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Abstract: Many problems in fluid mechanics describe the change in the flow under the effect of
electromagnetic forces. The present study explores the behaviour of an electric conducting, Newtonian
fluid flow applying the magnetohydrodynamics (MHD) and ferrohydrodynamics (FHD) principles.
The physical problems for such flows are formulated by the Navier–Stokes equations with the
conservation of mass and energy equations, which constitute a coupled non-linear system of partial
differential equations subject to analogous boundary conditions. The numerical solution of such
physical problems is not a trivial task due to the electromagnetic forces which may cause severe
disturbances in the flow field. In the present study, a numerical algorithm based on a finite volume
method is developed for the solution of such problems. The basic characteristics of the method are,
the set of equations is solved using a simultaneous direct approach, the discretization is achieved
using the finite volume method, and the solution is attained solving an implicit non-linear system
of algebraic equations with intense source terms created by the non-uniform magnetic field. For
the validation of the overall algorithm, comparisons are made with previously published results
concerning MHD and FHD flows. The advantages of the proposed methodology are that it is direct
and the governing equations are not manipulated like other methods such as the stream function
vorticity formulation. Moreover, it is relatively easily extended for the study of three-dimensional
problems. This study examines the Hartmann flow and the fluid flow with FHD principles, that
formulate MHD and FHD flows, respectively. The major component of the Hartmann flow is the
Hartmann number, which increases in value the stronger the Lorentz forces are, thus the fluid
decelerates. In the case of FHD fluid flow, the major finding is the creation of vortices close to
the external magnetic field source, and the stronger the magnetic field of the source, the larger the
vortices are.

Keywords: ferrohydrodynamics; magnetohydrodynamics; biomagnetic fluid dynamics; finite volume
method

1. Introduction

For many years, there has been an enormous amount of research concerning various
biomedical applications of magnetic flows, i.e., magnetohydrodynamics (MHD) [1,2] and
ferrohydrodynamics (FHD) [3,4]. A relatively new area of research combining the principles
of MHD and FHD is biomagnetic fluid dynamics (BFD). According to this formulation a
magnetic fluid can exhibit both polarization and electrical conductivity. From this perspec-
tive, the forces that are exerted on the fluid are those arising from the magnetization due to
the polarization of the fluid and the Lorentz force due to the interaction of the magnetic
field with the electric current formed by the fluid flow. One of the most characteristic
natural fluids, possessing both properties of polarization and electrical conductivity, is
blood, and there are many recent studies considering the BFD formulation and general
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biomedical applications of magnetic flows [5,6]. Such applications include certain cancer
treatments which require clean separation of the white cells from the whole blood for
the chemical treatment. Red blood cells, when oxygenated, have the characteristics of a
diamagnetic fluid, which makes them prone to a magnetic field. The blood is collected in a
device with a surrounding magnetic field which separates the red blood cells. To achieve
faster results, the magnetic susceptibility of the red blood cells is increased using magnetic
microspheres that are bound to them [7]. The measurement of blood inside a vessel can
be a difficult process. Due to the diamagnetic characteristics of blood, when a magnetic
field is applied, a potential gradient is generated and can be measured by sensors inside
the walls. Utilizing this technique, the blood flow can be measured without contaminating
the blood inside [8].

A study presented in [9] depicts the application of a magnetic field on a biomagnetic
fluid such as blood, with a similar magnetic field scheme. In that study, the authors examine
the thermal radiation using the stream function vorticity, a well-known method for solving
the governing equations of fluid flows. A key factor that is studied is the change in the
viscosity, which is assumed to be an exponential function of temperature. This has a more
realistic meaning since the temperature affects the fluid viscosity. Several applications of
the magnetic field on a biomagnetic fluid are also present. The numerical results depicted
show the creation of vortices near the magnetic field source. The numerical results have
been compared with experimental and commercial software data, indicating a close relation.
The thermal radiation affects the recirculation of the fluid, as it reduces the vortices created
by the magnetic field.

Especially for the FHD and BFD physical problems, the polarization terms in the
governing equations constitute very dense source terms that finally result in the formation
of vortices in the flow field. These source terms can also generate numerical instabilities
and divergence of the overall algorithm. Moreover, many BFD applications involve the use
of artificially created nanoparticles, which dramatically increase the magnetization force.
As a result, biofluids can behave like ferrofluids and very high values of the ferromagnetic
number can be attained. Since the ferromagnetic number expresses somehow the ratio
of the magnetization to the viscous forces, when the Reynolds number decreases, for a
given magnetic field strength, the magnetic number is drastically increased. For some
very high values of the magnetic number, some numerical techniques may fail to converge.
Another factor which increases the difficulty of applying classical methods is the necessary
manipulations of the governing equations in order to assure the diagonal dominance of the
matrix of the unknowns or to attain convergence for very high magnetic numbers [10].

Studies that examine ferromagnetic fluid flows with various numerical techniques
such as the fourth-order Runge–Kutta and Runge–Kutta–Fehlberg 45 methods can be found
in [11,12], respectively. In these studies, the authors investigate the fluid flow over the
boundary layer of a Jeffery fluid in a porous medium over a shrinking/stretching sheet
with the application of a magnetic field and the fluid flow of a ferromagnetic nanofluid
over a stretching sheet with the effect of a magnetic dipole. In [13], the shooting method is
used for the investigation of different hybrid nanofluids and ferrofluids. Results have been
also published utilizing analytical solutions with various techniques such as the similarity
method along with the homotopy method [14], as well as the form of hypergeometric
functions also with the similarity method [15]. In these studies, the effects of the magnetic
field are presented along with heat transfer and radiation.

Among the numerical methodοlogies widely used for the solution of several BFD
problems are various algorithms involving discretization using the finite element method
(FEM). FEM using spatial discretization and an unconditionally stable backward finite
difference scheme for the time integration was used in [16,17]. The FEM method was also
used in [18,19], whereas algorithms involving control-based volume FEM [20], both FEM
and the dual reciprocity boundary element method [21], and least squares FEM [22] have
also been used. Finally, similar or more complex BFD problems have been solved using
COMSOL [23] and a meshless point collocation method (MPCM) along with the moving
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least squares (MLS) approximation [24,25]. The aforementioned studies indicate that there
is an ongoing interest for the implementation of numerical algorithms suitable for the
solution of BFD flow problems.

The physical properties, assumptions, and mechanism of the reaction of the applied
magnetic field have also been stated and investigated in numerous variations of BFD
Hartmann fluid flow problems. Thus, in the present study, the main effort is focused on
the implementation of a numerical algorithm also suitable for BFD flow problems. The
basic characteristics of the present algorithm are (i) the set of equations is solved using a
simultaneous direct approach; (ii) the discretization is achieved using the finite volume
method (FVM); and (iii) the solution is attained solving an implicit non-linear system of
algebraic equations.

The advantage of using this technique is that using FVM it is quite easy to implement
a variety of boundary conditions in a non-invasive manner, since the unknown variables
are evaluated at the centroids of the volume elements and not at the boundary faces [26].
Moreover, the numerical solution is obtained using a direct approach, which creates more
robust results since the governing equations are subject to minimum manipulations in
contrast to other classical techniques like the stream function vorticity formulation, also
used for the solution of BFD problems [10].

The two basic configurations of magnetic Hartmann fluid flow problems are studied
in the present paper. The first one is that of MHD Hartmann flow, where an external
magnetic field is vertically applied to the channel. For this case an analytical solution can
be found, introducing a test problem, where the analytical solution can be compared with
the numerical one. The second configuration is the FHD flow, where the applied magnetic
field is spatially varying. Comparisons for this case are more difficult to perform and the
validation of the results is made qualitatively through results documented in previously
published papers.

In the simultaneous approach which is used here, all equations compose a single
system of equations which is discretized using FVM. This approach on a very fine grid can
be very time consuming and expensive in terms of memory when the system is non-linear
and tightly coupled. On the other hand, the solution is obtained using a direct approach,
which creates more robust results since the manipulations of the governing equations of
each problem are minimal. Finally, due to this implicit direct approach, accurate solutions
can be obtained using relatively sparse grids. This study examines the Hartmann flow and
the fluid flow with FHD principles that formulate MHD and FHD flows, respectively. The
major component of the Hartmann flow is the Hartmann number, where a larger value
corresponds to stronger Lorentz forces, which cause deceleration in the fluid. In the case of
FHD fluid flow, the major finding is the creation of vortices close to the external magnetic
field source, and the stronger the magnetic field of the source, the larger the vortices are.

2. Mathematical Formulation
2.1. Hartmann Flow

The Hartmann flow studies the flow of an electrically conducting fluid while a mag-
netic field is vertically applied to the bottom channel wall. It also studies the disturbance
of the magnetic field due to the electrically conducting fluid. This flow configuration
(Hartmann flow) can be considered as a special and simplified magnetohydrodynamic
(MHD) case.

The equations that formulate the Hartmann flow at first are the x-momentum of the
Navier–Stokes equations and the x-component of the induction equation, as shown below:

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
− uB2

y + vBxBy,

u
∂Bx

∂y
+ v

∂Bx

∂y
=

1
µσ

(
∂2Bx

∂x2 +
∂2Bx

∂y2

)
+ Bx

∂u
∂x

+ By
∂u
∂y

,
(1)
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where µ is the fluid viscosity and σ is the electrical conductivity of the fluid. Using the
following non-dimensional terms:

q̄′ =
q̄

u0
, ∇̄′ = L∇̄, p′ =

p
ρ u2

0
, B̄′ =

B̄
B0

(2)

the system of equations in (1) takes the following form:

u′ ∂u′

∂x′
+ v′

∂u′

∂y′
= −∂p′

∂x′
+

1
Re

(
∂2u′

∂x′2
+

∂2v′

∂y′2

)
+ N

(
−u′B′2

y + v′B′
xB′

y

)
,

u′ ∂B′
x

∂x′
+ v′

∂B′
x

∂y′
=

1
Rem

(
∂2B′

x
∂x′2

+
∂2B′

x
∂y′2

)
.

(3)

Definition 1. Re = (ρ u0L)/µ is called the Reynolds number and it represents the ratio of the
internal forces to the viscous forces.

Definition 2. Rem = µσLu0 is the magnetic Reynolds number.

Definition 3. N = (σLB0)/(ρµ) is called the Stuart number and it represents the ratio of the
electromagnetic forces to the internal forces.

For simplification the prime symbol is omitted from the system of equations in (3).
Using a simplification of the Navier–Stokes and the magnetic-field-induction equations

the fluid velocity as well as the magnetic field inside the channel, are calculated, by dis-
cretizing the domain and the equations with the finite volume method, creating a coupled
system of non-linear algebraic equations which are solved using a Newton-like method.

In order to study the influence of the magnetic field on the fluid flow, the Lorentz
force is introduced and applied to the fluid. Τhe Lorentz force causes the velocity to drop.
Using higher values of the Hartmann number, a stronger Lorentz force can be applied. The
Lorentz force can be mathematically modelled using the term

f̄L = J̄ × B̄, (4)

along with the Hartmann number, Ha, which is a non-dimensional number defined as

Ha =
√

NRe. (5)

We assume that the electric current density J̄, is equal to q̄ × B̄, resulting in

f̄L = (q̄ × B̄)× B̄, (6)

which after the calculation of the outer products, the general case is q̄ = (u, v, w) and
B̄ =

(
Bx, By, Bz

)
, and more specifically in the two-dimensional case (w = Bz = 0) for the

Lorentz force f̄L:

f̄L =
(
−uB2

y + vBxBy

)
ī+

(
uByBx − vB2

x

)
j̄ + 0k̄. (7)

It is assumed for the velocity that v = 0 and for the magnetic field Bx = 0 and By = c,
giving for the Hartmann flow

f̄L = −uc2 ī + 0 j̄ + 0k̄. (8)

In this formulation, it is assumed that the flow is laminar and the external magnetic field is
constant in magnitude and vertical to the flow.
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By calculating the norm of the Lorentz force, the effect of the force on the flow field is
given by ∥∥ f̄L

∥∥ =
√

c4u2 = c2|u|. (9)

This implies that the relation of the Lorentz force and the fluid velocity is linear. A higher
fluid velocity results in a higher magnitude of the Lorentz force. For the inducted magnetic
field B̄ and the Lorentz force f̄L the following is concluded:

B̄ ⊥ f̄L. (10)

The electric current I does not contribute in the two-dimensional case. Using the right-hand
rule (the electric current does not contribute in the two-dimensional case) it can be seen
that the Lorentz force retards the fluid velocity.

Remark 1. Let us assume a parabolic profile in the inlet, no slip conditions on the walls, and
Neumann conditions at the channel outlet. The Lorentz force will create thin boundary layers which,
in this case, are called Hartmann layers, as well as a decrease in the fluid velocity, as the magnitude
of the magnetic field increases. This will also be proven by the analytical solution provided in a later
section where the greater the value of the Hartmann number is, the greater the drop of the velocity is.

A straight channel is considered where an external magnetic field B̄ is vertically
applied, B̄ = bj̄ = b(y, z) j̄. This parameter refers to the external magnetic field. The flow is
driven by a uniform pressure gradient and the fluid flows vertically to the magnetic field,
q̄: q̄ = uī = u(y, z)ī.

The magnetic field is composed of two factors, the external magnetic field and the
magnetic field induced by the flow of the conducting fluid, resulting in

B̄ =
Rem

Ha
bī + 1 j̄ =

(
Rem

Ha
b, 1

)
=

(
Bx, By

)
, (11)

where we have scaled the induced part by the term Rem/Ha. This equation refers to the
induced magnetic field.

Substituting the results of Equation (11) into the steady-state induction equation,
results in a time-independent magnetic field. It is also assumed that the flow is fully devel-
oped, implying

(
q̄ · ∇̄

)
· B̄ = 0̄, resulting in the x-component of the induction equation,

0 =
1

Rem

(
∂2Bx

∂x2 +
∂2Bx

∂y2

)
+

(
Bx

∂u
∂x

+ By
∂u
∂y

)
(12)

and substituting Equation (11) into Equation (12) results in

1
Ha

∂2b
∂y2 +

∂u
∂y

= 0 ⇒ ∂2b
∂y2 + Ha

∂u
∂y

= 0. (13)

For the electric current density J̄ Ampere’s law is used:

J̄ =
1

Rem

(
∇̄ × B̄

)
. (14)

Substituting Equation (11) into (14) results in

J̄ =
1

Rem

(
∂

∂x
ī +

∂

∂y
j̄ +

∂

∂z
k̄
)
×

(
Rem

Ha
bī + 1 j̄ + 0k̄

)
=

1
Ha

(
0,

∂b
∂z

, − ∂b
∂y

)
, (15)

resulting in the Lorentz force being expressed with the inducted term b.
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Using Equation (15) with Equation (11), the Lorentz force is

J̄ × B̄ =
1

Ha

(
∂b
∂y

, −Rem

Ha
b

∂b
∂y

,
Rem

Ha
b

∂b
∂z

)
. (16)

A fully developed flow is assumed,
(
q̄ · ∇̄

)
· q̄ = 0̄, resulting in the x-momentum of

the Navier–Stokes equation being

0 = −∂p
∂x

+
1

Re

(
∂2u
∂y2

)
+

Ha2

Re

(
1

Ha
∂b
∂y

)
, (17)

where for convenience it is assumed that ∂p/∂x = (−ρ u0 µ)/(L2 ρ), and from the non-
dimensional pressure (which is shown in the non-dimensionless Navier–Stokes) the follow-
ing is concluded:

∂p′

∂x′
=

L
ρ u2

0

∂p
∂x

=
L

ρ u2
0

(
−ρ u0 µ

L2 ρ

)
= − µ

u0 L ρ
= − 1

Re
. (18)

Substitution of Equation (18) into Equation (17) gives

0 =
1

Re
+

1
Re

∂2u
∂y2 +

Ha2

Re
1

Ha
∂b
∂y

⇒ ∂2u
∂y2 + Ha

∂b
∂y

= −1. (19)

Equations (13) and (19) describe the two-dimensional Hartmann flow, which will be
discussed and studied in the next subsection.

2.2. Analytical Solution of the Hartmann Flow

In this subsection, the behaviour of an electrically conducting fluid is studied while
an external magnetic field, constant in magnitude, is applied. In this case, it is assumed
that the magnetic field is applied vertically to the flow, meaning that the magnetic field b is
a function of the variable y or b = b(y). A similar assumption can be considered for the
u-velocity, u = u(y). Along with many applications of this flow, this is a test problem due
to the fact that, with a known analytical solution, the numerical solution obtained by the
algorithm developed can be validated.

The system of PDEs that describe the Hartmann flow is

Ha
∂b
∂y

+
∂2u
∂y2 = −1, for − 1 < y < 1, (20)

Ha
∂u
∂y

+
∂2b
∂y2 = 0, for − 1 < y < 1, (21)

with the boundary conditions

u = 0, at y = ±1 and ± ∂b
∂y

+
1
c

b = 0, at y = ±1, (22)

which is a well-defined second-order, linear system with constant coefficients. Here, c → 0
implies that the walls are electrically insulated.

The analytical solutions of Equations (20) and (21) that describe the Hartmann flow,
with the boundary conditions (22) for the velocity u and the magnetic field b, are, respectively,

u(y) = u
(

1 − cosh(Hay)
cosh(Ha)

)
, b(y) = − y

Ha
+ u

sinh(Hay)
cosh(Ha)

, (23)
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where u is the characteristic magnitude of velocity:

u =
1

Ha

(
c + 1

c Ha + tanh(Ha)

)
. (24)

Since the analytical solution is known, various cases of Hartmann numbers can be studied.
The cases of small and large values of the Hartmann number are examined. More specifi-
cally, the first case is as the Hartmann number approaches zero, Ha → 0, and the second
case is the Hartmann number being much greater than 1, Ha ≫ 1.

The velocity profile of the Hartmann flow approaches asymptotically the parabolic
profile of the hydrodynamic case for small values of the Hartmann number and high values
of the Hartmann number create Hartmann layers and decrease the fluid velocity.

(i) (Ha → 0) We substitute the Taylor expansion of the hyperbolic functions tanh(Ha)
and cosh(Ha) as Ha → 0 into Equation (24) and the analytical solution of the velocity, giving

u = − 3(1 + c)
Ha2(−3 − 3c + Ha2)

and u(y) = −
3(1 + c)

(
−1 + y2)

(3 + 3c − Ha2)(2 + Ha2)
. (25)

respectively. Since we study the case of Ha → 0 this implies that there is no magnetic field
b; therefore, b = 0. By taking the limit,

lim
Ha→0

u(y) = lim
Ha→0

−
3(1 + c)

(
−1 + y2)

(3 + 3c − Ha2)(2 + Ha2)
=

1
2

(
1 − y2

)
, (26)

it can be seen that the analytical solution of the velocity is similar to that of the hydrody-
namic case (parabolic profile) as well as

lim
Ha→0

u(±1) =
1
2

(
1 − (±1)2

)
= 0, (27)

meaning that it satisfies the boundary conditions (22).
(ii) (Ha ≫ 1) Substituting the exponential equivalent of the hyperbolic functions

tanh(Ha) into Equation (24), as well as the hyperbolic functions cosh(Ha) and sinh(Ha)
into the analytical solution for the velocity and the magnetic field. Since the case of large
values of the Hartmann number is studied, the following relations

u → 1
Ha

c + 1
cHa + 1

⇒ u Ha≫1−−−→ 0 (28)

and
u(y) = u

(
1 − eHa(y−1)

)
, b(y) = − y

Ha
+ u

(
eHa(y−1)

)
, |y| < 1, (29)

hold true, for the characteristic magnitude of the velocity, and the analytical solutions of
the velocity and the magnetic field, respectively. Equation (29) must satisfy the boundary
conditions (22), where for the u-velocity we have

u(1) = u
(

1 − eHa(1−1)
)
= 0 u(−1) = u

(
1 − e−2Ha

)
Ha≫1−−−→ 0. (30)

For the magnetic field, after some simplifications, the following relations

+b′(1) +
1
c

b(1) = 0, −b′(−1) +
1
c

b(−1) = 0, (31)

imply that the boundary conditions in (22) are satisfied for large Hartmann numbers.
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From the asymptotic analytical solution of the velocity, an exponentially decreased
profile is observed, where it maximizes in the core flow of the channel at y = 0 and is
equal to

umax = u(0) = u
(

1 − e−Ha
)

Ha≫1−−−→ 0. (32)

This exponential velocity drop, according to [27], creates thin boundary layers close to the
walls of the channel with an order of thickness, δ = O

(
Ha−1). We will further verify this

statement by comparing the Hartmann layers in the numerical solution.

2.3. Ferrohydrodynamic Flow

In the previous flow, the main objective was to study the fluid flow in a channel
under various circumstances, such as the application of a uniform, constant in magnitude,
magnetic field vertical to the flow. The FHD case is a slightly different problem. In FHD,
the magnetic field is generated from a source (point) outside or inside the flow.

Let us assume a three-dimensional model of a channel geometry. A wire is placed
at the bottom at a distance α to the channel and at a distance β from the channel inlet.
An electric current is applied to the wire which will create an axisymetric magnetic field.
In a two-dimensional model, this implies that the wire, or in this case the source, has
coordinates (α, β), as seen in Figure 1.

Figure 1. The source of the magnetic field (concentric circles with centre (α, β)) and the parabolic
profile of the velocity at the inlet of the channel.

The distance at which the source is placed, as well as the magnitude of the magnetic
field, will determine how much the parameters we study will change. The greater the
distance of the source from the walls, the greater the magnitude of the magnetic field must
be in order for the magnetic field to change the velocity and pressure profile.

The partial differential system of equations that formulate the FHD flow is

ρ

(
∂u2

∂x
+

∂uv
∂y

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ µ0M

∂H
∂x

,

ρ

(
∂uv
∂x

+
∂v2

∂y

)
= −∂p

∂y
+ µ

(
∂2v
∂y2 +

∂2v
∂y2

)
+ µ0M

∂H
∂y

,

∂u
∂x

+
∂v
∂y

= 0

(33)

where ρ is the fluid density and µ is the fluid viscosity. The non-uniform magnetic field is
formulated by new terms in the system of equations µ0M∇̄H, where M is a magnetization
property which describes the behaviour of the fluid when it is exposed to a magnetic
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field [5]. A linear equation for the isothermal case is, M = χH, where χ is a constant called
the magnetic susceptibility [28] and is given as

H = H(x, y) =
√

H2
x + H2

y =
γ

2π

1√
(x − α)2 + (y − β)2

, (34)

where H is the magnitude of the magnetic field generated by the electric-current-carrying
wire, and γ is the magnetic field strength at the current point.

The magnetic field in this flow is considered unaltered and depends only on the
location of the source term. The Maxwell equations are not part of the FHD flow, rather the
H was considered known and not influenced by the fluid flow. This assumption is used in
the simulations presented.

The vector components of the magnetic field H̄ =
(

Hx, Hy
)

are, respectively,

Hx(x, y) = − γ

2π

x − α

(x − α)2 + (y − β)2 , Hy(x, y) =
γ

2π

y − β

(x − α)2 + (y − β)2 . (35)

The objective is to study the non-dimensional equations from the governing system. The
following non-dimensional parameters are introduced, and for the new terms the following
formulation is used:

q̄′ =
q̄

u0
, ∇̄′ = L∇̄, p′ =

p
ρ u2

0
, H′ =

H
H0

, (36)

where H0 = H(α, 0) is the magnitude of the magnetic field at the bottom wall. The
dimensionless magnitude of the magnetic field is shown in Figure 2:

H′ =
H
H0

=

√
H2

x + H2
y

H0
⇒

H′ =
|β|√

(x − α)2 + (y − β)2
.

(37)

Figure 2. Contours of the dimensionless magnitude for the FHD flow with the wire placed at
(5,−0.55). The bottom wall is at y = −0.5 and the top wall is at y = 0.5.

The system of non-dimensional equations that formulate the FHD flow is along the
conservation of mass, which remains the same:

(
q̄′ · ∇̄′)q̄′ = −∇̄′p′ +

1
Re

∇̄′2q̄′ + MnF H′∇̄′H′. (38)

Definition 4. MnF =
(
µ0χH2

0
)
/
(
ρu2

0
)

is the magnetic number for the FHD flow.
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Expanding the vector form of Equation (38) into the equations in each momentum as
follows while omitting the prime symbol for simplification:

∂
(
u2)

∂x
+

∂(uv)
∂y

= −∂p
∂x

+
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
+ MnF

1
2

∂H2

∂x
,

∂(uv)
∂x

+
∂
(
v2)

∂y
= −∂p

∂y
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

)
+ MnF

1
2

∂H2

∂y
.

(39)

From a numerical perspective, the magnetization terms that enter the governing
equations due to the principles of FHD constitute a “source term”, which locally is of a
greater order of magnitude than the other terms and gives rise to extended disturbances in
the flow field, such as the formation of vortices. This could lead to a stiff numerical problem
to solve. Thus, particularly for high values of the magnetic parameter combined with
high-gradient magnetic fields, the calculation of the numerical solution is not a trivial task.

For the boundary conditions of the velocity, the parabolic profile is applied at the
channel inlet and Neumann boundary conditions at the channel outlet. For the boundary
conditions of the pressure, Neumann boundary conditions are applied at the channel inlet
and at the channel outlet we assume zero pressure.

3. Numerical Solution
3.1. The Finite Volume Method on the Hartmann and FHD Flows

The discretized differential equations that describe the Hartmann flow are:
x-momentum

1
2

Ha(bN − bS)∆x + (uN − 2uP + uS)
∆x
∆y

+ ∆x ∆y = 0, (40)

x-induction
1
2

Ha (uN − uS)∆x + (bN − 2bP + bS)
∆x
∆y

= 0. (41)

The discretized differential equations that describe the FHD flow are
x-momentum

1
2

(
u2

E − u2
W

)
∆y+

1
2
(uNvN − uSvS)∆x = −(pE − pP)∆y+

+
1

Re

(
(uE − 2uP + uW)

∆y
∆x

)
+

1
Re

(
(uN − 2uP + uS)

∆x
∆y

)
+ MnF

1
4

(
H2

E − H2
W

)
∆y,

(42)

y-momentum

1
2
(uEvE − uWvW)∆y+

1
2

(
v2

N − v2
S

)
∆x = −(pN − pP)∆x+

+
1

Re

(
(vE − 2vP + vW)

∆y
∆x

)
+

1
Re

(
(vN − 2vP + vS)

∆x
∆y

)
+ MnF

1
4

(
H2

N − H2
S

)
∆x.

(43)

Conservation of Mass

1
2
(uE − uW)∆y +

1
2
(vN − vS)∆x = 0, (44)

Remark 2. These equations of differences, Equations (40) and (41) for the Hartmann flow as well as
Equations (42)–(44) for the FHD flow, hold for all finite volume cells in the computational domain.
For example, if we have a 10 × 10 computational grid, the equations of differences for this domain
will be 100 × 3 = 300 algebraic equations.
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3.2. Numerical Method

For the numerical results and the simulations a CFD algorithm (a definition of which
can be found in [26]) was created for the numerical solution of the Navier–Stokes equations.
The numerical solution is obtained using a direct approach, which creates more robust
results since the governing equations of each problem are altered as little as possible.

In order to obtain the numerical solution, we create the mesh in the domain studied,
creating volumes. The FVM is applied to the governing equations, transforming them
from non-linear PDEs into a system of coupled non-linear AEs. The unknowns are the
values of the u- and v-velocities as well as the pressure p at each control volume of the
mesh grid. The numerical solution of the coupled system is obtained utilizing a non-linear
solver (Newton’s method). The flow chart in Figure 3 depicts the algorithm steps used. x̄n

is the vector of the unknown variables created by the mesh grid and f̄ (x̄n) is the coupled
algebraic functions (system) evaluated at x̄n. The boundary conditions are given at the
channel inlet and outlet and at the top and bottom walls, respectively. In the FVM, the
partition of each direction of the control volumes is shown below:

uE = u(i + 1, j), uW = u(i − 1, j), uS = u(i, j − 1), uN = u(i, j + 1),

vE = v(i + 1, j), vW = v(i − 1, j), vS = v(i, j − 1), vN = v(i, j + 1),

pE = p(i + 1, j), pW = p(i − 1, j), pS = p(i, j − 1), pN = p(i, j + 1),

uP = u(i, j), vP = v(i, j), pP = p(i, j)

(45)

where i = 1, . . . , Nx and j = 1, . . . , Ny. Assuming that we use a grid of Nx × Ny, this implies
that there are Nx Ny of each variable of Equation (45).

The algebraic system is given by evaluating each of the discretized equations in each
control volume of the partition. For example, the evaluation of the x-momentum of the
FHD fluid flow in each control volume of the grid creates the first Nx Ny equations for the
algebraic system, the evaluation of the y-momentum results in the creation of the next
Nx Ny equations, and finally the evaluation of the continuity gives the rest of the Nx Ny
equations. In total, the system has 3Nx Ny algebraic equations.

In summary, the system of algebraic equations for the FHD fluid flow is, f̄ = (F1, F2, F3),
with F1 equal to Equation (42), F2 equal to Equation (43), and F3 equal to Equation (44),
using the formulation in (45). A similar methodology is used for the equations of the
Hartmann fluid flow. Finally, the Jacobian matrix is given by

J̄ =

(F1)u (F1)v (F1)p
(F2)u (F2)v (F2)p
(F3)u (F3)v (F3)p

 (46)

After the convergence of the algorithm, the output is the values of the velocities u and v
and the pressure p at each control volume of the partition. In summary, the whole domain’s
equations (three equations for each control volume) are solved simultaneously at each
iteration of the Newton’s algorithm. So, the iterations depicted in Figure 3 of the CFD
algorithm lead to the convergence of the numerical scheme.

The finite volume method, a second-order accuracy method, due to the central dif-
ferences used for the discretization of the governing equations, transforms the governing
non-linear system of partial differential equations (conservation of mass and Navier–Stokes)
into a highly non-linear and tightly coupled system of algebraic equations with intense
source terms, such as the non-uniform magnetic field. Firstly, the method discretizes the
domain into smaller, finite in number, domains (resulting in the creation of a grid), as can
be seen in Figure 4a. The unknown variables are calculated on the grid points, which can
be seen in Figure 4b.
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Give boundary conditions and an initial guess: x̄0

Set n = 0

Calculate f̄ (x̄n)

Calculate J̄−1(x̄n)

Calculate x̄n+1 using, x̄n+1 = x̄n − J̄−1(x̄n) f̄ (x̄n)

||x̄n+1 − x̄n|| < ε Set n = n + 1Solution: x̄n+1
NoYes

Figure 3. Flowchart of the CFD algorithm. The coupled system f̄ (x̄n) = 0̄ is solved simultaneously
at each Newton iteration.

Figure 4. (a) The grid created in the channel and (b) the grid created in the channel.

In the FVM, the terms in the conservation equation represent the face fluxes and are
evaluated at the finite volume faces w, e, p, n, and s. Because the values at these faces are not
known, a numerical approach is used whereby the mean values based on the neighbouring
grid points W, E, P, N, and S are calculated. Because the flux entering a given volume is
similar to that leaving the adjacent volume, the FVM is conservative or divergence free, i.e.,
∇̄ · q̄ = 0. Finally, in the FVM, it is easy to implement a variety of boundary conditions in a
non-invasive manner, since the unknown variables are evaluated at the centroids of the
volume elements not at the boundary faces [26].

3.3. Direct Solution Approach

In the field of fluid dynamics, the fluid flows are described by a set of governing equa-
tions in which the dominant variables are present in other ones as well, e.g., conservation
of mass and Navier–Stokes equations. In the simultaneous approach which is used in this
study, all equations compose a single system of equations which is discretized using the
finite volume method. This approach on a very fine grid can be very time consuming and
expensive in terms of memory when the system is non-linear and tightly coupled. The
numerical solution for the case of Hartmann flow is less expensive since the equations
that describe this flow are simplified to a linear system of equations. This statement is not
true for the case of the FHD flow. The equations are not simplified and create a non-linear
coupled system, and due to the magnetic field source term being a non-linear system, as
the magnitude increases the method is very expensive in order to converge. Despite this
disadvantage this method produces a very good solution. The Hartmann flow has been
studied for the grid sizes of 10 × 10, 20 × 20, 40 × 40, 80 × 80, and 160 × 160. The FHD flow
has been examined for grid sizes of 350 × 35, 400 × 40, 450 × 45, and 500 × 50.
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In order to find a numerical solution to the Navier–Stokes equations, various tech-
niques, e.g., pressure correction algorithms or linearization approaches, have been devel-
oped by several researchers such as Patankar [29]. These methods assume a solution at first,
which is then substituted into the equations and corrected through algorithm steps. The
numerical solution is obtained using a direct approach, which creates more robust results
since the governing equations of each problem are altered as little as possible. An initial
guess is used for the algorithm steps to begin.

Another approach for the numerical solution of the system under consideration is the
usage of iterative methods such as those of Shyy [30] and Patankar [29]. In such methods,
the unknown variables are evaluated at the control volume faces and are corrected, and
thus updated, until the new value is as close to the previous correction as the user needs.
This results in methods with lower computational and time costs, but lacking in robustness
compared to the direct method [31].

4. Results and Discussion
4.1. Numerical Results for the Hartmann Flow

The solution of the algebraic system of the Hartmann flow is validated in this subsec-
tion. In Table 1, using as a gold standard the analytical solutions in the inlet, the results of
comparing the analytical to the numerical solution at the channel outlet are observed.

The root mean square (RMS)

RMS =

√√√√ 1
N

N

∑
i=1

|x̄i − x2
i |, (47)

measures the difference of the numerical solution, x̄i, with the analytical one, xi. The
parameter N is the size of the data, or in this case, the nodes of the partition. The RMS
values shown in Table 1 indicate that the analytical solution for the velocity and the induced
magnetic field of the Hartmann flow are very close, thus validating the results.

In Figure 5, a reduction in the velocity profile inside the channel is observed as the
Hartmann number is increased, implying a stronger magnetic field. In the hydrodynamic
case, the maximum velocity is umax = 0.5. Due to the Lorentz forces the maximum value
drops, taking values of umax ≈ 0.48, 0.37, 0.25, 0.17, 0.12, and 0.1 for Ha = 1, 2, 4, 6, 8, and
10, respectively.

(a) Channel length

Ve
lo

ci
ty

(b) Channel length

Ve
lo

ci
ty

Figure 5. Contour plots of the velocity for (a) Ha = 0 (Hydrodynamic case) and (b) Ha = 10 for the
Hartmann flow.
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Table 1. Difference (error) between the analytical and the numerical solution of the velocity and the
induced magnetic field, for the Hartmann flow, using the root mean square formulation, for various
grid sizes and different cases of the Hartmann number, Ha = 1, 2, 4, 6, 8, and 10.

RMS Velocity RMS Magnetic Field

Grid Ha = 1 Ha = 2 Ha = 1 Ha = 2

10 × 10 8.6524 × 10−4 2.1329 × 10−3 2.2090 × 10−4 1.1121 × 10−3

20 × 20 2.3122 × 10−4 5.6631 × 10−4 5.9014 × 10−5 2.9440 × 10−4

40 × 40 5.9878 × 10−5 1.4639 × 10−4 1.5279 × 10−5 7.6020 × 10−5

80 × 80 1.5244 × 10−5 3.7250 × 10−5 3.8896 × 10−6 1.9338 × 10−5

160 × 160 3.8463 × 10−6 9.3976 × 10−6 9.8138 × 10−7 4.8784 × 10−6

Grid Ha = 4 Ha = 6 Ha = 4 Ha = 6

10 × 10 3.1142 × 10−3 3.8286 × 10−3 2.8555 × 10−3 3.8122 × 10−3

20 × 20 8.1345 × 10−4 9.7631 × 10−4 7.4144 × 10−4 9.7069 × 10−4

40 × 40 2.0911 × 10−4 2.4841 × 10−4 1.9024 × 10−4 2.4685 × 10−4

80 × 80 5.3129 × 10−5 6.2919 × 10−5 4.8308 × 10−5 6.2515 × 10−5

160 × 160 1.3396 × 10−5 1.5854 × 10−5 1.2181 × 10−5 1.5752 × 10−5

Grid Ha = 8 Ha = 10 Ha = 8 Ha = 10

10 × 10 4.5678 × 10−3 5.2448 × 10−3 4.5674 × 10−3 5.2448 × 10−3

20 × 20 1.1441 × 10−3 1.3037 × 10−3 1.1438 × 10−3 1.3037 × 10−3

40 × 40 2.8760 × 10−4 3.2367 × 10−4 2.8752 × 10−4 3.2367 × 10−4

80 × 80 7.2552 × 10−5 8.1256 × 10−5 7.2531 × 10−5 8.1255 × 10−5

160 × 160 1.8261 × 10−5 2.0424 × 10−5 1.8256 × 10−5 2.0424 × 10−5

The Hartmann layers are more and more visible as the magnitude of the magnetic
field increases, as shown in Figure 6. The parameter δ = O

(
Ha−1) refers to the thickness

of the Hartmann boundary layers created by the drop in the velocity due to the Lorentz
force. This implies that their thicknesses are δ ≈ 1/Ha for each Hartmann number.

Channel height

u

Figure 6. The velocity profiles of the Hartmann flow for different values of the Hartmann number.
The black dots represent the analytical velocity for each value of the Hartmann number.

The hydrodynamic case (Ha = 0) implies that there is no magnetic field. In Figure 7,
the behaviour of the magnetic field inside the channel is shown, which can be explained
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due to the boundary conditions (22), the insulating walls, and the conducting fluid. Zero
magnetic field is assumed at the channel inlet and outlet, respectively.

Channel length

M
ag

ne
ti

c
fie

ld

Figure 7. Contour plot of the magnetic field for Ha = 10 for the Hartmann flow.

The increase in the Hartmann number creates a steeper profile of the magnetic field,
as shown in Figure 8.

Channel height

b
·H

a

Figure 8. The magnetic field profiles of the Hartmann flow for different values of the Hartmann
number, multiplied by the respective Hartmann number (bHa). The black dots represent the analytical
velocity for each value of the Hartmann number.

4.2. Numerical Results for the Ferrohydrodynamic Flow

While the flow is disturbed at the magnetic source point, the flow becomes fully
developed further away from the source. This can be seen in Figure 9, which depicts the
case of the stronger magnetic field studied by the authors.

Channel length

u
Ve

lo
ci

ty

Figure 9. Contour plot of the u-velocity for MnF = −0.4 for the FHD flow.

In Table 2, the percentage difference between various grid sizes is depicted. The
unknown parameters have been examined locally, close to the vortex created (point of
interest) by the FHD theory. Along with the percentage difference, the number of equations
solved for each grid case is depicted. A relatively small change in the grid size can create a
larger coupled system of equations than the solver is able to solve.
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Table 2. Number of equations solved simultaneously and percentage difference between grids for
the parameters studied at x = 2.62 and for MnF = −0.4. The difference becomes smaller as the grid
becomes finer.

Grid Equations
% Difference between Grids

u(2.62, y) v(2.62, y) p(2.62, y)

224 × 59 39,648 2.4896 2.7152 2.3424

224 × 79 53,088 1.2088 1.3117 1.3627

224 × 99 66,528 0.7056 0.8986 0.7942

224 × 119 79,968 − − −

Figure 10 shows the local distribution of the u-velocity component at x = 2.62 or
u(2.62, y) for MnF = −0.4, which creates the most disturbance inside the field flow. As the
grid becomes finer, the distributions are closer to each other. The u-velocity takes negative
values, indicating the recirculation of the fluid flow.

Figure 10. Distribution of the u-velocity for the case of MnF = −0.4 at x = 2.62, for various grid sizes.

In Figure 11, the local, steep drop of pressure is presented, which is at the position of
the magnetic source. Higher magnitudes result in steeper drops. This can be explained by
the flow recirculation (creation of vortices), implying that the fluid flows in the opposite
direction. The creation of vortices can also be seen in [5,10,28]. The maximum value at the
channel inlet reduces as the magnitude rises, representing a local stenosis.

The vortices are present even at lower magnitude (Figures 12–15) due to the close
distance of the wire. For magnitudes of 0.7, 0.85, and 1.0, the maximum value of the flow
remains the same as the hydrodynamic case, whereas for 1.15 a slight increase in it is
observed. Figures 12–15 depict the creation of the vortex using the stream lines (white
ones). These figures show a magnification near the magnetic field source. As the magnetic
field source is placed further away from the bottom plate, more intense magnetic fields
are needed for the creation of vortices. As the source is placed closer to the wall, a smaller
magnetic field magnitude is needed for the creation of a vortex. The authors decided not to
include these cases due to space economy, but the case of a fixed position magnetic field
source is presented.
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Channel length

p

Figure 11. The profile of the pressure for a fluid particle close to the bottom channel wall.

Channel length magnification
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Figure 12. Vortex created for MnF = −0.155 near the bottom wall of the channel.
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Figure 13. Vortex created for MnF = −0.225 near the bottom wall of the channel.
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Figure 14. Vortex created for MnF = −0.305 near the bottom wall of the channel.
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Channel length magnification
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Figure 15. Vortex created for MnF = −0.400 near the bottom wall of the channel.

In summary, the Hartmann flow is described by the x-momentum of the Navier–Stokes
and the magnetic-field-induction equations, respectively. The FHD flow is described by the
conservation of mass and the x- and y-momentums of the Navier–Stokes equations, assum-
ing that the magnetic field is always the same and not altered by the flow. Although the
induced magnetic field equation can be implemented in the FHD flow, it is not considered
in this study at all.

The induced magnetic field equation is part of the system in the Hartmann flow,
and with some simplifications the analytical solution of it can be found, as shown in
Equation (23). In the case of the FHD flow, the induced magnetic field equations are not
part of the system of equations, assuming that the magnetic field is always the same, and is
dependent on the spatial parameters only, as shown in Equation (34); hence, there is no
analytical or numerical solution for it in this study.

4.3. Non-Dimensional Numbers

For the problems introduced in this study, specific values for the non-dimensional numbers

Re =
ρu0L

µ
, N =

σLB0

ρµ
, MnF =

µ0χH2
0

ρu2
0

, ∇̄′ = L∇̄. (48)

are applied.
In order to assign values to the dimensionless numbers above, a realistic case will be

studied, which is blood flow in a channel [10]. For this case the density is ρ = 1050 kg m−3,
dynamic viscosity is µ = 3.2 ·10−3 kg m−1 s−1, the characteristic velocity is u0 = 4.0 ·10−2 m s−1,
and the characteristic length of the channel is L = 0.022 m due to the parabolic profile at
the inlet. The electrical conductivity for the blood is σ = 0.8 S/m and the magnetic field
magnitude can be expressed as B0 = µ0H0. The magnetic permeability of the vacuum is
µ0 = 4π · 10−7 N/A2 and the magnetic susceptibility is χ = −6.6 · 10−7.

Substituting the values into Equation (48) gives Re ≈ 300. For the Hartmann flow,
the parameter that changes the behaviour of the fluid flow significantly is the Hartmann
number, where we choose constant values, including the values of the Reynolds and Stuart
numbers inside that constant. For the values of the non-dimensional number MnF the
values above are applied and different magnetic field magnitudes are used depending on
the problem under consideration.

4.4. Conclusions

Hartmann flow: The Hartmann flow describes the flow of an electrically conducting
fluid between two parallel-plate walls as an external induced magnetic field is vertically
applied to the channel’s bottom wall. The application of the magnetic field results in
an increase in the fluid drag due to the Lorentz force opposing the fluid flow. The drop
in velocity results in the creation of the Hartmann layers. The magnetic field in the
channel is also studied, where, due to the electrically conducting fluid, it is affected.
Applying simplifications to the governing equations results in the analytical solution for
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the velocity as well as the magnetic field in the channel. The numerical solutions match
the analytical ones very well, introducing another test problem for the validation of the
numerical procedure.

FHD flow: FHD is a fluid flow based on FHD principles, which describes a fluid flow
with enhanced fluid conductivity so that it can be affected by an external magnetic field
point source, constant in magnitude. The source is an electrically conducting wire placed
close to the bottom wall with a fixed position of (2.5,−0.6). By applying an electrical
current through the wire, a symmetrical magnetic field is created, affecting the fluid in
the channel. The results are the creation of a main vortex near the magnetic field source,
changing the direction of the fluid by the recirculation of the flow close to the magnetic
source. The pressure near the source is drastically decreased, explaining the creation of the
vortex. These pressure changes are similar to the stenosis case of a channel. These results
are the same as previously published studies [10].
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