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Abstract: Our ability to reliably and efficiently predict complex high-Reynolds-number (Re) turbulent
flows is essential for dealing with a large variety of problems of practical relevance. However,
experiments as well as computational methods such as direct numerical simulation (DNS) and
large eddy simulation (LES) face serious questions regarding their applicability to high Re turbulent
flows. The most promising option to create reliable guidelines for experimental and computational
studies is the use of analytical conclusions. An essential criterion for the reliability of such analytical
conclusions is the inclusion of a physically plausible explanation of the asymptotic turbulence regime
at infinite Re in consistency with observed physical requirements. Corresponding analytical results
are reported here for three canonical wall-bounded turbulent flows: channel flow, pipe flow, and
the zero-pressure gradient turbulent boundary layer. The asymptotic structure of the mean velocity
and characteristic turbulence velocity, length, and time scales is analytically determined. In outer
scaling, a stable asymptotic mean velocity distribution is found corresponding to a linear probability
density function of mean velocities along the wall-normal direction, which is modified through wake
effects. Turbulence tends to decay in this regime. In inner scaling, the mean velocity is governed by a
universal log-law. Turbulence does survive in an infinitesimally thin layer very close to the wall.

Keywords: wall-bounded turbulent flows; infinite Reynolds number; mean flow structure; turbulence
structure

1. Introduction

The understanding of the structure of wall-bounded turbulent flows has been a vibrant
topic of classical fluid mechanics for almost a century [1–14]. The problem that the Reynolds
number (Re) usually has a strong influence on the flow structure, and our ability to reliably
study turbulent flows at very high Re using direct numerical simulation (DNS) or experi-
ments is rather limited [15]. Of specific interest and relevance is the asymptotic structure of
wall-bounded turbulent flows at infinite Re, and the Re scaling of how a potentially existing
asymptotic state is reached. Such knowledge can provide valuable guidelines for DNS and
experimental studies, the evaluation of promising new developments as determined through
minimal error simulation methods [16–20], the development of improved turbulence mod-
els [21], the understanding of scaling regimes [22], and the better understanding of asymptotic
structures of other turbulent flows [20]. There exist prior studies on a potential asymptotic
state of canonical wall-bounded flows, but such studies face questions. For example, Kollmann
used pipe flow models that include modeling assumptions in contradiction to the universality
of the law of the wall [23]. Pullin et al. assumed log-law mean velocity variations above a
certain distance from the wall and developed wake model assumptions in conjunction with
debated log-law type assumptions for streamwise turbulence intensities to derive conclusions
about asymptotic turbulence [24].

The motivation for this paper is to address the question about the potential existence
of an asymptotic state of canonical wall-bounded turbulent flows on the basis of recent
modeling of the mean flow and Reynolds shear stress for channel flow, pipe flow, and the
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zero-pressure gradient turbulent boundary layer (TBL) (for simplicity, the zero-pressure
gradient TBL will be referred to simply as TBL) [6,7]. The latter models were obtained
through thorough analyses of the physics of these flows up to the highest available Re.
The model considered is presented next, followed by analyses of outer and inner scaling
consequences. Conclusions are presented in the last section.

2. The Probabilistic Velocity Model

An analytical model for the mean velocity U+ and Reynolds shear stress −⟨u′v′⟩+
introduced by Heinz [6,7] for turbulent channel flow, pipe flow, and the TBL is described in
Table 1. In particular, the Reynolds shear stress −⟨u′v′⟩+ for the three flows considered is
determined via the momentum balance S+ − ⟨u′v′⟩+ = M used in conjunction with models
for the total stress M; see Table 1. The momentum balance also involves the characteristic
shear rate S+ = ∂U+/∂y+. The superscript + refers to inner scaling; we use U+ = U/uτ

and y+ = Reτy for the inner scaling wall distance, where y is normalized by δ (the half-
channel height, pipe radius, or 99% boundary-layer thickness with respect to channel flow,
pipe flow, and the TBL). The friction Reynolds number is defined by Reτ = uτδ/ν, where
uτ is the friction velocity and ν is the constant kinematic viscosity.

Table 1. The analytical PVM model valid for Reτ ≥ 500 [6,7]. Here, BG() refers to the incomplete
beta function [25] with subscript G, and (· · · , · · · , · · · ) refers to channel flow, pipe flow, and TBL.
Corresponding Reynolds shear stress models are given via the momentum balance S+ − ⟨u′v′⟩+ =

M. Here, M refers to the total stress given by M = (MCP, MCP, MBL) used in conjunction with
MCP = 1 − y and MBL = e−y6−1.57y2

.

U+ = U+
1 +

1
κ

ln
(

1 + Hy+/yκ

w + Ky

)
• H =

[
y+/h1

1 + y+/h1

]h3

, K = (0.933, 0.687, 0.285)

• U+
1 = a

[
cBG

(
c +

c
b

, 1 − c
b

)
+ G

c
b (1 − G)−

c
b − Gc+ c

b (1 − G)−
c
b

]
, G =

(y+/a)b/c

1 + (y+/a)b/c

• w = (wCP, wCP, wBL), wCP = 0.1(1 − y)2
[
6y2 + 11y + 10

]
, wBL = e−y(0.9+y+1.09y2)

S+ = S+
1 + S+

2 + S+
3 + SCP

1 + SCP
2

• S+
1 = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c

, κy+S+
2 =

1 + h3/[1 + y+/h1]

1 + yκ/(y+H)
, κy+S+

3 = − 1 + w′/K
1 + w/(Ky)

• SCP
1 = −yS+

1 (1)
1 − S+

1
1 − S+

1 (1)
, SCP

2 = −yS+
2

(
1 −

[
κReτS+

2 (1)
]−1

)
• κ = 0.40, yκ = 75.8, a = 9, b = 3.04, c = 1.4, h1 = 12.36, h3 = 6.47.

The model for the mean velocity U+ and Reynolds shear stress −⟨u′v′⟩+ presented
in Table 1 was derived for Reτ ≥ 500. A specific feature of the model is the approach to
designing it. First, several observational physics requirements were identified. Via analysis
of DNS and experimental data, the model was derived by providing explicit evidence that
the model satisfies all observational physics criteria. The latter included evidence that both
modeled variables and their relevant derivatives accurately represented the corresponding
observations in regard to all the relevant scalings. The model’s excellent performance in
comparison to DNS [26–30] and experimental data [31–34] for channel flow, pipe flow, and
the TBL is described elsewhere [6,7]. These comparisons include a model validation up to
Reτ = 98,190, corresponding to Re ∼ 6.3 M [7]. The velocity model is referred to as the
probabilistic velocity model (PVM) because it determines the distribution function for the
distribution of mean velocities along the wall-normal direction and its related probability
density function (PDF); see the discussion below.

Essential details of the PVM structure are explained in terms of Figure 1. This figure
reveals the mode structure of the PVM given by the contributions S+

1 , S+
2 , and S+

3 to the
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characteristic shear rate S+ = ∂U+/∂y+. The latter mode contributions are related to corre-
sponding velocity contributions U+

1 , U+
2 , and U+

3 . Here, S+
1 and S+

2 (which are only functions
of y+) are inner scaling contributions. For all the three flows considered, S+

1 and S+
2 are the

same. In contrast to that, κy+S+
3 (which is only a function of y) is an outer scaling contribution:

it depends on the flow considered. There are also two inner scale correction terms, SCP
1 and

SCP
2 (see Table 1). They have an irrelevant effect on the mean velocity; these contributions only

matter in regard to the correct calculation of turbulent viscosities for channel and pipe flow. A
relevant conclusion of Figure 1a is that the PVM implies a universal log-law. In particular, the
PVM implies U+ = κ−1ln y+ + 5.03 for all the three flows considered in absence of boundary
effects. This log-law involves a universal von Kármán constant κ = 0.40 for the three flows
considered. As explained in detail elsewhere [7], there are critical Reynolds numbers of
Reτ =20,000, Reτ =63,000, and Reτ =80,000 for the observation of a strict log-law for channel
flow, pipe flow, and the TBL, respectively.
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Figure 1. The log-law indicator κy+S+ (with κ = 0.4) obtained from the PVM is shown in (a) for the
given Reτ and the three flows considered (channel flow: solid line; pipe flow: short dashes; TBL:
long dashes). In (b), the mode contributions κy+S+

1 (red line), κy+S+
2 (cyan line), and κy+S+

3 (green
lines) are shown for Reτ = 106 in inner scaling. In (c), mode contributions κy+S+

2 (cyan line) and
κy+(S+

2 + S+
3 ) (green lines) are shown for Reτ = 106 in outer scaling. There is no visible κy+S+

1
mode contribution.

3. Outer Scaling Implications

The outer scaling implications of the PVM are considered first by focusing on variations
in y. Apart from considering y variations, this requires the use of the appropriate outer
velocity scale U∞, as opposed to the use of uτ for inner scaling variations. The difference
between U∞ and uτ is significant: we have U∞/uτ = U+

∞ = 5.03 + κ−1ln(Reτ/K). An
overview of corresponding scaling variables and their relationships is presented in Table 2.
A difference is made in regard to inner and outer scaling and inner-scale and outer-scale
variables: inner and outer scaling refers to looking at variations along y+ and y, respectively,
whereas inner-scale and outer-scale variables refer to the normalization of variables using
corresponding characteristic velocity and length scales.

Table 2. Overview of inner and outer scaling variables. Here, U+
∞ = 5.03 + κ−1ln(Reτ/K) is the cen-

terline/freestream maximum velocity. Re∗ = ν+t is equivalent to the inner-scale turbulence viscosity.

Outer-Scale Variables Inner-Scale Variables

Scaling velocity and length U∞, δ uτ , δ

Reynolds number Re = U∞δ/ν = U+
∞ Reτ Reτ = uτδ/ν

Turbulence velocity scale u∞ =
√
−⟨u′v′⟩+/U+

∞ = u∗/U+
∞ u∗ =

√
−⟨u′v′⟩+

Turbulence time scale τ∞ = U+
∞/(S+Reτ) = τ∗U+

∞/Reτ τ∗ = 1/S+

Turbulence length scale ℓ∞ = u∞τ∞ = ℓ∗/Reτ ℓ∗ = u∗τ∗ =
√
−⟨u′v′⟩+/S+

Turbulence Re Re∞ = u∞ℓ∞ = Re∗/(U+
∞ Reτ) Re∗ = u∗ℓ∗ = −⟨u′v′⟩+/S+
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Figure 2 shows the outer scaling variations in the outer-scale velocity U+/U+
∞ for

the three flows considered. It may be seen that U+ converges with the constant center-
line/freestream maximum velocity U+

∞ , but the convergence is extremely slow. Upon
closer inspection, Equation (1) shows that the plateau value in these plots is given by
ln(Reτy)/ln(Reτ). This means that not only Reτ has to become sufficiently large, but
ln(Reτ) needs to be sufficiently large, too. This figure supports the view that a mean veloc-
ity equal to U+

∞ cannot be realized in reality because such Reτ values cannot be realized.
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Figure 2. Asymptotic outer velocity scaling with Reτ along y: (a) channel flow, (b) pipe flow, (c) TBL.

A different picture of the convergence of the velocity distribution can be seen by
considering the asymptotic variation of U+ implied by the PVM, which is given by

U+
as = U+

∞ +
1
κ

ln
( Ky

Ky + w

)
= 5.03 +

1
κ

ln
(Reτ

K

)
+

1
κ

ln(Ky) + U+
3 =

1
κ

ln(y+) + 5.03 + U+
3 , (1)

where the definitions U+
∞ = 5.03+ κ−1ln(Reτ/K) and U+

3 = −κ−1ln(Ky+w) are used (U+
3

is the wake contribution to U+ based on S+
3 ). As shown in Figure 3, U+ converges to this

asymptotic scaling at a much lower Reτ : at Reτ = 105, there is hardly any visible difference
between U+/U+

as and unity anymore. There is also hardly any difference between the flows
considered. We note that the neglect of boundary effects (the neglect of U+

3 ) implies the
universal velocity log-law.

y
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+
/U

+ a
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y

( )b

U
+
/U
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s
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3
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s
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Re = 10t

3

Re = 10t

4

Figure 3. Asymptotic outer velocity scaling of U+/U+
as with Reτ along y: (a) channel flow, (b) pipe

flow, (c) TBL.

The physical relevance of the asymptotic velocity distribution can be seen by introduc-
ing the distribution of mean velocities along the wall-normal direction y,

F(U+
as) =

eκU+
as − 1

eκU+
∞ − 1

=
eκ(U+

as−U+
∞) − e−κU+

∞

1 − e−κU+
∞

= eκ(U+
as−U+

∞). (2)

For the flows and range Reτ ≥ 500, the effect of e−κU+
∞ on F(U+

as) is smaller than 0.025%.
Thus, the neglect of e−κU+

∞ is well justified, which explains the last expression in Equation (2).
The corresponding PDF f (U+

as) = dF(U+
as)/dU+

as reads

f (U+
as) = κeκ(U+

as−U+
∞) = κF(U+

as). (3)
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The entropy, SE, related to the PDF, f (U+
as), is defined by SE = −

∫ U+
∞

0 ln( f ) f dU+
as. Using

the definition of f (U+
as) for the entropy, we obtain

SE = 1 − ln κ − e−κU+
∞ (1 + κU+

∞ + ln κ) = 1 − ln κ. (4)

The last expression results from the neglect of e−κU+
∞ , as justified above. Hence, the von

Kármán constant is an entropy measure, κ = e1−SE . It is of interest to compare Equation (2)
and Equation (3), which apply to the flow-specific asymptotic velocity distributions with
corresponding expressions that neglect the flow dependence. According to Equation (1), we
have U+

as = κ−1ln(y+) + 5.03 with U+
∞ = κ−1ln(Reτ) + 5.03 in the latter case. By referring

to the flow-independent distribution function and PDF as F0(U+
as) and f0(U+

as), respectively,
we find the expressions

F0(U+
as) = min(y, 1), f0(U+

as) = κF0(U+
as) = κ min(y, 1). (5)

The distribution functions F and F0 are shown in Figure 4 for the three flows considered.
It can be seen that the influence of the flow considered only modifies F0, obtained by
the neglect of boundary effects. The structure of F0 is the simplest possible interpolation
between the limit cases at F0(0) = 0 and F0(1) = 1, respectively.

y

channel flow
pipe flow

TBL

F

Figure 4. The distribution function F for the distribution of mean velocities along the wall-normal
direction y for the three flows considered. The black dashed line shows F0 obtained by the neglect of
boundary effects.

Characteristic properties of turbulence can be well studied by considering character-
istic outer-scale velocity, time, and length scales u∞, τ∞, and ℓ∞, respectively, which are
defined in Table 2. Instead of directly considering these variables, it is more appropriate to
consider the convergence of the Reynolds shear stress −⟨u′v′⟩+ and turbulence Reynolds
number Re∗ = −⟨u′v′⟩+/S+ based on uτ . We note that Re∗ = ν+t is equivalent to the inner-
scale turbulence viscosity. Given converged profiles for −⟨u′v′⟩+ and Re∗, asymptotic u∗,
τ∗, ℓ∗ and u∞, τ∞, ℓ∞ can easily be calculated.

Figures 5 and 6 present the convergence properties of −⟨u′v′⟩+ and Re∗ = −⟨u′v′⟩+/S+

for the three flows considered. In similarity to the convergence of U+ to U+
as, it is found that

−⟨u′v′⟩+ and Re∗ = −⟨u′v′⟩+/S+ approach their asymptotic values for Reτ = 105. The
implied asymptotic profiles for the turbulence velocity, time, and length scales based on uτ

are given by

u∗ = M1/2, τ∗ =
κy+

1 + κy+S+
3

, ℓ∗ = u∗τ∗ = M1/2τ∗, Re∗ = u∗ℓ∗ = Mτ∗. (6)

Using the relationships presented in Table 2, the implied asymptotic profiles of u∞, τ∞, and
ℓ∞ are found to be given by the following functions of only y:

u∞ =
M1/2

U+
∞

, τ∞ =
κy

1 + κy+S+
3

U+
∞ , ℓ∞ =

κy
1 + κy+S+

3
M1/2, Re∞ =

κy
1 + κy+S+

3

M
U+

∞
. (7)
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Figure 7 presents the corresponding asymptotic distributions of turbulence velocity
scales, time scales, length scales, and turbulence Reynolds numbers for the three flows
considered. Independent of specific distributions, the most relevant observation is that the
turbulence asymptotically decays, as may be seen from the Re∞ trends under consideration
of the fact that Re∞ ∼ 1/U+

∞ → 0, where U+
∞ = 5.03 + κ−1ln(Reτ/K). In correspondence

to that, we find that the turbulence velocity scale vanishes, u∞ ∼ 1/U+
∞ → 0, and the

time scale τ∞ ∼ U+
∞ → ∞. The structure of Re∞U+

∞ = Re∗/Reτ corresponds to the
expectations: for channel and pipe flow, we see damping-function-type distributions along
y that approache a constant Reynolds number at the centerline. For the TBL, the flow
becomes laminar under freestream conditions.
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Figure 5. Asymptotic outer Reynolds shear stress scaling with Reτ along y: (a) channel flow, (b) pipe
flow, (c) TBL.
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Figure 6. Asymptotic outer turbulence Re∗ scaling with Reτ along y: (a) channel flow, (b) pipe flow,
(c) TBL. The difference between Reτ = 104 and Reτ = 105 is hardly visible.
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Figure 7. Asymptotic outer scaling for the three flows considered: (a) turbulence velocity scale
u∗ = u∞U+

∞ [there is no visible difference between black and magenta curves], (b) turbulence time
τ∗/Reτ = τ∞/U+

∞ and length scales ℓ∗/Reτ = ℓ∞ (dashed lines), and (c) Re∗/Reτ = Re∞U+
∞ .

The distribution of the length scale ℓ∞ seen in Figure 7 is of particular interest. In
contrast to the other variables (Re∞, u∞, and τ∞), ℓ∞ is finite over most of the domain. In
particular, near the wall, ℓ∞ follows ℓ∞ = κy according to Equation (7) for all the flows
considered. The latter provides strong support for the suitability of Prandtl’s debated
mixing length concept [35–41]. For channel and pipe flow, ℓ∞ diverges for y → 1, and the
size of turbulence structures can become unbounded. For the TBL case we see that ℓ∞
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approaches zero under freestream conditions, which is consistent with the Re∞ behavior
showing flow laminarization. An interesting observation is that f0(U+

as) = κy is equivalent
to the outer turbulence length scale ℓ∞ = κy for 0 ≤ y ≤ 1, which shows a mean flow—
turbulence balance.

4. Inner Scaling Implications

In regard to the inner scaling y+ variations, there are no wake contributions S+
3

such that S+ = S+
1 + S+

2 , and the momentum balance S+ − ⟨u′v′⟩+ = M reduces to
−⟨u′v′⟩+ = 1 − S+

1 − S+
2 . Using the abbreviation S+

12 = S+
1 + S+

2 , the inner-scale character-
istic turbulence velocity, time, and length scales and Re∗ read

u∗ =
√

1 − S+
12, τ∗ = 1/S+

12, ℓ∗ = u∗τ∗ =
√

1 − S+
12/S+

12, Re∗ = u∗ℓ∗ = (1 − S+
12)/S+

12. (8)

Using the definition of Re∗, the latter relations can be also written as

u∗ =
√

1 − 1/(1 + Re∗), τ∗ = 1 + Re∗, ℓ∗ = Re∗
√

1 + 1/Re∗. (9)

The corresponding outer-scale variables are then given by

u∞ =
u∗
U+

∞
, τ∞ =

τ∗U+
∞

Reτ
, ℓ∞ =

ℓ∗
Reτ

, Re∞ =
Re∗

ReτU+
∞

. (10)

The asymptotic distributions of the velocity and turbulence characteristics are illus-
trated in Figure 8. Figure 8a shows that the convergence of U+ to U+

as with increasing Reτ

is clearly a characteristic feature of outer scaling: there is no such convergence with respect
to inner scaling. This figure also shows the difference between U+

1 /U+
1∞ and U+

2 /U+
1∞

contributions: the effect of U+
2 /U+

1∞ is rather little for the y+ range considered. There is a
remarkable agreement between the variations in U+

1 /U+
1∞ and u∗. Both U+

1 /U+
1∞ and u∗

are driven by the damping of the Reynolds shear stress due to the presence of the wall.
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Figure 8. Asymptotic inner scaling along y+: (a) U+
1 /U+

1∞ and U+
2 /U+

1∞, where U+
1∞ = 15.85 and u∗;

(b) ℓ∗, τ∗, and Re∗; and (c) P∗ = (1 − 1/τ∗)/τ∗. The inset in (a) shows the variation in U+
2 /U+

1∞ for a
much larger range of y+. The dashed lines in (b) shows κy+.

Figure 8b shows the near-wall variations in ℓ∗, τ∗, and Re∗. In agreement with
Equation (9), we see only minor differences between ℓ∗, τ∗, and Re∗. For a sufficiently
large Re∗, we have ℓ∗ = τ∗ = Re∗. Because of τ∗ = κy+/(κy+S+

12) being combined with
the asymptotic κy+S+

12 = 1, the values of ℓ∗, τ∗, and Re∗ asymptotically approach κy+, as
may be seen in Figure 8b. The latter is consistent with the corresponding transition into
outer scaling variations given in Figure 7. The implications for the outer-scale variables
given in Equation (10) are consistent with the corresponding implications of outer scaling:
u∞ and Re∞ asymptotically vanish, and τ∞ goes to infinity. On the other hand, we find
ℓ∞ = κy, i.e., finite ℓ∞ variations, controlled by the distance to the wall.

Figure 8c shows the asymptotic distribution of the production of kinetic energy,
P∗ = (1 − 1/τ∗)/τ∗. The analysis of P∗ variations shows that P∗ has a maximum of
P∗ = 1/4 at τ∗ = 2 corresponding to y+ = 11.0694. Thus, turbulence is still present in inner
scaling at infinite Reτ , although the turbulence decays in outer scaling.
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5. Summary

The asymptotic structure of wall-bounded turbulent flows is reported here for the first
time for three canonical flows independent of a modeling assumption in conflict with the
universality of the law of the wall and other modeling assumptions with uncertain support.
The results obtained can be summarized as follows.

In regard to outer scaling considered to be function of y, there is a trend that the mean
velocity U+ approaches the constant U+

∞ . However, this convergence is so slow that there
are clear differences between U+ and U+

∞ , even for Reτ = 10120. It has to be expected,
therefore, that U+ is still different from U+

∞ under conditions of practical relevance. On
the other hand, U+ converges to U+

as for about Reτ = 105. It is beneficial to discuss this
asymptotic velocity distribution in terms of the implied PDF of the distribution of mean
velocities along the wall-normal direction y. In absence of boundary conditions (in absence
of wake contributions), a linear mean velocity PDF was found to be equivalent to the length
scale distribution of turbulence. The wake effect adjusts the PDF to the boundary conditions.
Considered again in outer scaling, asymptotic outer-scale turbulence characteristic velocity,
time, and length scales observed for about Reτ = 105 reveal features in consistency with
the mean velocity trend toward a spatial smoothing. The turbulence decays: Re∞ and u∞
approach zero. Simultaneously, the turbulence time scale τ∞ approaches infinity, which
indicates frozen turbulence structures. In contrast to the other variables, it is of interest
to note that the turbulence length scale ℓ∞ is finite throughout the domain except at the
centerline for channel and pipe flows. The latter provides strong support for the suitability
of Prandtl’s debated mixing length concept [35]. In particular, not too far from the wall
ℓ∞ is proportional to the distance y from the wall with the von Kármán constant κ as a
proportionality constant.

For infinite Reτ , inner scaling reveals flow features in an infinitesimally thin layer
close to the wall. Inner scaling features (considered as function of y+) of the variables
considered are the following ones. The mean velocity U+ is finite and characterized by the
damping effect of the wall. The behavior of the main component U+

1 /U+
1∞ in this region is

very similar to the corresponding behavior of the turbulence velocity u∗. The correlation
between U+

1 /U+
1∞ and u∗ can be explained by the wall-damping effect on the Reynolds

shear stress. Turbulence survives in this infinitesimally thin layer close to the wall, as can
be seen from the distribution of production P∗ and the u∗ distribution. The characteristic
time and length scales τ∗ and ℓ∗ show trends in consistency with their outer scaling trends:
τ∗ approaches infinity and ℓ∗ approaches κy+ (corresponding to ℓ∞ = κy).

The results reported here are very beneficial in regard to several questions.

1. DNS and experimental studies are supposed to provide essential contributions to
the validation of simpler computational methods. Unfortunately, such studies suffer
significantly from the uncertainty of their predictions for high Reτ [6–8,12]. The results
reported here are, therefore, essential to understand the requirements for accurate
DNS and experimental studies.

2. One of the basic problems of turbulence modeling is the uncertainty of the scale (ϵ or
ω) equation: existing equations are considered to have a rather weak theoretical basis.
Similar to recent work [21], the distributions of turbulence variables determined here
can be used for the validation or improvements of scale equations.

3. The existence and structure of asymptotically stable turbulence regimes is debated
in regard to many turbulent flows (e.g., for complex hump-type flows involving
flow separation [19,20]). The identification of asymptotic Reτ regimes as reported
here matters to such discussions. The latter provides insight into Reτ values needed
to observe asymptotic regimes, and insight of which mean velocity and turbulence
structures enable asymptotically stable turbulent flows.
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