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Abstract: We present a rare exact solution of the Navier–Stokes equations for the Hagen–Poiseuille
flow through a quarter-elliptic tube. Utilizing the separation of variables method, we derive the
solution and report expressions for both the volumetric flow rate and the friction factor–Reynolds
number product.
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1. Introduction

Fluid flow through a tube with an elliptic geometry is of significant interest in fluid
mechanics due to its relevance in various industrial and biological applications, including
its widespread use in the heating, ventilation, and air-conditioning industry, particularly
in finned-tube heat exchangers [1] and the flow of cerebrospinal fluid in perivascular
spaces [2]. The Hagen–Poiseuille flow, a fundamental laminar flow regime, describes the
steady flow of an incompressible fluid through a tube under the influence of a constant
pressure gradient. The understanding of Hagen–Poiseuille flow in elliptic tubes has evolved
over the years through the works of pioneering researchers.

The solution for Hagen–Poiseuille flow in elliptic tubes was first derived in 1868
by Joseph Boussinesq, who found a closed-form analytical expression for the velocity
distribution over the elliptic cross-section and for the volumetric flow rate [3]. In 1879,
Greenhill resolved the Hagen–Poiseuille flow through confocal elliptic cylinders [4]. After
over 13 decades, Alassar and Abushoshah [5] solved the problem of Hagen–Poiseuille flow
in wide semielliptic tubes using separation of variables. This work was later complemented
by Wang [6], who derived the corresponding expressions for deep semielliptic tubes, and
more recently by Kundu and Sakar [7], who analytically and numerically investigated
the Hagen–Poiseuille flow through wide and narrow semielliptic annuli. Other notable
related works include those of Lal [8] and Chorlton and Lal [9], who explored Couette-
Poiseuille flow through a channel with a cross-sectional area bounded by two ellipses of
the same ellipticity. Additionally, a recent study by Lopes and Siqueira [10] presented
solutions for two related problems: Couette flow and Couette–Poiseuille flow in semielliptic
tubes. However, despite significant progress in solving this problem for these various
elliptic configurations, the analysis of a pressure-driven flow through a quarter-elliptic tube
remains to be explored.

The purpose of this work is to solve the Hagen–Poiseuille flow through a quarter-
elliptic tube and to report analytical expressions for the volumetric flow rate and the friction
factor–Reynolds number product. This solution represents a rare exact solution of the
Navier–Stokes equations. Bazant [11] emphasized the analogies between this phenomenon
and sixteen others, spanning six broad fields: fluid mechanics, solid mechanics, heat and
mass transfer, stochastic processes, electromagnetism, and electrokinetic phenomena. Thus,
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by establishing appropriate correspondences, the presented solution holds the potential to
elucidate various physical phenomena, such as the torsion or bending of a beam and the
electrostatic potential in a charged cylinder with a quarter-elliptic cross-section.

This work is presented as follows. In Section 2, the governing equation and the bound-
ary condition for this flow are presented and written in dimensionless form. The problem
is solved in Section 3 using separation of variables in elliptic coordinates. Qualitative and
quantitative results regarding are presented and discussed in Section 4. Section 5 provides
a summary of the main contributions of this communication.

2. Formulation

Consider the steady Hagen–Poiseuille (pressure-driven) flow of an incompressible
Newtonian liquid in a tube of quarter-elliptic cross-section, as depicted in Figure 1. In the
sketch, a and b are the lengths of the semimajor and semiminor axes of the corresponding
full elliptic cross-section. The flow is governed by the Poisson equation

∇∗2w∗ = −G∗

µ
, (1)

where w∗ = w∗(x∗, y∗) is the fluid velocity in the flow direction, G∗ = −dp∗/dz∗ is the
constant pressure gradient, µ is the dynamic viscosity, and ∇∗2 is the Laplacian operator.

Figure 1. Sketch of the quarter-elliptic cross-section.

In the present work, we use a and a2G∗/µ as length and velocity scales, respectively.
Therefore, by defining

w =
w∗

a2G∗

µ

, x =
x∗

a
, y =

y∗

a
, ∇∗ = a∇,

Equation (1) becomes
∇2w = −1. (2)

The aspect ratio,

α =
b
a

, (3)

is the only resulting dimensionless parameter. Furthermore, due to the no-slip boundary
condition, w = 0 on any wall.
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3. Solution

Introducing elliptic coordinates (ξ,θ) [5,10], Equation (2) takes the form

cosh2 ξ0

cosh2 ξ − cos2 θ

(
∂2w
∂ξ2 +

∂2w
∂θ2

)
= −1, (4)

where ξ0 = tanh−1 α represents the curved boundary. The boundary conditions are
w = 0 at θ = 0,

w = 0 at θ =
π

2
,

w = 0 at ξ = 0,
w = 0 at ξ = ξ0.

(5)

After Alassar and Abushoshah [5], we introduce the following change of variables:

w(ξ, θ) = W(ξ, θ)− 1
2

sinh2 ξ sin2 θ

cosh2 ξ0
. (6)

Substituting into Equations (4) and (5), we obtain the Laplace equation:

∂2W
∂ξ2 +

∂2W
∂θ2 = 0. (7)

subject to 

W = 0 at θ = 0,

W =
1
2

sinh2 ξ

cosh2 ξ0
at θ =

π

2
,

W = 0 at ξ = 0,

W =
1
2

tanh2 ξ0 sin2 θ at ξ = ξ0.

(8)

The problem described by Equations (7) and (8) can be solved by separation of variables.
The solution is

W(ξ, θ) =
1

2π

sinh ξ0 sinh(2ξ) sin(2θ)

cosh3 ξ0
+

∞

∑
n=1

An sin
(

nπξ

ξ0

)
sinh

(
nπθ

ξ0

)
+

∞

∑
n=2

Bn sinh(2nξ) sin(2nθ), (9)

where

An =
(−1)n

(
2ξ2

0 − π2n2 sinh2 ξ0

)
− 2ξ2

0

nπ
(
4ξ2

0 + π2n2
)

cosh2 ξ0 sinh
(

nπ2

2ξ0

)
and

Bn =
tanh2 ξ0

[
(−1)n − 2(−1)nn2 − 1

]
2π(n− 1)n(n + 1) sinh(2nξ0)

.

Thus,

w(ξ, θ) = −1
2

sinh2 ξ sin2 θ

cosh2 ξ0
+

1
2π

sinh ξ0 sinh(2ξ) sin(2θ)

cosh3 ξ0

+
∞

∑
n=1

An sin
(

nπξ

ξ0

)
sinh

(
nπθ

ξ0

)
+

∞

∑
n=2

Bn sinh(2nξ) sin(2nθ). (10)
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For the dimensionless volumetric flow rate, we have

Q = −
(
π2 − 8

)
32π

tanh3 ξ0 +
ξ2

0

cosh2 ξ0

∞

∑
n=1

AnCn +
1

8 cosh2 ξ0

∞

∑
n=2

BnDn, (11)

where

Cn =

(−1)n
[

sinh2 ξ0 − cosh
(

π2n
2ξ0

)
cosh2 ξ0

]
+ cosh

(
π2n
2ξ0

)
4ξ2

0 + π2n2

and

Dn =
2n(−1)n − sinh(2ξ0) sinh(2ξ0n)

[
1− (−1)n]− 2n cosh(2ξ0n)

[
(−1)n cosh2 ξ0 − sinh2 ξ0

]
(n− 1)n(n + 1)

.

Note that the friction factor–Reynolds number product is related to Q by [12]

f Re =
8A3

P2Q
. (12)

Here,

A =
π tanh ξ0

4
(13)

is the dimensionless cross-sectional area of the flow,

P = 1 + tanh ξ0 + E(sech2 ξ0) (14)

is the dimensionless wetted perimeter of the cross-section, and E(k) denotes the complete
elliptic integral of the second kind (see, e.g., [13]). It should be noted that tanh ξ0 = α and
sech2 ξ0 = 1− α2.

In the limiting case of α→ 1, it can be shown that

Q =
π

24
− ln 2

2π
, (15)

in agreement with the solution reported by Lopes and Alassar [14], and that

f Re =
12π4

(π2 − 12 ln 2)(π + 4)2 . (16)

In the limit of α→ 0, it is possible to show that the following relationship holds:

f Re = 2π2. (17)

It is possible to demonstrate that this limit also holds true for elliptic and semielliptic tubes.
This finding is noteworthy as it appears to be a novel contribution to the literature. Shah
and London [12] previously reported an approximate value of f Re when α = 0 as 19.739 for
elliptic tubes and observed that it did not approach the parallel plate geometry. However,
they did not acknowledge the possibility of determining its exact value. Furthermore,
it is important to note that the results obtained for the velocity field, flow rate, and f Re
(as described by Equations (10)–(12)) have been validated through independent methods,
namely, finite differences and Rayleigh–Ritz.

Intuitively, one might think that the methodology employed in this section could be
extended to any elliptic sector, as previously performed for the elliptic tube [15], for the
wide semielliptic tube [5], and for the deep semielliptic tube [6]; however, this is not true.
The curves of constant ξ and η in elliptic coordinates are, respectively, confocal ellipses
and hyperbolas. In addition, the x-axis and y-axis are also part of this family of orthogonal
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curves. Thus, it is not possible to use the method of separation of variables a priori for any
elliptic sector, as it cannot be described using the curves of constant ξ and η, except in cases
where the opening angle of the elliptic sector is π/2, π, 3π/2, or 2π. Furthermore, even
though elliptic sectors with an opening angle of 3π/2 and 2π can be formulated in elliptic
coordinates (see Appendix A), their boundary conditions are rather exotic, presenting
a challenge that makes finding solutions through the method of separation of variables
unlikely to work. Thus, it is possible that our work concludes the investigation into tubes
whose cross-sections are elliptic sectors that can be analytically solved through the method
of separation of variables.

4. Results

The dimensionless velocity contours for α = 0.6 are shown in Figure 2. The con-
tours span from 0.2umax to 0.8umax in increments of 0.2umax, with umax representing the
maximum dimensionless velocity in the sector.

Figure 2. Dimensionless velocity contours for α = 0.6, showing normalized velocity contour lines
ranging from 0.2 to 0.8 with increments of 0.2.

Figure 3 shows the dimensionless volumetric flow rate as of the aspect ratio. The
curve is a smooth and gradually increasing function, with flow rate starting at zero and
finishing at π/24− ln 2/(2π) ≈ 0.0205 in the limits of α→ 0 and α→ 1 (quarter-circular
tube), respectively. As the aspect ratio increases, the flow rate rises slowly at first, then
more steeply, due to the nonlinear relationship between the two variables. When compared
to a circular tube, which has a maximum dimensionless flow rate of π/8 ≈ 0.3926 [3], the
flow rate in the quarter-circular tube is much lower, with a ratio of approximately 1:19.
This large difference can be attributed not only to the fact that the cross-sectional area of
the circular tube is four times larger than that of the quarter-circular tube, but also to the
additional retardation in fluid velocity caused by the no-slip condition at the horizontal
and vertical walls, as well as the curved wall of the quarter-circular tube.

The relationship between the friction factor–Reynolds number product ( f Re) and the
aspect ratio α for the quarter-elliptic tube is displayed in Figure 4 and can also be found
in Table 1. For comparison purposes, the friction factor–Reynolds number product of the
semielliptic tube (inferred from Alassar [16] and Abushoshah [5]) and that of the elliptic
tube (cf. Shah and London [12]) were added to the plot. The solid curve depicts the friction
factor–Reynolds number product for the quarter-elliptic tube, the dashed curve represents
it for the semielliptic tube, and the dotted curve corresponds to the elliptic tube. All three
curves exhibit a similar trend, with the friction factor–Reynolds number product decreasing
as the aspect ratio increases. It is worth noting that they all start at f Re = 2π2, which is
the limit when the aspect ratio approaches zero. However, when the aspect ratio is greater
than zero, the quarter-elliptic tube consistently displays a lower friction factor–Reynolds
number product than semielliptic and elliptic tubes for all aspect ratios. Interestingly, when
the aspect ratio of the quarter-elliptic tube is approximately equal to 0.42, the friction factor–
Reynolds number product is equal to 16, which is the friction factor–Reynolds number
product of the circular tube. A parallel behavior is observed in semielliptic tubes when the
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aspect ratio approaches around 0.90. It is also interesting to note that Equation (16) provides
the lower limit for the friction factor–Reynolds number product in quarter-elliptic tubes.

Figure 3. Dimensionless volumetric flow rate (Q) as a function of the aspect ratio α.

Figure 4. Friction factor–Reynolds number product ( f Re) as a function of the aspect ratio α for
the quarter-elliptic tube (solid line), for the semielliptic tube (dashed line), and for the elliptic tube
(dotted line).

The f Re factors presented in Table 1 can be approximated (within ±0.05%) by

f Re = 2π2
(

1− 0.5309α− 0.1839α2 + 1.4313α3 − 1.4616α4 + 0.4933α5
)

. (18)

We observe that the coefficients of this fifth-degree polynomial equation, which was derived
using the least squares method, were chosen to satisfy Equation (17).
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Table 1. f Re values for quarter-elliptic tubes of aspect ratio α.

α fRe

0 19.7392 *

0.1 18.6916

0.2 17.6764

0.3 16.8191

0.4 16.1413

0.5 15.6318

0.6 15.2672

0.7 15.0214

0.8 14.8700

0.9 14.7916

1 14.7687 *

Closed forms are indicated by asterisks.

5. Conclusions

In conclusion, by using the method of separation of variables, we derived analytical
expressions that describe the behavior of fluid flow through a quarter-elliptic tube. The
volumetric flow rate increases as the aspect ratio increases, but it is much lower than that
of a circular tube due to the smaller cross-sectional area and the no-slip condition at the
walls. The friction factor–Reynolds number product decreases as the aspect ratio increases,
and, except for in the limit where the aspect ratio approaches zero, it is always lower for
the quarter-elliptic tube than for the elliptic tube. In this limit, the friction factor–Reynolds
number product of both tubes is the same, equal to 2π2. A fifth-degree polynomial equation
was derived to approximate the f Re factors with high accuracy. Overall, the results of
this study offer valuable insights into the fluid dynamics of quarter-elliptic tubes and can
be useful for the design and optimization of microfluidic devices [17]. Additionally, the
study sheds light on the application of wedge-shaped passages, which have been utilized
in conventional heat-exchanger applications [18].
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Appendix A

In this appendix, we formulate the problem of Hagen–Poiseuille flow in two distinct
tubes whose cross-section is an elliptic sector. The first tube features a three-quarter
elliptic tube (Figure A1a), while the second tube is referred to as a “four-quarter elliptic
tube” (Figure A1b) due to a lack of a better term. This particular tube represents the
limiting scenario where the opening angle of the elliptical cross-section is equal to 2π,
and it is characterized by an infinitely thin wall along the positive x-axis. Note that,
in all that follows, the variables are presented in a dimensionless form, following the
nondimensionalization presented in Section 2.
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We begin by noting that Cartesian coordinates (x, y) are related to the elliptic coordi-
nates (ξ, θ) introduced in Section 3 by

x = c cosh ξ cos θ and y = c sinh ξ sin θ, (A1)

where c = sech ξ0. In the case of the three-quarter-elliptic tube, it follows from Figure A1a
and the relations in Equation (A1) that the appropriate boundary conditions for w are

w = 0 at θ = 0,

w = 0 at θ =
3π

2
,

w = 0 at ξ = 0 for 0 < θ ≤ π

2
,

w = F at ξ = 0 for
π

2
< θ <

3π

2
,

w = 0 at ξ = ξ0.

(A2)

Here, F = F(θ) is an unknown 2π-periodic function such that F(π
2 ) = F(π) = 0. As for

the case of the cross-section depicted in Figure A1b, the boundary conditions are

w = 0 at θ = 0,
w = 0 at θ = 2π,

w = 0 at ξ = 0 for 0 < θ ≤ π

2
,

∂w
∂ξ

= 0 at ξ = 0 for
π

2
< θ <

3π

2
,

w = 0 at ξ = 0 for
3π

2
≤ θ < 2π,

w = 0 at ξ = ξ0.

(A3)

In both problems, a similar feature occurs at ξ = 0. More precisely, in the range where
π/2 < θ < 3π/2, the boundary condition is not of Dirichlet type but, rather, periodic in
(A2) and Neumann in (A3). This boundary segment corresponds to −1 < x < 0 at y = 0,
a segment in the interior region of the fluid domain in the x-y plane, which renders the
application of the method of separation of variables more challenging, if not impossible.

Figure A1. Sketch of the (a) three-quarter-elliptic and (b) four-quarter-elliptic cross-sections.
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