavier medium is above a
light liquid (or gas), Rayleigh–Taylor convection is realized [6]. Various features of thermal
concentration mixing associated with boundary conditions, interfaces between components,
the occurrence of combined flows, described in numerous theoretical and experimental
articles, are traditionally summarized in specialized reviews similar to [7] and allow one to
follow the current trends in the development of this problem. With the opposite direction
of the mixture density gradient, the occurrence of oscillatory instability is associated with
the diverse effects of temperature and concentration gradients [8–11]. Research in the field
of stability analysis of non-isothermal systems containing three or more components, in
which the density of the mixture decreases with height, is much less abundant. In terms of
calculation and theory, it was shown that the extension of the approach [4,5] to the study of
the stability of the equilibrium of a system, a stationary flow in a vertical layer at different
temperatures at the boundaries, has a complex structure [12,13]. In particular, attention is
drawn to the existence of several regions of instabilities. This approach made it possible
in [14,15] to investigate the occurrence of convection in cavities of various geometries at
steady temperature and concentration gradients. A common feature of the studies carried
out in [4,5,12–15] was the fixation of the destabilizing effect of temperature (heating from
below) at low concentration gradients, which does not allow one to detail the role of
the difference in the diffusion coefficients of the components in the formation of density
inversion [16], which causes gravitational convection for the limiting isothermal case of
multicomponent mixing.

Experimental and computational–theoretical studies for isothermal multicomponent
mixing have shown that in gas mixtures, when the condition of decreasing density with height
is realized, convective flows that are not typical for diffusion mixing may occur [17–21]. The
difference in the diffusion activity of the components causes a violation of the stability of
the system and the appearance of isothermal concentration gravitational convection with
a synergistic increase in the rate of mixing of the components. The intensity of mixing in
this case depends non-linearly on the ratios between the diffusion coefficients, pressure
and a number of other thermophysical characteristics. It was shown that the presence of a
stable resulting stratification in a gas mixture is not a guarantee of the absolute stability of
the mechanical equilibrium of the system, since the components have different diffusion
rates. This seemingly paradoxical nature of the emerging movement is explained by
the unstable stratification of at least one of the components in the system. Due to the
different diffusion coefficients, spatial redistribution of dissolved substances in the gravity
field occurs, followed by the release of the potential energy of the component with the
highest molecular weight, which is converted into the energy of the moving medium. The
technique [17–21] was recommended for determining the spectrum of thermophysical and
geometric parameters, at which the transition from the diffusion state to the convective one
occurs, assessing the role of diffusion mechanisms that form inversion layers, leading to the
emergence of gravitational convection, which was presented in [22,23] for special cases of
multicomponent mixing. However, the stability analysis formalism used in [22,23] does not
allow one to monitor the emergence of structural formations and the subsequent evolution
of convective flows. The solution of such issues related to the study and refinement of
separation mechanisms in isothermal multicomponent gas mixtures seems important for
the problems of combined mass transfer and requires further consideration.

The aim of this work is to numerically study the change in “diffusion–concentration
gravitational convection” modes in an isothermal three-component gas mixture, in which
the diffusion coefficients of the components differ significantly from each other. A ternary
mixture of helium, carbon dioxide and nitrogen is considered for various initial compo-
sitions for a situation in which the density of the mixture decreases with height. Mixing
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occurs at room temperature and elevated pressures. The choice of the proposed system is
also due to the fact that some features of combined mass transfer in a given mixture were
studied experimentally [23], which will allow for validation with the obtained calculations.
Numerical studies in model situations will make it possible to recommend the composition
of mixtures, pressure and temperature, under which it is possible to achieve the mode of
preferential transfer of a component with given thermophysical properties, which seems to
be relevant for systems containing greenhouse gases. This study presents a calculation to
determine the boundary of the “diffusion–concentration gravitational convection” regime
change. The distributions of concentration, pressure and average kinetic energy in a vertical
cylindrical channel are analyzed. The obtained results of the numerical study are compared
with experimental data.

The presented article is divided into the following sections. Section 2 presents the
mathematical formulation of the problem, the basic equations and the numerical method
for solving them. Section 3 presents the distributions of concentration, pressure and average
kinetic energy in the computational domain. Section 4 completes the paper and includes
the main conclusions.

2. Mathematical Formulation of the Problem and Numerical Methods

The description of convective flows caused by the instability of the mechanical equi-
librium in the system is based on the solution of the general system of hydrodynamic
equations, which includes the Navier–Stokes equations, the conservation of the number of
mixture particles and components, as well as the corresponding initial and boundary condi-
tions. Various numerical approaches [24–31] are used to solve this system of equations. For
this study, the application of one or another approach depends on the ability to describe
the emerging types of flows that are realized as a result of the instability of mechanical
equilibrium during diffusion. For example, for the case of a binary isothermal mixture, the
results of numerical simulation of convective flows in an inclined channel based on the
lattice Boltzmann equations method (LBM) were presented in [27]. The validation of the
numerical solver is presented in [31], where the numerical solutions are compared with
the analytical solutions of the plane channel flow and are found to be in good agreement.
Verification of the numerical results in the framework of the proposed calculation scheme
with experimental data showed satisfactory agreement. Therefore, in this paper, the method
tested for binary systems is extended to the case of isothermal ternary gas mixtures. In
this case, both the possibility of the emergence of a convective mixing mechanism and the
dynamics of the process are considered.

Consider a mixing process in a cylindrical channel in which a mixture of two compo-
nents is mixed with a third gas. The problem statement is illustrated in Figure 1. The upper
part of channel S1 contains gas 1 (with the minimum molar mass M1) and gas 2 (which has
the highest molecular weight M2) diffusing into gas 3 (with an intermediate molar mass
M3) located in the lower part of channel S2. The condition M2 > M3 > M1 is satisfied for
the molecular weights of the components. We consider a two-dimensional region of the
cross-section of the cylindrical region H x d in the Cartesian coordinate system (Figure 1a).

The change in “diffusion–convection” modes in ternary gas mixtures is described by
the system of Navier–Stokes hydrodynamic equations. Taking into account the condition of

independent diffusion, for an isothermal gas mixture
3
∑

i=1

→
j i = 0, and

3
∑

i=1
ci = 1, this system

of equations can be written as [4,22,23]:

ρ
[

∂
→
u

∂t +
(→

u∇→
u
)]

= −∇p + η∇2→u +
( η

3 + ξ
)
∇div

→
u + ρ

→
g ,

∂ρN
∂t = −div(ρN

→
υ ),

∂c1
∂t +

→
υ∇c1 = div[D∗

11∇c1 + D∗
12∇c2],

∂c2
∂t +

→
υ∇c2 = div[D∗

21∇c1 + D∗
22∇c2],

(1)
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where
→
u is the mass-average velocity,

→
υ is the number-average velocity of the ternary

mixture, ρ is the density, p is the pressure, η and ξ are the coefficients of shear and bulk
viscosity,

→
g is the gravity acceleration vector, ρN is the number density, t is the time, ci is

the concentration of the ith component,
→
j i is the density of the diffusion flux of the i-th

component and D∗
ij is the practical diffusion coefficients.
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The equation of medium state is written in the traditional form:

ρ = ρ(c1, c2, p), T = const. (2)

The system of Equations (1) and (2) characterizes a wide class of motions in gas
mixtures, including descriptions of concentration gravitational convection (or convective
instability), which is determined by the existence in the gravity field of spatial density
inhomogeneity caused by the nonuniformity of the concentration of components. At the
same time, there are a number of studies of convection under conditions where the com-
pressibility of the medium is insignificant [4,5,10]. In this case, simplifications in the system
(1)–(2) suppose that density inhomogeneities caused by compositional nonuniformities are
assumed to be small and are taken into account only in the lift term in the Navier–Stokes
equation of motion. In this case, the lift force is determined by a value that is calculated
within the framework of the Boussinesq approximation [4,5]:

ρg = ρ0g(1 − β1c/
1 − β2c/

2 ), (3)

where c/
i is the concentration perturbation of the i-th component relative to the average

value <ci> taken as the reference point (<ci> >> c/
i ), βi =

1
ρ0

(
∂ρ
∂ci

)
p,T,cj

; ρ0 is the average

value of mixture density.
Solving the system of Equations (1)–(3) by the method of small perturbations, one can

obtain the equations of concentration convection for the perturbed quantities (primes are
omitted):

∂
→
u

∂t +
(→

u∇
)→

u = − 1
ρ0
∇p + ν∇2→u + g(β1c1 + β2c2)

→
γ ,

∂c1
∂t +

→
υ∇⟨c1⟩ = D∗

11∇2c1 + D∗
12∇2c2,

∂c2
∂t +

→
υ∇⟨c2⟩ = D∗

21∇2c1 + D∗
22∇2c2,

div
→
υ = 0,

(4)

where
→
γ is the unit vector and ν is the kinematic viscosity coefficient.
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Differences in perturbations of the mass-average and number-average velocities are of
the same order. Therefore, when H >> r (where H is the height of the diffusion channel, r is
the radius of the diffusion channel),

→
υ can be replaced by

→
u [22,23].

The boundary conditions are specified as follows:

→
u(

→
x , t) = 0,

∂ci

∂
→
n

= 0, i = 1 − 3,

where
→
n = (n1, n2) is the outer normal to the boundary of the computational domain.

Dirichlet boundary conditions are set at the upper and lower boundaries for pressure:
p = 0. Neumann conditions are specified on the lateral boundaries: ∂p

∂
→
x
= 0.

The initial conditions are written as follows:

→
u(

→
x , t = 0) = 0,

c1

(→
x , t = 0

)∣∣∣→
x∈S1

= X1, c1

(→
x , t = 0

)∣∣∣→
x∈S2

= 0,

c2

(→
x , t = 0

)∣∣∣→
x∈S1

= X2, c2

(→
x , t = 0

)∣∣∣→
x∈S2

= 0,

c3

(→
x , t = 0

)∣∣∣→
x∈S1

= 0, c3

(→
x , t = 0

)∣∣∣→
x∈S2

= X3,

where Xi is the concentrations of components in the upper S1 and lower S2 regions.
To establish a connection between the parameters and conditions of the process, which

allows one to comprehensively analyze a large number of geometric and thermophysical
characteristics, we transition to a dimensionless formulation of the problem (1)–(4). Let
us introduce the following scales of units: H is the characteristic linear size of the cavity,
H2/ν is the time, D∗

22/H is the velocity, AiH is the concentrations of the i-th component
and ρ0νD∗

22/H2 is the pressure. The system of Equation (4) in dimensionless quantities is
transformed into the following equations:

∂
→
u

∂t + 1
Pr22

∇
(→

u ·→u
)
= −∇p + ∆

→
u + (Ra1d11c1 + Ra2c2)

→
γ ,

∂c1
∂t + 1

Pr22

→
u∇c1 = 1

Pr11
∆c1 + q1,

∂c2
∂t + 1

Pr22

→
u∇c2 = q2 +

1
Pr22

∆c2,

div
→
u = 0,

(5)

where Prii = ν/D∗
ii is the Prandtl diffusion number, and Rai = gβiAiH4/D∗

iiν is the partial
Rayleigh number. These numbers serve as the similarity criteria for the free convective
movement. Values dij = D∗

ij/D∗
22 are the parameters that determine the relationship

between practical diffusion coefficients, q1 = 1
Pr22

d12∆c2 and q2 = A1
A2

1
Pr22

d21∆c1 on the
right side of the equations for the concentration of components considered as sources,
where Ai is the dimensionless initial concentration gradient of the i-th component.

The dimensionless boundary conditions are given as follows:

→
u(

→
x , t) = 0, ∂ci

∂
→
n
= 0, i = 1 − 3,

p| x2 = 0,
x2 = 1

= 0, ∂p
∂
→
x

∣∣∣ x1 = 0,
x1 = 1

= 0.
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The dimensionless initial conditions are written as follows:

→
u(

→
x , t = 0) = 0,

c1

(→
x , t = 0

)∣∣∣→
x∈S1

= 1, c1

(→
x , t = 0

)∣∣∣→
x∈S2

= 0,

c2

(→
x , t = 0

)∣∣∣→
x∈S1

= 1, c2

(→
x , t = 0

)∣∣∣→
x∈S2

= 0,

c3

(→
x , t = 0

)∣∣∣→
x∈S1

= 0, c3

(→
x , t = 0

)∣∣∣→
x∈S2

= 1.

The implementation of the developed mathematical model is based on the application
of the D2Q9 scheme of the method of lattice Boltzmann equations [32], according to which
the Boltzmann equation discretized in the space of velocities is solved. Discretization
is carried out by replacing the continuous velocity of the particle with a discrete set of
velocities. In the Bhatnagar–Gross–Krook (BGK) approximation, the lattice Boltzmann
equation is written as follows:

fi(
→
x +

→
e i∆t, t + ∆t)− fi(

→
x , t) = ∆t

[
− fi(

→
x ,t)−feq

i (
→
x ,t)

τf
+ Fi

]
,

hi,α(
→
x +

→
e i∆t, t + ∆t)− hi,α(

→
x , t) = ∆t

[
−hi,α(

→
x ,t)−heq

i,α(
→
x ,t)

τh,α
+ Qi,α

]
,

(6)

where α denotes the concentration component index, i is the direction of lattice velocity,
fi, hi,α are the velocity and concentration distribution functions of the α-component,

→
e i

is the discrete lattice velocity in the i direction, τf, τh,α are the relaxation times, Fi is the
external force component, Qi,α is responsible for the source qα, ∆t is the lattice time step,
and feq

i , heq
i,α are the equilibrium distribution function of the velocity and concentration of

the α-component, respectively.
It is important to emphasize that the choice of numerical method depends on the

specific context of the problem and the requirements for modeling accuracy. The BGK
scheme for lattice Boltzmann equations can be used to analyze flows in microchannels and
slow flows of liquids or low-velocity gases, where inertial effects are negligible compared to
viscous effects. The BGK model approximates the collision operator by assuming a uniform
relaxation time, which leads to a linearized interparticle interaction term. In this case, there
is a trade-off between modeling accuracy and computational efficiency. Calculations for
large relaxation times were not carried out.

For equilibrium functions, it is valid:

feq
i = ωiρ

[
1 + 3

→
e i

→
u

eq

c2 + 9
2

(
⇀
e i

→
u

eq)2

c4 − 3
2

→
u

eq→
u

eq

c2

]
,

heq
i,α = ωiCα

[
1 + 3

→
e i

→
u

eq

c2 + 9
2

(
⇀
e i

→
u

eq)2

c4 − 3
2

→
u

eq→
u

eq

c2

]
,

(7)

where c = ∆x/∆t, and ∆x and ∆t are the lattice step in space and time, respectively, which
are equal to one. The weight coefficients ωi in the directions i, which are included in the
expressions for the equilibrium functions (7), have the following values:

ωi =


4/9, i = 0,
1/9, i = 1, 2, 3, 4,
1/36, i = 5, 6, 7, 8.

,



Fluids 2024, 9, 47 7 of 15

For the D2Q9 model, the interpretation of which is shown in Figure 2, it is characteristic
that the discrete velocities are given by the expressions:

e0 = (0, 0), e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0), e4 = (0, −1),
e5 = (1, 1), e6 = (−1, 1), e7 = (−1, −1), e8 = (1, −1).
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To approximate the external force
→
F = ρrg

[
βC1

(C1 − Cr) + βC2(C2 − Cr)
]

in LBM,
the scheme proposed by Guo et al. [33] is used:

Fi = ωi

(
1 − ∆t

2τf

)[→
e i −

→
u

c2
s

+

→
e i(

→
e i·

→
u)

c4
s

]
·
→
F .

In accordance with the development of Seta [34], the sources of qα are approximated
using the following formula:

Qi,α = ωi

(
1 − 1

2τh,α

)
qα.

The evolution equation is divided into two stages: first, the collision is taken into
account (1), and then the propagation is taken into consideration (2):

1. f̃i(
→
x , t) = fi(

→
x , t) + ∆t

(
− fi(

→
x ,t)−feq

i (
→
x ,t)

τf
+ Fi

)
,

h̃i,α(
→
x , t) = hi,α(

→
x , t) + ∆t

(
−hi,α(

→
x ,t)−heq

i,α(
→
x ,t)

τh,α
+ Qi,α

)
,

2. fi(
→
x +

→
e i∆t, t + ∆t) = f̃i(

→
x , t),

hi,α(
→
x +

→
e i∆t, t + ∆t) = h̃i,α(

→
x , t).

Further, corrections are made for macro parameters (density, velocity, concentration):

ρ =
8

∑
i=0

fi, ρ
→
u =

8

∑
i=0

fi
→
e i +

∆t
2

→
F , Cα =

8

∑
i=0

(
hi,α +

∆t
2

Qi,α

)
.

The system of equations is closed by the Dirichlet boundary conditions fi(
→
x w, t+∆t) =

f−i(
→
x w, t + ∆t),

→
e i·

→
n > 0 for the velocity on all walls and the Neumann condition

hi,α(
→
x w, t + ∆t) = h−i,α(

→
x w, t + ∆t),

→
e i·

→
n > 0 for the concentration of components on

all walls.
Simulations using the lattice Boltzmann equation are performed in lattice units, so it is

necessary to relate all physical parameters to their lattice counterparts. This relationship is
established by means of the unit conversion factor C∗.
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It is recommended to set the lattice steps in position space equal to 1: ∆x = 1, ∆t = 1.
Thus, the conversion coefficients for length and time will be equal to the dimensional
values of the steps in physical units: CH = ∆xphy, Ct = ∆tphy, where ∆xphy, ∆tphy represent
physical steps through space and time. The index “phy” will denote physical quantities.

Based on the channel height and the node size, we determine the spatial step as
∆xphy = H/N. According to the stability conditions of LBM algorithms, the characteristic
lattice velocity is ulbm < 0.4 for τ ≥ 0.55. In this work, the lattice velocity is set to ulbm = 0.2.
The conversion coefficient for velocity will be determined through Cu = uphy/ulbm, where
the physical value of velocity is equal to uphy =

√
gH. Then, the physical time step is equal

to ∆tphy = ∆xphy/Cu.
Using the expression obtained as a result of the Chapman–Enskog analysis [32] νf =

c2
s(τf − 1/2) and the conversion factor for the kinematic viscosity Cν = C2

H/Ct, we

determine the lattice relaxation time as τf = 3
(

∆tphy/∆x2
phy

)
νf + 1/2.

In the same way, the analysis and determination of other model parameters are carried
out.

3. Results of the Numerical Calculation

Numerical calculations were carried out on a uniform rectangular grid with a number
of nodes of 80 × 80 along the x1, x2 axes, respectively. Calculations were performed for
the physical parameters determined experimentally [35] or calculated from the kinetic
concepts [36] for given geometric characteristics of the channel (see Table 1) and are
shown in Figures 3–5. The length and height of the computational domain are L = 0.01 m,
H = 0.01 m. Physical steps in space and time have the following values: ∆xphy = 0.000125
and ∆tphy = 7.986 · 10−5.

Table 1. Some parameters of the mixture He (1) + CO2 (2) − N2 (3) at p = 0.101 MPa, T = 298.0 K [35,36].

Components ρ,
kg/m3

η,
10−5 Pa·s

D12,
10−4 m2/s

D13,
10−4 m2/s

D23,
10−4 m2/s

Molar Mass,
10−3 kg/mole

He 0.160 1.977 4.003
CO2 1.841 1.463 0.61 0.71 0.165 44.011
N2 1.146 1.775 28.016

The correction factors for temperature and pressure required to find the experimental
parameters will be denoted by Kt = T/T0 and Kp = p0/p, respectively. Here, T0 = 298.0 K
and p0 = 0.1 MPa, and T and p are the temperature and pressure of the experiment. The
density and dynamic shear viscosity of the components at the experimental parameters are
calculated using the formulas ρi = ρ0

i /(Kp × Kt) and ηi = η0
i Kt1/2, where ρ0

i is the density
of the i-th component, and η0

i is the dynamic viscosity of the i-th component corresponding
to the conditions T0 = 298.0 K and p0 = 0.1 MPa. Kinematic viscosity is calculated using the
formula νf = ∑

i
Ci

ηi
ρi

, where Ci is the concentration of the i-th component. The interdiffusion

coefficients given in Table 1 at different pressures and temperatures are related to each other
in the following way Dij = Do

ijKt3/2Kp, i ̸= j, where D0
ij are the interdiffusion coefficients

presented in Table 1. Practical diffusion coefficients D∗
ij and mutual diffusion coefficients

are related to each other by the following relationships [22,23]:

D∗
11 = D13[C1D32+(C2+C3)D12]

D , D∗
12 = −C1D23(D12−D13)

D ,

D∗
22 = D23[C2D13+(C1+C2)D12]

D , D∗
21 = −C2D13(D12−D23)

D ,

D = C1D23 + C2D13 + C3D12.
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Figure 3. Carbon dioxide isoconcentration lines for the 0.5 He + 0.5 CO2 − N2 system, p = 1.0 MPa,
T = 298.0 K, Ra1 = 4.34, Ra2 = 8.31. Characteristic mixing times: (a)—0.38 s; (b)—0.57 s; (c)—0.76 s;
(d)—0.95 s; (e)—1.14 s; (f)—1.71 s; (g)—1.90 s.

The volumetric expansion coefficients for determining the partial Rayleigh numbers
are found using the formulas:

βC1
=

m1 − m2

H
(C1m1 + C2m2 + C3m3), βC2

=
m2 − m3

H
(C1m1 + C2m2 + C3m3),

where mi is the molar mass of the i-th component.
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Figure 4. Pressure distribution for the 0.5 He + 0.5 CO2 − N2 system, p = 1.0 MPa, T = 298.0 K, Ra1 = 
4.34, Ra2 = 8.31. Characteristic mixing times: (a)—0.38 s; (b)—0.57 s; (c)—0.76 s; (d)—0.95 s; (e)—1.14 
s; (f)—1.71 s; (g)—1.90 s. 

Figure 4. Pressure distribution for the 0.5 He + 0.5 CO2 − N2 system, p = 1.0 MPa, T = 298.0 K,
Ra1 = 4.34, Ra2 = 8.31. Characteristic mixing times: (a)—0.38 s; (b)—0.57 s; (c)—0.76 s; (d)—0.95 s;
(e)—1.14 s; (f)—1.71 s; (g)—1.90 s.

Figure 3 shows the isoconcentration lines of carbon dioxide at different mixing times
of the ternary gas system 0.50 He (1) + 0.50 CO2 (2) − N2 (3) at pressure p = 1.0 MPa
and T = 298.0 K. At t = 0 s, the density of the binary mixture located in the upper part of
the diffusion channel is less than the density of nitrogen, which is localized in the lower
part. Diffusion takes place at the initial stage (see Figure 3a). After 0.33 s, a violation of
the monotonicity in the distribution of isoconcentration lines, which increases with time
(Figure 3b,c), is recorded. Such a distribution is not characteristic of diffusion mixing. It can
be assumed that, starting from this time, instability in the mechanical equilibrium, which
is the cause of the appearance of convection, arises in the system under study. Figure 3d
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shows the development of a convective cell, which begins 0.95 s after the start of mixing.
At the final stage (Figure 3e–g), the convective formation begins to move in the gravity
field relative to the diffusion interface. Then, but already under other initial condition, the
process of structural formation begins again, but, already under other boundary conditions,
i.e., in the system under study, the appearance of a drop convective mixing mode, which was
recorded experimentally in various ternary mixtures [17,18,22], including those containing
CO2 [23], is possible.
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Figure 5. Average kinetic energy distribution for the 0.5 He + 0.5 CO2 − N2 system, p = 1.0 MPa, T = 
298.0 K, Ra1 = 4.34, Ra2 = 8.31. Characteristic mixing times: (a)—0.38 s; (b)—0.57 s; (c)—0.76 s; (d)—
0.95 s; (e)—1.14 s; (f)—1.71 s; (g)—1.90 s. 
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Figure 5. Average kinetic energy distribution for the 0.5 He + 0.5 CO2 − N2 system, p = 1.0 MPa,
T = 298.0 K, Ra1 = 4.34, Ra2 = 8.31. Characteristic mixing times: (a)—0.38 s; (b)—0.57 s; (c)—0.76 s;
(d)—0.95 s; (e)—1.14 s; (f)—1.71 s; (g)—1.90 s.
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The calculation results presented in Figure 3 are in qualitative agreement with the
experimental data for the 0.44 He (1) + 0.56 CO2 (2) − N2 (3) system given in [22], which
shows that at pressures above 0.5 MPa, the conditions for the preferential transfer of carbon
dioxide are realized in the system. The main reason that does not allow for more accurate
quantitative comparisons is the significant difference in the characteristic mixing time in
the experimental diffusion cell (several thousand seconds) and the computational region
(several seconds).

Figure 4 shows the pressure distributions under thermophysical conditions and char-
acteristic mixing times corresponding to Figure 3. It is noteworthy that the largest pres-
sure perturbations occur at times corresponding to the formation of a convective cell
(Figure 4d,e). Further complex pressure fluctuations (Figure 4e–g) show the presence of
zones of increased and decreased pressure in the system caused by the presence of complex
convective formations.

Distributions of the average kinetic energy presented in Figure 5 show that its value is
localized in certain coordinates of the model channel. This relates to the fact that convective
flows arising due to the instability of mechanical equilibrium lead to a synergistic increase in
the partial mixing of components. There is a change in the flow structure and mass transfer
modes that are not typical for diffusion, which are sources of energy for the movement of
convective formations in a closed system.

For cases where the content of carbon dioxide is more than 0.3 mole fractions in the
system under consideration, the distributions of CO2 concentrations, pressure and kinetic
energy are similar to the distributions shown in Figures 3–5.

It should be assumed that the results of calculations on the distributions of concen-
trations, pressure and average kinetic energy shown in Figures 3–5 depend on the initial
composition of the ternary mixture. From the analysis of Figure 3, we can suppose the
existence of the following characteristic mixing modes: diffusion and the occurrence of
mechanical equilibrium instability (Figure 3a–c), corresponding to times t1–t3; creation
of structural convective formations (Figure 3d,e), which correspond to times t4 and t5;
organization of the convective cell (Figure 3f,g) and its initial movement in the gravity field.
It should be expected that the identified mixing stages are able to manifest themselves in a
similar way with other initial compositions but with different characteristic times.

The partial Rayleigh numbers and mixing times (t1–t7) specifying diffusion, the onset
and development of mechanical equilibrium instability, the occurrence of a structural
formation and its subsequent evolution leading to an initial mixing in the channel due to
the force gravity are listed in Table 2 for the various compositions of carbon dioxide in the
ternary mixture of He + CO2 − N2.

Table 2. Characteristic mixing times for the different compositions of carbon dioxide at p = 1.01 MPa,
T = 298.0 K.

Molar Composition of CO2, mol. Fraction Ra for CO2 t1, s t2, s t3, s t4, s t5, s t6, s t7, s

0.80 8.76 0.45 1.12 1.96 2.38 3.50 4.06 4.90
0.70 8.67 0.42 0.90 1.20 1.65 2.40 2.55 2.70
0.60 8.53 0.38 0.66 0.83 1.20 1.98 2.15 2.50
0.50 8.31 0.33 0.57 0.76 0.95 1.14 1.71 1.90
0.25 6.94 diffusion

A weak dependence on the initial content of carbon dioxide in the mixture under
study is observed at the time t1, corresponding to the initial formation of the curvature
of the isoconcentration lines. However, the difference in the characteristic mixing times
t2 and t3 for different initial compositions becomes noticeable at subsequent stages of
the development of mechanical equilibrium instability. The dependence on the concen-
tration of CO2 in the initial system becomes more significant at the stage of formation
of convective cells with the corresponding times t4, t5 and the emergence of currents in
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the initial development phase with mixing times t6, t7. The identified trend shows that
with an increase in the concentration of carbon dioxide in the initial mixture, more time is
required for the development of mechanical equilibrium instability and the formation of
convective structures. This can be explained by the fact that at high CO2 contents in the
initial mixture, the partial helium flux, due to its small size, does not create conditions for
the diffusion mechanisms that form the inversion density layers. In this case, the emergence
of gravitational convection is carried out in the traditional way [6].

4. Conclusions

A numerical study of the occurrence of mechanical equilibrium instability and subse-
quent structure formation in the He + CO2 − N2 gas system at different carbon dioxide
content in the mixture can be carried out on the basis of the method of lattice Boltzmann
equations. For the system under consideration, despite the implementation in the initial
stage of mixing of the conditions for the mixture density to decrease with height, diffusion
and convective types of mixing are recorded. The presented mathematical model makes
it possible to describe the process of formation of a convective structure for various com-
positions of the ternary mixture. The obtained isoconcentration distributions in a vertical
flat channel are discussed in detail and make it possible to specify the types of mixing and
explain the occurrence of convection for the situation when, at the initial moment of time,
the density of the gas mixture in the upper part of the diffusion channel is less than in the
lower part. The main conclusions of this study are as follows:

1. The occurrence of convective instability can be associated with a significant curvature
of isoconcentration distributions, which are absent during diffusion. The concentra-
tion profiles obtained are not typical for diffusion.

2. The disappearance of curvature in isoconcentration lines occurs at a certain initial
composition of the mixture. For these calculation conditions, this occurs when the
content of carbon dioxide is less than 0.3 mole fractions and determines the diffusion
mode of mixing.

3. The degree of curvature of the concentration distributions depends on the content of
the component with the highest molecular weight in the system. An increase in the
concentration of the component with the highest molecular weight leads to a rise in
the characteristic mixing times.

4. Further evolution of multicomponent mixing can result in the creation of convective
formations and a “drop” flow regime.

5. The given distributions of pressure and average kinetic energy show the complex
structure of the resulting flow. The maximum values of the distribution of pressure
and kinetic energy correspond to the formation of convective structures.
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Abbreviations

Symbols

Ai [-] dimensionless initial concentration gradient of the i-th component
C [-] component concentration
ci [-] concentration of the i-th component
D∗

ij [m2/s] diffusion complexes
Fi [-] external force component
H [m] height
Pr [-] Prandtl number
Ra [-] Rayleigh number
T [K] temperature
→
e i [-] discrete velocities
fi [-] velocity distribution function
g [m/s2] free-fall acceleration scalar
hi [-] concentration distribution function
p [Pa] pressure
r [m] radius
t [s] time
→
u [m/s] weight-average velocity vector
→
υ [m/s] number-average velocity vector
x [-] abscissa axis
βi [-] concentration analogue of the thermal expansion coefficient
ν [m2/s] kinetic viscosity
ρ [kg/m3] density
τ [-] mesh relaxation time
ωi [-] weight coefficient depending on the number of discrete velocity
Subscripts and Superscripts
i, j, α numbering of components
eq equilibrium value
lbm lattice Boltzmann equations method
phy physical
/ notion of the perturbed quantity

References
1. Raju, K.S. Fluid Mechanics, Heat Transfer, and Mass Transfer: Chemical Engineering Practice; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 2011.
2. Carta, G. Heat and Mass Transfer for Chemical Engineers: Principles and Applications; McGraw-Hill Education: New York, NY, USA,

2021.
3. Ryzhkov, I.I.; Shevtsova, V.M. On thermal diffusion and convection in multicomponent mixtures with application to the

thermogravitational column. Phys. Fluids 2007, 19, 027101. [CrossRef]
4. Gershuni, G.Z.; Zhukhovitskii, E.M. Convective Stability of Incompressible Fluids; Keter: Jerusalem, Israel, 1976.
5. Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2006.
6. Xie, C.; Tao, J.; Li, J. Viscous Rayleigh-Taylor instability with and without diffusion effect. Appl. Math. Mech.—Engl. Ed. 2017, 38,

263–270. [CrossRef]
7. Vadasz, P. Instability and Convection in Rotating Porous Media: A Review. Fluids 2019, 4, 147. [CrossRef]
8. Carballido-Landeira, J.; Trevelyan, P.M.J.; Almarcha, C.; De Wit, A. Mixed-mode instability of a miscible interface due to coupling

between Rayleigh-Taylor and double-diffusive convective modes. Phys. Fluids 2013, 25, 024107. [CrossRef]
9. Bakhuis, D.; Ostilla-Mónico, R.; van der Poel, E.P.; Verzicco, R.; Lohse, D. Mixed insulating and conducting thermal boundary

conditions in Rayleigh-Bénard convection. J. Fluid Mech. 2018, 835, 491–511. [CrossRef]
10. Radko, T.A. Double-Diffusive Convection; Cambridge University Press: Cambridge, UK, 2013.
11. Backhaus, S.; Turitsyn, K.; Ecke, R.E. Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys.

Rev. Lett. 2011, 106, 104501. [CrossRef] [PubMed]
12. Shevtsova, V.; Santos, C.; Sechenyh, V.; Legros, J.C.; Mialdun, A. Diffusion and Soret in Ternary Mixtures. Preparation of the

DCMIX2 Experiment on the ISS. Microgravity Sci. Technol. 2014, 25, 275–283. [CrossRef]
13. Matsuura, H.; Nagasaka, Y. Soret forced Rayleigh scattering instrument for simultaneous detection of two-wavelength signals to

measure Soret coefficient and thermodiffusion coefficient in ternary mixtures. Rev. Sci. Instrum. 2018, 89, 024903. [CrossRef]

https://doi.org/10.1063/1.2435619
https://doi.org/10.1007/s10483-017-2169-9
https://doi.org/10.3390/fluids4030147
https://doi.org/10.1063/1.4790192
https://doi.org/10.1017/jfm.2017.737
https://doi.org/10.1103/PhysRevLett.106.104501
https://www.ncbi.nlm.nih.gov/pubmed/21469794
https://doi.org/10.1007/s12217-013-9349-6
https://doi.org/10.1063/1.5013292


Fluids 2024, 9, 47 15 of 15

14. Lyubimova, T.P.; Zubova, N.A. Onset and nonlinear regimes of the ternary mixture convection in a square cavity. Eur. Phys. J. E
2015, 38, 19. [CrossRef]

15. Larabi, M.A.; Mutschler, D.; Mojtabi, A. Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin
components in a porous medium. J. Chem. Phys. 2016, 144, 244902. [CrossRef]

16. Budroni, M.A.; Lemaigre, L.; De Witb, A.; Rossi, F. Cross-diffusion-induced convective patterns in microemulsion systems. Phys.
Chem. Chem. Phys. 2015, 17, 1593–1600. [CrossRef]

17. Dil’man, V.V.; Lipatov, D.A.; Lotkhov, V.A.; Kaminskii, V.A. Instability in Unsteady-state Evaporation of Binary Solutions into an
Inert Gas. Theor. Found. Chem. Eng. 2005, 39, 566–572. [CrossRef]

18. Kosov, V.N.; Fedorenko, O.V.; Asembaeva, M.K.; Mukamedenkyzy, V. Changing Diffusion–Convection Modes in Ternary Mixtures
with a Diluent Gas Changing Diffusion–Convection Modes in Ternary Mixtures with a Diluent Gas. Theor. Found. Chem. Eng.
2020, 54, 289–296. [CrossRef]

19. Kaminskii, V.A.; Obvintseva, N.Y. Evaporation of a liquid under the conditions of convective instability in the gas phase. Russ. J.
Phys. Chem. A 2008, 82, 1215–1220. [CrossRef]

20. Dil’man, V.V.; Lotkhov, V.A. Molecular turbulent evaporation in a gravitational field. Theor. Found. Chem. Eng. 2015, 49, 102–106.
[CrossRef]

21. Moldabekova, M.S.; Asembaeva, M.K.; Akzholova, A.A. Experimental investigation of the instability of the mechanical equilib-
rium of a four-component mixture with ballast gases. J. Eng. Phys. Thermophys. 2016, 89, 417–421. [CrossRef]

22. Kossov, V.; Fedorenko, O.; Asembaeva, M.; Mukamedenkyzy, V.; Moldabekova, M. Intensification of the Separation of Isothermal
Ternary Gas Mixtures Containing Carbon Dioxide. Chem. Eng. Technol. 2021, 44, 2034–2040. [CrossRef]

23. Kossov, V.; Fedorenko, O.; Kalimov, A.; Zhussanbayeva, A. Diffusion mechanisms for the occurrence of the instability of
mechanical equilibrium of a ternary gas mixture containing carbon dioxide. Fluids 2021, 6, 177. [CrossRef]

24. Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001.
25. Huang, H.; Sukop, M.C.; Lu, X. Multiphase Lattice Boltzmann Methods: Theory and Application; Wiley-Blackwell: Hoboken, NJ, USA,

2015.
26. Feng, X.; He, Y.; Liu, D. Convergence analysis of an implicit fractional-step method for the incompressible Navier–Stokes

equations. Appl. Math. Modell. 2011, 35, 5856–5871. [CrossRef]
27. Kossov, V.; Fedorenko, O.; Zhakebayev, D.; Mukamedenkyzy, V.; Kulzhanov, D. Convective mass transfer of a binary gas mixture

in an inclined channel. Z. Angew. Math. Mech. 2022, 102, e201900197. [CrossRef]
28. Landl, M.; Prieler, R.; Monaco, E.; Hochenauer, C. Numerical investigation of conjugate heat transfer and numerical convection

using the Lattice-Boltzmann method for realistic thermophysical properties. Fluids 2023, 8, 144. [CrossRef]
29. Navon, I.M. Pent: A periodic pentodiagonal systems solver. Commun. Appl. Numer. Methods 1987, 3, 63–69. [CrossRef]
30. Kim, J.; Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 1985, 59,

308–323. [CrossRef]
31. Zhumali, A.S.; Satenova, B.A.; Karuna, O.L. Lattice Boltzmann method simulation of thermal flow dynamics in a channel. Int. J.

Math. Phys. 2019, 10, 75–81. [CrossRef]
32. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method; Springer International

Publishing: Cham, Switzerland, 2017.
33. Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 2002, 65,

046308. [CrossRef] [PubMed]
34. Seta, T. Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of

natural convection. Phys. Rev. E 2013, 87, 063304. [CrossRef]
35. Vargaftik, N.B. Handbook of Physical Properties of Liquids and Gases. Pure Substances and Mixtures; Springer: Berlin/Heidelberg,

Germany, 2014.
36. Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids; Mc-Grew-Hill Education: New York, NY, USA, 2000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1140/epje/i2015-15019-2
https://doi.org/10.1063/1.4954244
https://doi.org/10.1039/C4CP02196G
https://doi.org/10.1007/s11236-005-0118-0
https://doi.org/10.1134/S0040579520020086
https://doi.org/10.1134/S0036024408070297
https://doi.org/10.1134/S0040579515010017
https://doi.org/10.1007/s10891-016-1391-y
https://doi.org/10.1002/ceat.202100241
https://doi.org/10.3390/fluids6050177
https://doi.org/10.1016/j.apm.2011.05.042
https://doi.org/10.1002/zamm.201900197
https://doi.org/10.3390/fluids8050144
https://doi.org/10.1002/cnm.1630030111
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.26577/ijmph-2019-i1-10
https://doi.org/10.1103/PhysRevE.65.046308
https://www.ncbi.nlm.nih.gov/pubmed/12006014
https://doi.org/10.1103/PhysRevE.87.063304

	Introduction 
	Mathematical Formulation of the Problem and Numerical Methods 
	Results of the Numerical Calculation 
	Conclusions 
	References

