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Abstract: In this paper, an interface-fitted fictitious domain finite element method is developed for
the simulation of fluid–rigid particle interaction problems in cases of rotated particles with small
displacement, where an interface-fitted mesh is employed for the discrete scheme to capture the
fluid–rigid particle interface accurately, thereby improving the solution accuracy near the interface.
Moreover, a linearization and decoupling process is presented to release the constraint between
velocities of fluid and rigid particles in the finite element space, and to make the developed numerical
method easy to be implemented. Our numerical experiments are carried out using two different
moving interface-fitted meshes; one is obtained by a rotational arbitrary Lagrangian–Eulerian (ALE)
mapping, and the other one through a local smoothing process among interface-cut elements. A
unified velocity is defined in the entire domain based on the fictitious domain method, making it
easier to develop an interface-fitted mesh generation algorithm in a fixed domain. Both show that the
proposed method has a good performance in accuracy for simulating a neutrally buoyant particle
in plane shear flow. This approach can be easily extended to fluid–structure interaction problems
involving fluids in different states and structures in different shapes with large displacements
or deformations.

Keywords: fictitious domain method; interface-fitted mesh; fluid–rigid particle interaction; arbitrary
Lagrangian–Eulerian (ALE) method

MSC: 65M06; 76D07

1. Introduction

Fluid–structure interaction (FSI) is a crucial research field in current engineering appli-
cations, see for example [1–7]. Particle motion in shear flow is a typical representative and
has been a hot topic among scholars, with widespread applications in slurry processing [8],
colloid separation [9], and biological cell motion [10]. As early as 1922, Jeffery [11] studied
the motion of elliptical particles in creeping flow and provided an analytical expression
for the relationship between the angular velocity and the angle. Ding and Aidun [12]
performed direct numerical simulations using the discrete Boltzmann method to study the
motion of elliptical particles in simple shear flow and found that the behavior of particles
at low Reynolds numbers agrees well with periodic solutions of Jeffery. Lundell et al. [13]
also conducted numerical studies on the motion of an inertial ellipsoid in a creeping linear
shear flow of a Newtonian fluid and found that the particle motion is similar to Jeffery’s
solution but with the addition of an orbit drift. Furthermore, Pasquino et al. [14] used both
experimental and numerical approaches to study the migration and chaining behavior of
noncolloidal spheres in a worm-like micellar, viscoelastic solution within the shear flow.
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The fictitious domain method is an effective approach for solving FSI problems, which
extends the fictitious fluid into solid particles and imposes constraints on their motions in
the fluid. Initially proposed by Saul’ev in 1963 [15], the fictitious domain method was used
to extend partial differential equations from complex domains to regular ones. Glowinski
et al. [16] analyzed the flow around rigid bodies using the fictitious domain method with
the Lagrange multiplier in the case of known solid motions. Furthermore, under the
assumption that rigid body motions are not known in advance, they directly simulated the
flow around moving rigid bodies in two-dimensional and three-dimensional Newtonian
and non-Newtonian viscous fluids using the fictitious domain method with the distributed
Lagrange multipliers in order to impose constraints on the motion of solid bodies [17].
The distributed Lagrange multipliers-based fictitious domain method for solving fluid–
structure interaction problems can also be found in [3,18]. Hwang et al. [19] proposed a
novel finite element scheme for direct simulation of the simple shear flow of an inertia-
free particle suspension in a Newtonian fluid, applying rigid body conditions on particle
boundaries as traction forces through Lagrange multipliers. Yu et al. [4] use the distributed
Lagrange multipliers-based fictitious domain method in the simulation of the motion of a
spherical particle in a deterministic lateral displacement device. Wang et al. [20] proposed
a one-field fictitious domain method for solving general FSI problems, where only fluid
variables (velocity and pressure) are defined in the whole domain, while structural variables
are no longer defined. This approach not only improves computational efficiency but also
maintains the generality and robustness of the distributed Lagrange multiplier-based
fictitious domain method.

Nevertheless, the fictitious domain method typically employs a uniformly fixed grid
in the entire domain while a moving structural grid on the top of it, which can lead to
computational errors near the moving interface as it cannot effectively track the immersed
boundary. For example, Auricchio et al. [21] have mentioned that the lack of global regular-
ity in the solution of moving interface problems would cause suboptimal convergence of
standard finite element formulation if the computational mesh near the interface is not ap-
propriately modified. Considering the inherent limitations of the fictitious domain method
on fixed grids, it seems necessary to introduce grid modification around the interfaces
to accurately track moving interfaces and improve computational accuracy. For instance,
Wan et al. [22] presented a fictitious boundary method for the simulation of particulate
flows, which incorporates the motion of solids and interfaces as additional constraints to
the governing Navier–Stokes equations, thereby extending the fluid domain to the entire
region. In order to address the issue of low accuracy in boundary approximation, they
dynamically relocated the mesh through a special partial differential equation to capture
the region near the surface of the moving particles with high accuracy.

In this paper, we develop an interface-fitted fictitious domain method for the simula-
tion of fluid-particle interaction problems. On the one hand, compared with the classical
fictitious domain method, our solution accuracy is improved since an interface-fitted mesh
is used to track the motion of particles. We note that additional computational efforts to gen-
erate the body-fitted mesh are required in this proposed method, and two interface-fitted
mesh generation algorithms are given in cases of rotated particles with small displacement.
On the other hand, compared to the classical arbitrary Lagrangian–Eulerian (ALE) method,
we eliminate the requirement of a fixed number of vertices/elements in the fluid mesh by
defining a unified unknown velocity over the entire domain, and instead need to generate
an interface-fitted grid in the fixed entire domain. We note that both the classical ALE
method and the proposed method can deal with FSI problems in cases of particles with
small displacement. But due to the elimination of the requirement of a fixed number of
vertices/elements in the fluid, the proposed method is expected to be capable of dealing
with FSI problems in cases of particles with large displacement without any remeshing
and interpolation.

The rest of this paper is structured as follows. In Section 2, we introduce the model
problem of neutral buoyancy particles moving in a planar shear flow. Then, we present the
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weak formulation based on the fictitious domain method and its ALE description, followed
by temporal and spatial discretization, as detailed in Section 3. Numerical results of circular
and elliptical particles in planar shear flows are presented in Section 4. The conclusions are
reported in Section 5.

2. Model Problems

Let Ω ∈ R2 be a rectangular domain filled with a Newtonian viscous incompressible
fluid and a rigid particle, as depicted in Figure 1. The bottom, right, top and left boundary
of Ω are denoted by Γ1, Γ2, Γ3 and Γ4, respectively. The distance between Γ2 and Γ4 (resp.
Γ1 and Γ3) is denoted by L (resp. D). For any time t ∈ [0, T], the interface between fluid
and rigid particle is denoted by Γt, which divide the domain Ω into two parts: the fluid
domain Ωt

f and the particle domain Ωt
s.

Figure 1. An example of a fluid domain with a particle.

For the fluid, the governing equations are given by the following Navier–Stokes
equations [17],

ρ f
du f

dt
= ρ f g +∇ · σ f , in Ωt

f × (0, T], (1)

∇ · u f = 0, in Ωt
f × (0, T], (2)

where
du f
dt =

∂u f
∂t + (u f · ∇)u f , u f is the fluid velocity, g is the gravity, σ f = −pI +

2µ f D(u f ) is the stress tensor with D(u f ) =
1
2

(
∇u f + (∇u f )

T
)

, p is the fluid pressure, ρ f

and µ f are the fluid density and viscosity, respectively. The initial condition is defined as

u f (x, 0) = u0
f (x), in Ω0

f , (3)

while the boundary conditions are given as follows,

u f (x, t) =− g0, on Γ1 × (0, T], (4)

u f (x, t) =g0, on Γ3 × (0, T], (5)

and

u f ([0, x2], t) =u f ([L, x2], t), ∀ x2 ∈ [0, D], t ∈ (0, T], (6)

σ f n f ([0, x2], t) =− σ f n f ([L, x2], t), ∀ x2 ∈ [0, D], t ∈ (0, T], (7)

where g0 = (U0/2, 0)T , n f is the outward unit normal vector to the boundary of the
fluid domain.
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Equations (4) and (5) indicate that the fluid flow field to be studied exhibits characteris-
tics of a shear flow. Such a characteristic arises when velocities of adjacent fluid layers that
are parallel to each other are different, which can be attributed to the reinforced boundary
conditions. Equations (6) and (7) imply that the fluid velocity is periodic in the x1 direction
with the period L, which serves to restore the scenario of unbounded shear flow in the
horizontal direction as described in Jeffery’s solution.

The rigid particle motion is defined by the following Euler–Newton’s equations [17]
for any t ∈ (0, T],

M
dU
dt

= Mg + F(u f , p f ), (8)

IG
dω

dt
= T(u f , p f ), (9)

dG
dt

= U, (10)

dθ

dt
= ω, (11)

where M =
∫

Ω0
s

ρsdx, ρs and IG =
∫

Ω0
s

ρs
(
(x1 − G1)

2 + (x2 − G2)
2) dx, are the mass, den-

sity, and moment of inertia of the rigid particle, respectively. G = (G1, G2)
T is the center

of mass, U is the velocity of the center of mass, and, ω and θ are the angular velocity and
inclination angle of the particle, respectively. Moreover, the hydrodynamical force and
torque of the immersed rigid particle are defined as

F(u f , p f ) = −
∫

Γt
σ f n f ds, (12)

T(u f , p f ) = −
∫

Γt

−→
Gx⊥ · (σ f n f ) ds, (13)

where
−−−→
G(t)x⊥ = (−(x2 − G2), x1 − G1)

T .
The initial conditions for (8)–(11) are defined as

U(0) = U0, ω(0) = ω0, G(0) = G0, θ(0) = θ0, (14)

where U0, ω0, G0 and θ0 are given initial values. On the fluid-particle interface Γt, the
following interface condition is imposed,

u f (x, t) = U(t) + ω(t)
−−−→
G(t)x⊥, on Γt × (0, T], (15)

which indicates that there is no relative sliding between the fluid and the rigid body.
In summary, all symbols involved in the above model descriptions and their SI units

are also listed in Table 1.

Table 1. Symbol descriptions and their SI units.

Symbols Description Units

L Length of domain m
D Width of domain m
u f Fluid velocity m · s−1

p Fluid pressure Pa
g Gravitational acceleration m · s−2

ρ f Density of fluid kg ·m−2

µ f Viscosity of fluid Pa · s−1

ρs Density of particle kg ·m−2
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Table 1. Cont.

Symbols Description Units

M Mass of particle kg
U Velocity of center of mass m · s−1

G Position of center of mass m
IG Moment of inertia of particle kg ·m2

ω Angular velocity of particle rad · s−1

θ Inclination angle of particle rad
F Hydrodynamic force of particle N
T Hydrodynamic torque of particle N ·m

3. An Interface-Fitted Fictitious Domain Finite Element Method
3.1. Weak Formulation Based on the Fictitious Domain Method

In this section, we introduce a unified velocity field and present a weak formulation of
the aforementioned model problem based on the fictitious domain method.

Introduce Sobolev spaces

Ṽ f =

{
(v f , V , ξ)

∣∣∣∣v f ∈
(

H1(Ωt
f )
)2

, V ∈ R2, ξ ∈ R, v f = V + ξ
−→
Gx⊥ on Γt,

v f = 0 on Γ1 ∪ Γ3, v f is periodic on Γ2 and Γ4

}
, (16)

Q f =

{
q f

∣∣∣∣∣q f ∈ L2(Ωt
f ),

∫
Ωt

f

q f dx = 0

}
. (17)

For any
(

v f , V , ξ
)
∈ Ṽ f , multiplying both sides of (1) by v f , and conducting integra-

tion by parts on the stiffness term, we have

ρ f

∫
Ωt

f

du f

dt
· v f dx + 2µ f

∫
Ωt

f

D(u f ) : D(v f ) dx−
∫

Ωt
f

p f (∇ · v f ) dx

−
∫

∂Ωt
f

v f · (σ f n f ) ds = ρ f

∫
Ωt

f

g · v f dx,
(18)

where we can rewrite the above boundary integral term as follows by using (8), (9), (12)
and (13),∫

∂Ωt
f

v f · (σ f n f ) ds =
∫

Γ1∪Γ3

v f · (σ f n f ) ds +
∫

Γ2∪Γ4

v f · (σ f n f ) ds +
∫

Γt
v f · (σ f n f ) ds

=
∫

Γt

(
V + ξ

−→
Gx⊥

)
· (σ f n f ) ds = −M

(
dU
dt
− g

)
· V − IG

dω

dt
ξ.

Thus, for any (v f , V , ξ) ∈ Ṽ f and q f ∈ Q f , we obtain the following weak formulation
of fluid part,

ρ f

∫
Ωt

f

du f

dt
· v f dx + 2µ f

∫
Ωt

f

D(u f ) : D(v f ) dx−
∫

Ωt
f

p f (∇ · v f ) dx

+ M
(

dU
dt
− g

)
· V + IG

dω

dt
ξ = ρ f

∫
Ωt

f

g · v f dx,
(19)

∫
Ωt

f

q f (∇ · u f ) dx = 0. (20)
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Next, we introduce the particle velocity us, which is defined by

us = U + ω
−→
Gx⊥. (21)

It is easy to check that

dus

dt
=

dU
dt

+
dω

dt
−→
Gx⊥ + ω2−→Gx (22)

and ∫
Ωt

s

−→
Gx dx =

∫
Ωt

s

(x−G) dx =
∫

Ωt
s

(
x−

∫
Ωt

s
x dx∫

Ωt
s

dx

)
dx = 0, (23)∫

Ωt
s

−→
Gx⊥ dx =

∫
Ωt

s
(−(x2 − G2), x1 − G1)

T dx

=
∫

Ωt
s

(
−
(

x2 −
∫

Ωt
s

x2 dx∫
Ωt

s
dx

)
, x1 −

∫
Ωt

s
x1 dx∫

Ωt
s

dx

)T

dx = 0. (24)

For any V ∈ R2 and ξ ∈ R, let vs = V + ξ
−→
Gx⊥. We have

ρs

∫
Ωt

s

dus

dt
· V dx = ρs

∫
Ωt

s

(
dU
dt

+
dω

dt
−→
Gx⊥ + ω2−→Gx

)
· V dx = M

dU
dt
· V , (25)

ρs

∫
Ωt

s

dus

dt
· ξ−→Gx⊥ dx = ρs

∫
Ωt

s

(
dU
dt

+
dω

dt
−→
Gx⊥ + ω2−→Gx

)
· ξ−→Gx⊥ dx = IG

dω

dt
ξ, (26)

ρs

∫
Ωt

s

g · vs dx = ρs

∫
Ωt

s

g · V dx + ρs

∫
Ωt

s

g · ξ−→Gx⊥ dx = Mg · V . (27)

Then for any V ∈ R2 and ξ ∈ R, we can attain

ρ f

∫
Ωt

s

dus

dt
· vs dx−

ρ f

ρs

(
M
(

dU
dt
− g

)
· V + IG

dω

dt
ξ

)
= ρ f

∫
Ωt

s

g · vs dx. (28)

Furthermore, we define a unified velocity

u =

{
u f , on Ωt

f ,
us, on Ωt

s,
(29)

which is defined over the entire domain Ω.
Introduce Sobolev spaces

V =

{
(v, V , ξ)

∣∣∣∣v ∈ (H1(Ω)
)2

, V ∈ R2, ξ ∈ R, v = V + ξ
−→
Gx⊥ on Ωt

s,

v = −g0 on Γ1, v = g0 on Γ3 , v is periodic on Γ2 and Γ4

}
, (30)

Ṽ =
{
(v, V , ξ)

∣∣∣∣v ∈ (H1(Ω)
)2

, V ∈ R2, ξ ∈ R, v = V + ξ
−→
Gx⊥ on Ωt

s,

v = 0 on Γ1 ∪ Γ3, v is periodic on Γ2 and Γ4

}
. (31)
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Note that du
dt = ∂u

∂t + (u · ∇)u. Thus, by combining (19), (20) and (28), we obtain the
final weak formulation of the fluid-particle interaction problem: for any (v, V , ξ) ∈ Ṽ and
q f ∈ Q f , find (u, U, ω) ∈ V and p f ∈ Q f such that

ρ f

∫
Ω

(
∂u
∂t

+ (u · ∇)u
)
· v dx + 2µ f

∫
Ωt

f

D(u) : D(v) dx−
∫

Ωt
f

p f (∇ · v) dx

+

(
1−

ρ f

ρs

)[
M
(

dU
dt
− g

)
· V + IG

dω

dt
ξ

]
= ρ f

∫
Ω

g · v dx, (32)∫
Ωt

f

q f (∇ · u) dx = 0, (33)

M
dU
dt

= Mg + F(u, p f ), (34)

IG
dω

dt
= T(u, p f ), (35)

subjecting to the following initial conditions

u = u0, U = U0, ω = ω0, (36)

where

u0 =

{
u0

f , in Ω0
f ,

U0 + ω0
−−→
G0x⊥, in Ω0

s .
(37)

For the cases of neutrally buoyant particles, i.e., ρs = ρ f , Equation (32) can be simply
rewritten as

ρ f

∫
Ω

(
∂u
∂t

+ (u · ∇)u
)
· v dx + 2µ f

∫
Ωt

f

D(u) : D(v) dx

−
∫

Ωt
f

p f (∇ · v) dx = ρ f

∫
Ω

g · v dx. (38)

3.2. Interface-Fitted Mesh and ALE Mapping

Although the rectangular domain Ω is independent of time in which the unified
velocity u is defined, the fluid-particle interface moves along in time. Thus, we need to
construct an interface-fitted mesh in Ω in order to capture the surface of immersed particle,
and therefore improve the accuracy of numerical simulation.

Let N be a positive integer, ∆t = T/N be the time step and tn = n∆t, n = 0, . . . , N.
Denote by T n

h a triangulation of Ωn := Ωtn , where the superscript n indicates the mesh
is interface-fitted with Γtn . That is, for any edge e in T n

h , e̊ ∩ Γtn
h = ∅, where e̊ denotes the

interior of e. For any subdomain D, T n
h (D) denotes the restriction of T n

h on D.
Generally, constructing such interface-fitted meshes and frequent remeshing can lead

to prohibitive CPU time in the simulation of FSI problems, especially when the displacement
or deformation of the structure is large. In our fictitious domain finite element scheme, the
unified unknown velocity is defined in the fixed and connected domain Ω, which releases
the requirement that the number of vertices in the fluid subdomain needs to be fixed when
an ALE method is used. Although the number of vertices of T n

h needs to keep fixed, it is
much easier to generate an interface-fitted mesh for the entire fixed domain Ω. In fact, some
existing moving mesh strategies, such as those in [23–26], can be employed for generating
such interface-fitted background meshes with some slight modifications.

First, in following the idea presented in [26], one can construct an interface-fitted
mesh and the corresponding discrete ALE mapping in cases of rotated particles with small
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displacement, which is called moving mesh Algorithm 1 in this paper, as illustrated in
Figure 2 and described below.

Algorithm 1: Moving mesh by a rotational ALE mapping.

1. Draw an artificial circular buffer zone, Ωt
r f , in the fluid domain Ωt

f to enclose
the immersed particle Ωt

s and share the same axis of rotation. Denote
Ωt

s f = Ωt
f \Ω

t
r f , and Γt

rs = Ωt
r f ∩Ωt

s f .

2. Triangulate Ω0
f with T 0

h that fits Γ0 and Γ0
rs, i.e., for any edge e ∈ T 0

h , let

e̊ ∩ Γ0
rs = ∅ and e̊ ∩ Γ0 = ∅. Fix the mesh T n

h (Ωn
s f ) as T 0

h (Ω
0
s f ) for n > 0.

3. Rotate T n−1
h (Ωn−1

r f ) together with the particle at the same angular velocity and

about the same axis of rotation to obtain a rotating mesh T̂ n
h (Ωn

r f ).

4. Locally shift the nodes on the artificial interface Γrs associated with T̂ n
h (Ωn

r f ) in
order to find and match with the fixed coordinates of the closest nodes on Γrs
associated with T n

h (Ωn
s f ). Thus, the rotating and conforming mesh T n

h (Ωn
r f ),

further, the total mesh T n
h = T n

h (Ωn
r f ) ∪ T

n
h (Ωn

s f ) are obtained.

We note that the discrete ALE-based mesh velocity, wh, only needs to be computed in
Ωr f , since the mesh T n

h (Ωn
s f ) is fixed. Algorithm 1 guarantees a rigid particle’s vertex of

T 0
h (resp. T 0

h (Ωr f )) is always the same rigid particle’s vertex of T n
h (resp. T n

h (Ωr f )) all the
time, establishing a one-to-one mapping (denoted by Xn

h ) between vertices of T n
h (Ωr f ) and

of T 0
h (Ωr f ).

Figure 2. Moving mesh Algorithm 1: interface-fitted meshes at different time steps.

Next, we present another moving mesh algorithm called Algorithm 2, which is similar
to the method proposed in [23].

We remark that Algorithm 2 may deliver such a interface-fitted mesh T n
h whose rigid

particle’s (resp. fluid) vertices at one time step may be fluid (resp. rigid particle’s) vertices
at another time step (e.g., see the bottom-right part of Figure 3), but still form a one-to-one
discrete ALE mapping between vertices of T n

h and of T 0
h that is still denoted by Xn

h .
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Algorithm 2: Moving mesh by local smoothing among interface-cut elements.

1. Triangulate Ω into a rectangular mesh T̂h with a given mesh size hx (resp. hy) in
x-axis (resp. y-axis) direction that is independent of time t.

2. Inspect all vertices of T̂h in the column-wise lexicographic order, and divide
them into fluid- (black), interface- (red), and rigid particle’s (blue) vertex sets
associated with the current position of fluid-particle interface Γtn , where the red
interface vertices are those vertices closest to Γtn , as shown in the top-left part of
Figure 3.

3. Move all red interface vertices onto the fluid-particle interface to set them as the
closest intersection points between Γtn and T̂h, respectively.

4. Cut each quadrilateral of T̂h with the slash diagonal to obtain a triangular mesh
of Ω, T̃h, where some edges of T̃h may intersect with the interface, as shown in
the top-right part of Figure 3.

5. Locally adjust interface-cut elements of T̃h using vertex smoothing and edge
swapping techniques [24] to enhance the mesh quality, simultaneously, ensure
the edges of each element are all aligned with the fluid-particle interface Γtn .
Thus, an interface-fitted mesh T n

h is generated, as depicted in the bottom-left part
of Figure 3.

Figure 3. Moving mesh Algorithm 2: interface-fitted meshes at different time steps.

Once the interface-fitted mesh T n
h is obtained, the discrete ALE velocity wn

h , which is a
piecewise linear function associated with T n

h , can be computed by

wn
h(P) =

xn(P)− xn−1
(

Xn−1
h ◦ (Xn

h )
−1(P)

)
∆t

(39)
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for any vertex P of T n
h . Moreover, the discrete ALE material derivative is defined as

∂vh
∂t

∣∣∣∣n
x̂

: Ωn → R2 (40)

(x, tn) 7→ ∂vh
∂t

∣∣∣∣n
x̂
(x) =

(
∂vh
∂t

)n
(x) + (wn

h(x) · ∇)vn
h(x). (41)

Associated with the interface-fitted mesh T n
h , the subdomains Ωn

f and Ωn
s are approxi-

mated by Ωn
f ,h and Ωn

s,h, respectively.

3.3. A Interface-Fitted Fictitious Domain Finite Element Method

Define the following finite element spaces

Vn
h =

{
(vh, V h, ξh)

∣∣∣ vh|K ∈ (P2)
2, ∀K ∈ T n

h , V h ∈ R2, ξh ∈ R, vh = V h + ξh
−−→
Gn

h x⊥ on Ωn
s,h,

vh = −g0 on Γ1, vh = g0 on Γ3, vh is periodic on Γ2 and Γ4

}
,

Ṽn
h =

{
(vh, V h, ξh)

∣∣∣ vh|K ∈ (P2)
2, ∀K ∈ T n

h , V h ∈ R2, ξh ∈ R, vh = V h + ξh
−−→
Gn

h x⊥ on Ωn
s,h,

vh = 0 on Γ1 ∪ Γ3, vh is periodic on Γ2 and Γ4

}
,

Qn
f ,h =

{
q f ,h

∣∣∣∣∣q f ,h ∈ L2(Ωn
f ),

∫
Ωt

f ,h

q f ,h dx = 0, q f ,h|T ∈ P1, ∀ T ∈ T n
h (Ωn

f ,h)

}
,

where Pk denotes the set of polynomials with order less than or equal to k.
In Algorithm 1, since only the mesh T n

h (Ωn
r f ) is updated at each time step, we define

un,∗
h to be a piecewise P2 finite element interpolation of un

h in Ωn
r f by letting

un,∗
h (P) = un

h ◦ Xn
h ◦
(

Xn+1
h

)−1
(P) (42)

for any vertex P in T n+1
h (Ωn+1

r f ). The discrete ALE velocity wn+1
h is calculated by (39) only

in Ωn+1
r f . In order to describe the method in a unified formulation, we extend wn+1

h from
Ωr f to the whole domain with zero, and let un,∗

h

∣∣
Ωn

s f
= un

h .

In Algorithm 2, we define un,∗
h to be a piecewise P2 finite element interpolation of un

h
in terms of the same formula (42) but now for each vertex P ∈ T n+1

h . The discrete ALE
velocity wn+1

h is defined in the whole domain and can be calculated by (39).
Then, using the backward Euler scheme, an interface-fitted fictitious domain finite

element method for solving the fluid-particle interaction problem can be written as follows:
for n = 0, . . . , N − 1, find

(
un+1

h , Un+1
h , ωn+1

h

)
∈ Vn+1

h and pn+1
f ,h ∈ Qn+1

f ,h such that

ρ f ∑
K∈T n+1

h

∫
K

(
un+1

h − un,∗
h

∆t
+ (un+1

h · ∇)un+1
h

)
· vn+1

h dx

+ 2µ f

∫
Ωn+1

f

D(un+1
h ) : D(vn+1

h ) dx− ρ f ∑
K∈T n+1

h

∫
K
(wn+1

h · ∇)un+1
h · vn+1

h dx (43)

−
∫

Ωn+1
f

pn+1
f ,h (∇ · vn+1

h ) dx = ρ f

∫
Ωn+1

g · vn+1
h dx,∫

Ωn+1
f

qn+1
f ,h (∇ · un+1

h ) dx = 0, (44)
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M
Un+1

h −Un
h

∆t
= Mg + F(un+1

h , pn+1
f ,h ), (45)

IG
ωn+1

h −ωn
h

∆t
= T(un+1

h , pn+1
f ,h ), (46)

for any
(

vn+1
h , V n+1

h , ξn+1
h

)
∈ Ṽn+1

h and qn+1
f ,h ∈ Qn+1

f ,h , subjecting to initial values

u0
h = u0

h, U0
h = U0, ω0

h = ω0, (47)

where u0
h is a P2 finite element approximation of u0.

Note that the mesh T n+1
h depends on un+1

h . To release the constraint between vh
and (V h, ξh) in the definition of Vn

h , we employ the following Newton’s linearization and
decoupling process.

For given Un+1,m
h ∈ R2, ωn+1,m

h ∈ R, Ωn+1,m := Ωn+1,m
s,h ∪Ωn+1,m

f ,h and T n+1,m
h , we

define

Un+1,m+1
h =

{
vh

∣∣∣ vh|K ∈ (P2)
2, ∀K ∈ T n+1,m

h , vh = Un+1,m
h + ωn+1,m

h

−−−−−→
Gn+1,m

h x⊥ (48)

on Ωn+1,m
s,h , vh = −g0 on Γ1, vh = g0 on Γ3, vh is periodic on Γ2 and Γ4

}
, (49)

Ũn+1,m+1
h =

{
vh

∣∣∣ vh|K ∈ (P2)
2, ∀K ∈ T n+1,m

h , vh = Un+1,m
h + ωn+1,m

h

−−−−−→
Gn+1,m

h x⊥ (50)

on Ωn+1,m
s,h , vh = 0 on Γ1 ∪ Γ3, vh is periodic on Γ2 and Γ4

}
, (51)

Qn+1,m+1
f ,h =

{
q f ,h ∈ L2(Ωn+1,m

f ,h )

∣∣∣∣∣
∫

Ωn+1,m
f ,h

q f ,h dx = 0, q f ,h|K ∈ P1, ∀K ∈ T n+1,m
h

(
Ωn+1,m

f ,h

)}
. (52)

Then we can obtain the solution of problems (43)–(46) by alternatively solving the
discrete problem for the fluid part; find un+1,m+1

h ∈ Un+1,m+1
h and pn+1,m+1

f ,h ∈ Qn+1,m+1
f ,h

such that

ρ f ∑
K∈T n+1,m

h

∫
K

(
un+1,m+1

h − un,∗
h

∆t
+ (un+1,m+1

h · ∇)un+1,m
h + (un+1,m

h · ∇)un+1,m+1
h

)
· vn+1

h dx

+ 2µ f

∫
Ωn+1,m

f ,h

D(un+1,m+1
h ) : D(vn+1

h ) dx− ρ f ∑
K∈T n+1,m

h

∫
K
(wn+1,m

h · ∇)un+1,m+1
h · vn+1

h dx

−
∫

Ωn+1,m
f ,h

pn+1,m+1
f ,h (∇ · vn+1

h ) dx = ρ f

∫
Ωn+1,m

g · vn+1
h dx

+ ρ f

∫
Ωn+1,m

(un+1,m
h · ∇)un+1,m

h · vn+1
h dx, ∀vn+1

h ∈ Ũn+1,m+1
h , (53)∫

Ωn+1,m
f ,h

qn+1
f ,h (∇ · un+1,m+1

h ) dx = 0, ∀qn+1
f ,h ∈ Qn+1,m+1

f ,h , (54)

and the discrete problem for the rigid particle part: find Un+1,m+1
h ∈ R2 and ωn+1,m+1

h ∈ R
such that

M
Un+1,m+1

h −Un
h

∆t
= Mg + F(un+1,m+1

h , pn+1,m+1
f ,h ), (55)

IG
ωn+1,m+1

h −ωn
h

∆t
= T(un+1,m+1

h , pn+1,m+1
f ,h ), (56)

then updating Ωn+1,m+1, T n+1,m+1
h and wn+1,m+1

h using the velocity un+1,m+1
h .

4. Numerical Experiments

In this section, we shall validate the performance of the proposed interface-fitted
fictitious domain finite element method by numerically solving three Stokes flow-rigid
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particle interaction problems with different particle shapes. Two moving mesh algorithms
given in Section 3.2 are both tested. We remark that no remeshing is performed in all
tests, instead, we only need to move some vertices to their new positions in order to
construct an interface-fitted mesh at each time step. On the other hand, since the Stokes
flow is governed by the transient Stokes equations that is obtained by simply dropping the
convection term, (u f · ∇)u f , from Navier–Stokes Equations (1) and (2), its corresponding
interface-fitted fictitious domain finite element approximation in the sense of decoupled
linearization can be easily developed from (53)–(56) by simply dropping convection terms,
(un+1,m+1

h · ∇)un+1,m
h , (un+1,m

h · ∇)un+1,m+1
h and (un+1,m

h · ∇)un+1,m
h , from (53).

In all numerical tests, the computational domain Ω = [0, 2]× [0, 2] (i.e., L = 2 and
D = 2), densities of the fluid and rigid particle are the same as ρ f = ρs = 1 for cases of
neutrally buoyant particles. Moreover, the fluid viscosity µ f = 1, and the shear rate of the
fluid Gs = 1. Therefore, the velocity on Γ1 and Γ3, defined as boundary conditions in (4)
and (5), satisfies U0/2 = GsD/2 = 1.

4.1. Circular Particle

First of all, we consider the case of a circular particle with radius r = 0.15. The mass
center of the circular particle is initially located at (1, 1). The spatial mesh size is h = 1/40
and h = 1/60, and the time step is ∆t = 0.05.

It is known that the relationship between the angular speed and the rotating angle of
elliptical particles in an unbounded shear Stokes flow is as follows [11]

ω = −Gs
r2

a sin2 θ + r2
b cos2 θ

r2
a + r2

b
. (57)

The theoretical angular velocity given by the above equation is related to the ratio of
ra and rb, independent of their specific values. Nevertheless, the values of ra and rb used in
the numerical experiment should be as small as possible as Jeffery’s solution is derivated
under the assumption that the range of the domain is much larger than the particle size so
that to minimize the influence of solid particles on the fluid. Thus, the angular speed of a
circular particle is about −Gs/2 = −0.5 in the case of ra = rb = 0.15.

Figure 4 shows snapshots of the velocity field and the pressure field surrounding
the circular particle obtained by moving-mesh Algorithms 1 and 2 with h = 1/40 and
h = 1/60, respectively. It can be observed that the pressure near the fluid-particle interface
is higher on the upstream side and lower on the downstream side, since the particle locates
at the center of the plane shear flow.

The plot of the angular speed versus the angular displacement is reported in Figure 5.
It can be observed that the circular particle inside the shear flow eventually reaches a steady
state. The obtained stable angular velocity is −0.4948 with h = 1/40 and −0.4945 with
h = 1/60 by Algorithm 1, and −0.4946 with h = 1/40 and −0.4947 with h = 1/60 by
Algorithm 2, respectively. They are all in good agreement with Jeffery’s solution (57).

Table 2 and Figure 6 present angular speeds obtained by two moving mesh algorithms
with different radii of circular particles when h = 1/60. Observations indicate that as the
radius of circular particles decreases, the angular velocity tends to approach −0.5. The
inverse process of this behavior can be ascribed to the increasingly subtle influence of
particles on the surrounding fluid due to the increasing particle size.
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Figure 4. Circular particle: the velocity field (Algorithm 1: top-left; Algorithm 2: bottom-left) and
pressure field (Algorithm 1: top-right; Algorithm 2: bottom-right).

Figure 5. Circular particle: the angular speed versus the angular displacement.

Table 2. Circular particle: angular speeds obtained by two moving mesh algorithms with different
radii of circular particles.

Radius r 0.100 0.125 0.150

Algorithm 1 −0.4971 −0.4967 −0.4945
Algorithm 2 −0.4975 −0.4963 −0.4947
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Figure 6. Circular particle: angular speeds obtained by two moving mesh algorithms with different
radii of circular particles.

4.2. Elliptical Particle

Next, we consider an elliptical particle with semi-major axes ra = 0.2 and rb = 0.1.
The particle’s mass center is initially located at (1, 1) with the inclination angle θ = π/4
toward the positive x1-axis direction. The other parameters are the same as those used in
the case of circular particles.

According to (57), while aligning along the x1 axis, the elliptical particle reaches
the minimum angular velocity of −0.2 since it is almost parallel to the direction of fluid
velocity, resulting in the minimum hydrodynamic torque experienced. On the other hand,
while aligning with the x2 axis, the particle attains the maximum angular velocity of −0.8
since it is nearly perpendicular to the direction of fluid velocity, leading to the maximum
undergoing hydrodynamic torque.

Figure 7 shows snapshots of the velocity field and the pressure field surrounding
elliptical particles obtained by moving-mesh Algorithms 1 and 2 with h = 1/40 and
h = 1/60, respectively. The same phenomenon, i.e., the pressure near the fluid-particle
interface being higher on the upstream side and lower on the downstream side, can also be
observed in this case.

The angular speeds obtained by the proposed numerical method are also compared
with Jeffery’s solution in Figure 8, illustrating that as the angle changes from kπ to kπ +
π/2, the major axis of the elliptical particle progressively aligns perpendicular to the
direction of fluid velocity. This alignment leads to an augmentation in hydrodynamic
torque, concurrently increasing the angular velocity. Conversely, as the angle changes from
kπ + π/2 to kπ + π, the major axis of the elliptical particle gradually aligns parallel to the
direction of fluid velocity. As a consequence, there is a reduction in hydrodynamic torque,
causing a gradual decrease in the angular velocity. The angular velocities obtained by
Algorithm 1 lie in the range of [−0.8001,−0.1917] when h = 1/40 and of [−0.7958,−0.1932]
when h = 1/60, while ranging from −0.7899 to −0.2000 when h = 1/40 and from −0.7933
to −0.1962 when h = 1/60 if Algorithm 2 is applied. They all agree well with Jeffery’s
solution (57).
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Figure 7. Elliptical particle: the velocity field (Algorithm 1: top-left; Algorithm 2: bottom-left) and
the pressure field (Algorithm 1: top-right; Algorithm 2: bottom-right), where the color change from
red to blue denotes a decreasing magnitude of the shown quantity.

Figure 8. Elliptical particle: the angular speed versus the angular displacement.

5. Conclusions and Future Work

In this paper, we propose an interface-fitted fictitious domain finite element method for
fluid–rigid particle interaction problems. A main ingredient of the approach is to introduce
a unified velocity defined in the entire domain based on the fictitious domain method to
eliminate the requirement of a fixed number of nodes in the fluid subdomain that is usually
required by the ALE method. Another main ingredient is to use an interface-fitted mesh to
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capture the interface of fluid and rigid particles to improve the accuracy of the numerical
simulation. Both ingredients are based upon ideas that an interface-fitted mesh may lead
to a more accurate numerical solution, and, an interface-fitted mesh generation algorithm
in a fixed domain is easier to develop in contrast to that in a time-dependent domain.

For interface-fitted mesh algorithms, the classical ALE method usually makes the
fluid mesh move by solving a PDE-type of ALE mapping that subjects to the Dirichlet
boundary condition given by the structural displacement on the interface, which does
not support structural motions with large displacement/deformation, as they require a
fixed number of mesh nodes/elements in the fluid domain. Otherwise, if the fluid mesh
quality becomes too poor due to a large structural motion, then the fluid domain has to be
re-meshed at each time step to resume the ALE-like computations on the newly generated
mesh which, however, no longer holds a fixed number of mesh nodes in the fluid domain,
resulting in additional interpolation errors. But there is no such obstacle in our developed
numerical method. In the future, more attempts at simulating realistic FSI problems with
large structural displacement or deformation will be studied by following similar ideas
presented in this paper.
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