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Abstract: Sour gas in hydrocarbon reservoirs contains significant amounts of H2S and smaller
amounts of CO2. To minimize operational costs, meet air emission standards and increase oil
recovery, operators revert to acid gas (re-)injection into the reservoir rather than treating H2S
in Claus units. This process requires the pressurization of the acid gas, which, when combined
with low-temperature conditions prevailing in subsurface pipelines, often leads to the formation
of hydrates that can potentially block the fluid flow. Therefore, hydrates formation must be
checked at each pipeline segment and for each timestep during a flow simulation, for any varying
composition, pressure and temperature, leading to millions of calculations that become more
intense when transience is considered. Such calculations are time-consuming as they incorporate
the van der Walls–Platteeuw and Langmuir adsorption theory, combined with complex EoS
models to account for the polarity of the fluid phases (water, inhibitors). The formation pressure
is obtained by solving an iterative multiphase equilibrium problem, which takes a considerable
amount of CPU time only to provide a binary answer (hydrates/no hydrates). To accelerate such
calculations, a set of classifiers is developed to answer whether the prevailing conditions lie to
the left (hydrates) or the right-hand (no hydrates) side of the P-T phase envelope. Results are
provided in a fast, direct, non-iterative way, for any possible conditions. A set of hydrate formation
“yes/no” points, generated offline using conventional approaches, are utilized for the classifier’s
training. The model is applicable to any acid gas flow problem and for any prevailing conditions
to eliminate the CPU time of multiphase equilibrium calculations.

Keywords: hydrates; acid gas; formation conditions; Machine Learning; classification algorithms

1. Introduction

Many hydrocarbon reservoirs contain a considerable amount of H2S and, potentially,
CO2 content, which has to be separated at gas plants by isolating the acid content from
the hydrocarbons in amine units. This way, a natural “sweet” gas product is formed with
specifications appropriate for transport to a variety of end users or for on-site consumption
for operation energy demands [1,2]. Acid gas is composed mainly of H2S and/or CO2,
water vapor, arriving from the sour gas sweetening process, and contaminants such as small
amounts of methane and heavier hydrocarbons [3]. Typically, the resulting acid gas waste
stream is processed in sulfur recovery units (SRUs), such as the Claus unit, where H2S is
converted to elemental sulfur [2,4]. However, SRUs are not a major revenue generator due
to the economically unattractive sulfur market price, whereas, air emission standards and
regulatory authorities are becoming increasingly strict. As a result, oil and gas operators
face an expanding economic burden and are in search of environment-friendly and cost-
effective alternative methods for dealing with acid gases produced in association with sour
natural resources [1,5].
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One such alternative is acid gas (re-)injection (AGI) into suitable subsurface reservoirs
combining, thus cutting operating costs due to the Claus unit deactivation, reducing sulfur
emissions into the atmosphere and increasing oil recovery [2,5]. In a basic AGI scheme
(Figure 1), the produced reservoir gas undergoes a one- or two-stage absorbing process
where it contacts an amine solution. The water-saturated acid gas mixture is then separated
from the amine unit at low pressures (35 to 70 kPa) and at relatively high temperatures and
is typically compressed in three or four stages to arrive at sufficiently high pressure for
its injection into the subsurface formation [6,7]. The high-pressure acid gas flows through
pipelines to the well site, arrives at the wellbore in a dense-fluid (liquid or supercritical)
state, and finally gets injected into the reservoir through the well tubing [7]. Depending
on the composition and the specifications set by the operator, it may also be necessary to
dehydrate the acid gas to moderate corrosion [8].
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Gas hydrates are white, solid, ice-like structures of hydrogen-bonded cavities of water
molecules, in which gas molecules, H2S and CO2 in the acid gas treatment context (typically
smaller than 0.9 nm), are encapsulated in the cavities of the hydrate’s crystallized cage-like
lattice (Figure 2) under low temperature and elevated pressure conditions. Their structural
stability depends on the van der Waals and London forces developed by the interactions
between the host (water molecules) and the guest (gas molecules) components [9]. The
required conditions for their formation are sufficient gas and water supply under suitable
pressure and temperature conditions [10,11]. These conditions are indicated by the p-T
phase envelope, also known as the hydrate equilibrium or hydrate dissociation curve
which defines the boundary line below which (i.e., at lower temperatures and/or at higher
pressures) hydrates might form [5].

Hydrates are considered a promising energy technology for the future as the amount
of methane trapped in subsurface formations is enormous. However, they also are a long-
standing challenge faced by the chemical industry when it comes to flow in pipelines
and related equipment, as they are responsible for severe flow assurance issues, such as
pipeline plugging, thus posing economic, safety, health and environmental risks [5,12].
When it comes to subsea or permafrost pipelines, the extreme temperature conditions
prevailing in such environments severely increase the risk of hydrate formation leading
to new challenges in production operations and imposing the need for additional safety
control procedures [13,14]. The risk of hydrate formation can be mitigated by continuous
injection of thermodynamic inhibitors, such as monoethylene glycol (MEG) [15] which
causes a shift of the hydrate equilibrium curve (phase envelope) to lower temperatures and
to higher pressures [16]. As this technique imposes significant additional operational costs,
the accurate determination of the pressure and temperature conditions of hydrate formation
using complex computational fluid dynamics (CFD) simulations becomes necessary.
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For the case of sour/acid gas re-injection purposes, the hydrate formation risk is high
due to the nature and prevailing conditions of this operation. Hydrates occur mostly in
transportation pipelines, restrictions (chokes or valves) due to the Joule–Thompson effect,
as well as at the plant restart following shut-in operations where transient conditions are
observed [18]. Indeed, after the acid gas is compressed, it is directed to subsurface pipelines
where the inevitably low-temperature prevailing conditions often lead to the formation
of hydrates that can potentially block them. The best possible scenario would be for the
acid gas to be thermally controlled sufficiently above the hydrate formation temperature
and, based on the pipeline length and the seawater temperature, to arrive at the injection
point (wellhead) before its temperature arrives at the formation one. Nevertheless, in cases
where long pipelines must be constructed due to a large distance between the compression
and the injection point, the acid gas temperature can potentially reach the temperature
of the subsurface environment that, especially in deepwater and permafrost areas, can be
lower than the hydrate formation one. The course of action in such cases is usually decided
based on the selected surface injection design and can include a mandatory dehydration
system or, if dehydration is not considered feasible due to economic, design or operating
constraints, the insulation of the pipeline and its heating using electric resistances or the
injection of an inhibitor (e.g., methanol) can be alternatively investigated [19].

Clearly, engineers must perform a thorough investigation on the possibility of hy-
drates’ appearance based on accurately predicting the hydrate formation conditions in
all liable operating systems and parts to better secure the safety of the operations and,
most importantly, mitigate safety, health and environmental risks. Such predictions are
typically based on complex thermodynamic calculations which check for hydrates forma-
tion during the course of CFD simulations, at each segment of a pipeline network and
for each timestep, for any varying composition, pressure and temperature. Millions of
such calculations are needed that can become even more intense when transient, rather
than steady-state conditions, are anticipated. The complexity is attributed to the use of
the van der Walls–Platteeuw theory in conjunction with the Langmuir adsorption theory,
further combined to quite complex fluid models to account for the polarity and electrolyte
properties of the fluids phases (i.e., water and inhibitors), such as the cubic plus association
(CPA) one [20]. Much more complex calculations are required to identify the exact hydrate
type formed (sI or sII) [21].

To significantly accelerate such calculations, ML methods have been proposed. The
concept of ML entails a set of techniques that allow the generation of computational
models representing physical problems without the demand to mathematically express
first principle laws. These models are developed (trained) entirely by the use of data
gathered through the observation of a system and they offer explicit computational tools
to understand and control the system under study [22]. Among other applications, ML
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methods are used to solve regression and classification problems. In the former, the model’s
input is mapped to one or more continuous quantitative variables whereas in the latter,
the purpose is to assign the input to one out of a number of qualitative/discrete categories
(labels) [23]. In their basic form, binary classification problems assign the input to classes
such as yes/no, 0/1, etc., although multiclass problems can be handled as well. During
their training, classifiers learn each class’s decision boundary using ML algorithms that try
to minimize the misclassification rate [24], that is, the number of data points for which a
wrong class is assigned. The model development is performed using training data, which
consists of several input variable samples as well as the desired output which is represented
by a class for each sample (thus rendering the learning strategy as a supervised one).

As the Machine Learning (ML) community progressively expands, the number
of ML-based projects has significantly increased, as evidenced by the successful im-
plementation of several methods for a variety of engineering problems, such as for
EOR-related production optimization [25,26], history matching [27,28], field develop-
ment planning [29], phase behavior predictions [22,30], waterflooding processes [31],
gas lift optimization [32], etc. More specifically, in the context of hydrate formation
prediction and related subjects, Yu and Tian [33] developed Random Forest, Naïve Bayes
and Support Vector Regression models to determine the formation conditions of nat-
ural gas hydrates. Similarly, Qasim and Lal [34] presented four different case studies
involving the use of ML methods for gas hydrates prediction purposes. Suresh et al. [35]
developed three ML algorithms based on Artificial Neural Networks, the Least Square
version of Support Vector Machines (LSSVM), and Extremely Randomized Trees. They
evaluated their accuracy in predicting gas hydrate formation conditions by using nat-
ural gas composition, pressure and inhibitor concentration as input to predict hydrate
formation temperature. Finally, Kumari et al. [36] examined LSSVM and ANN models in
conjunction with Genetic Programming and Genetic Algorithms to predict the stability
conditions of natural gas hydrates.

In this work, a set of classifiers is proposed to handle the hydrates formation question
in acid gas flow simulations. The ML models answer whether the prevailing conditions at
any pipeline segment and at any timestep during the simulation lie to the left (i.e., where
hydrates are formed) or to the right-hand side of the phase envelope of the fluid’s compo-
sition where hydrates formation is not favorable. Eventually, the classifiers will provide
a clear answer to the hydrates formation question directly, in a non-iterative fashion, for
any possible composition and prevailing conditions, in a tiny fraction of the time required
by the conventional iterative, complex and CPU-demanding process. Moreover, they can
account for arbitrarily high operating pressures and acid gas compositions containing vari-
ous amounts of impurities and inhibitors. A large set of hydrate formation “yes/no” test
points are generated offline, using the conventional, rigorous approach. Subsequently, the
test data is introduced to various classifying ML architectures which are trained to provide
rapidly the correct hydrate formation answer. The prediction capability and the CPU time
gain of the developed tool are demonstrated by simulating the flow conditions along large
pipeline networks and for a variety of acid gas compositions. The developed model is
directly applicable to any acid gas pipeline problem and for any prevailing conditions
to drastically reduce the CPU time spent for multiphase equilibrium calculations during
heavy-duty CFD flow simulations.

The rest of the paper is structured as follows: Section 2 discusses the existing rigor-
ous methods to determine hydrate formation conditions. In Section 3, the classification
techniques tested in this study are presented, including Decision Trees, Random Forests,
Support Vector Classifiers and classification Neural Networks. Additionally, this section
elaborates on the methodology used for acquiring the training data. Section 4 presents a
thorough analysis of the obtained results followed by an acid gas reinjection design case
study. Section 6 concludes the paper with the final findings.
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2. Determination of Hydrates Formation Conditions
2.1. Thermodynamic Approach

The study of hydrate phase equilibrium has a long history spanning several decades.
In the 1940s, Wilcox et al. [37] developed a semi-empirical model that employed the
equilibrium constants (k-values) method and relied on the theory of solid phase equilibrium
to create a corresponding hydrate phase equilibrium chart. Later in 1989, Mann et al. [38]
introduced an updated chart for CO2, H2S and nitrogen gas hydrates to enhance the
accuracy. In 1988, Holder et al. [39] introduced the first empirical correlations for single-
component gas hydrate phase equilibrium. Markogon [40] and Kobayashi et al. [41]
expanded these empirical correlations to account for multiple-composition natural gas and
developed correlations based on gas gravity.

These charts and empirical correlations were extensively used in early hydrate phase
equilibrium prediction but have become largely outdated with the advent of more precise
rigorous thermodynamic models. Currently, the existing thermodynamic models for
hydrate phase equilibrium are founded on the base model proposed by van der Waals and
Platteeuw [42] as discussed below. Classic stability analysis is typically used to examine
whether some specific fluid phase is formed in a mixture at given pressure and temperature
conditions. When it comes to hydrates, there is no simple stability algorithm to provide a
single binary answer (hydrate forming/no forming) and the presence of hydrates can only
be examined by comparing the prevailing pressure (temperature) to the hydrates formation
one at current temperature (pressure). This approach requires that the hydrates’ formation
conditions are estimated using rigorous thermodynamic methods. Figure 3 depicts an
example hydrates phase diagram formation curve for a gas mixture of C2H6 and C3H8.
Various phase boundaries can be observed depending on the presence of hydrates and
their specific structure type (sI or sII).
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Estimating hydrates formation pressure or temperature has been a hot topic in ther-
modynamics since 1960 when van der Waals and Platteeuw presented the first rigorous
approach. The idea lies in that at hydrate formation conditions, all phases present exhibit
the same water fugacity and that hydrates appear at an infinitesimal quantity, that is

f H
w = f L

w = f G
w = f I

w (1)

where superscripts H, L, V, I denote hydrates, liquid, gas and ice (if applicable) phases.
Therefore, estimating the formation conditions requires the solution of a multiphase phase
split problem to determine the amount and composition of each phase present [44]. The
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computational cost to obtain the fugacity of water in the fluid phases is moderate as
complex Equation of State models, such as the CPA one [20], need to be incorporated,
the complexity of which is significantly higher than that of simple cubic EoS models [45].
However, the estimation of water fugacity in the hydrate phase is very cumbersome as acid
gas molecules are assumed to be trapped in the water molecules’ cage through adsorption.
Langmuir’s theory is utilized to describe the thermodynamics of adsorption incorporating
complex potential functions such as those proposed by Kihara [46].

Acid gases, specifically H2S, play a significant role in altering the phase equilibrium
of gas hydrates during acid gas injection operations since their presence affects both the
stability and formation of hydrates. When H2S and CO2 are present in an injection system,
they participate in hydrate formation along with other components and they can form
hydrates at higher temperatures and lower pressures compared to methane (the dominant
constituent of natural gas), thereby expanding the hydrate stability zone. In other words,
the presence of these acid gases lowers the temperature and pressure thresholds for hydrate
formation. Figure 4 illustrates the calculated hydrate formation curves for three different
gases: a sweet gas, the sour gas obtained by enriching the sweet one with 20 mole % CO2,
and 20 mole % H2S. As demonstrated, the impact of H2S is significantly more pronounced
than that of CO2. While CO2 slightly depresses (shifts to the left) the hydrate formation
condition, H2S considerably promotes hydrate formation [47].
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Wu and Carroll [48] performed an experimental procedure to test the hydrate for-
mation of 4 sour gas mixtures with increasing H2S content (8.3, 8.4, 11.68 and 28.8%),
concluding with the following remarks:

• The hydrate formation temperature rises with an elevated H2S content and, specifi-
cally, when it exceeds 10%, there is a notable increase in the temperature of hydrate
formation. For gas containing less than 10% H2S, the increase in hydrate formation
temperature is relatively small, but not insignificant.

• When the gas contains more than 30% H2S, the hydrate formation temperature be-
comes comparable to that of pure H2S.

• The hydrate formation temperature shows a rapid increase with pressure changes at
lower pressures. However, at higher pressures, the hydrate formation temperature
changes more gradually, indicating that it is more sensitive to pressure variations at
lower pressure levels.
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The thermodynamics of hydrate formation is also influenced by the molecular size
and shape of the gas. Acid gas (CO2 and H2S) have larger molecular sizes compared to
methane and thus prefer to occupy larger cavities in the hydrate structure. This may lead
to a change in the distribution of hydrate structures, potentially causing the hydrate to shift
from a structure I (sI) to a structure II (sII) depending on the composition. Furthermore,
acid gases affect the stability of the hydrate. CO2 hydrates are less stable than methane
hydrates, implying that, in a mixed system, the presence of CO2 could destabilize the
hydrate. However, H2S forms more stable hydrates than methane, so it can stabilize
hydrates in a mixed system.

Strictly speaking, crossing the hydrates formation boundary does not necessarily mean
that blockage will immediately take place. In fact, hydrates are spread in the flowing acid
gas phase which is continuously enriched in solid particles, forming a “slurry”. Although
the deposition, which will eventually lead to pipeline blockage, starts later, the initiation of
the process acts as a warning to engineers who need to handle this issue as soon as possible.

It should be noted that this work focuses on hydrate generation rather than on hy-
drate blockage which requires real-time information and detailed knowledge of the exact
conditions along the pipelines. Nevertheless, anticipating the blockage problem using a
comparison to the phase envelope is the way engineers and related software go when first
dealing with a network design problem. Steady-state network simulations are used to
roughly evaluate whether hydrates endanger the acid gas flow as well as to estimate the
inhibitors’ dosage, if needed. Getting further with a fully detailed analysis is not a common
task, especially for small players in the market, as it requires plenty of monitoring data
which will be utilized to tune and run a representative model of the flowing conditions and
predict in detail hydrates blockage.

The commercial software available to the petroleum industry only handles steady-state
flow conditions where time derivatives are equal to zero as is the case with Pipesim by
SLB, Prosper by Petroleum Experts, HYSYS by Aspen and UniSim by Honeywell. As a
result, handling the hydrates formation effect in a fully detailed level where subcooling
and eventually aggregation take place needs to be handled by transient analysis. OLGA
by Schlumberger and HYSYS Dynamics by Aspen are suitable products for that kind of
analysis. Furthermore, according to the industry’s experience, engineers’ expertise in a
corporate environment is usually focused on steady-state solutions rather than transient
ones as the latter are much more complex to handle. To satisfy that need of the industry,
software developers have focused mostly on steady-state products. Therefore, this work
aims at providing an easy-to-embed methodology to improve the speed of exactly this kind
of simulation where the only criterion that can be applied is the comparison of running
conditions against the thermodynamically defined hydrate formation ones.

2.2. Classification Approach

Estimating the formation pressure (temperature) at a given temperature (pressure)
is a complex task that requires multiple iterative calculations and consumes a significant
part of the total acid gas flow simulation time as it involves the computation of numerous
intermediate values such as components’ fugacity, Langmuir constants and cell potentials.
On the other hand, the stability question eventually only requires a binary yes/no answer
which, since rigorous thermodynamics cannot provide that, ML methods can be utilized
instead.

Let z, p and T correspond to the flowing stream composition and the pressure and
temperature prevailing conditions. Let also d(z, p, T) denote a function that exhibits

• Positive values when the prevailing conditions do favor hydrates formation;
• Negative values when the prevailing conditions do not favor hydrates formation;
• Zero value exactly at the hydrates formation phase envelope.
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Function d(.) is known as a “discriminating function”, the sign of which suffices to
clearly determine the existence or not of hydrates since

d(z, p, T) < 0⇒ No hydrates
d(z, p, T) > 0⇒ Hydrates f ormed

d(z, p, T) = 0⇒ Point on the phase envelope
(2)

To generate such a model, classification methods from the ML field, such as Decision
Trees or Support Vector Machines can be utilized. The training dataset can be generated by
picking random input points within the expected operating space (z, p, T) and then running
offline the rigorous hydrates stability algorithm to obtain the corresponding class label,
i.e., whether hydrates are formed or not. Subsequently, the training dataset is forwarded
to the training algorithm which generates the discriminating function form employing an
iterative procedure known as the “training” of the classifier.

As a simple example consider a fixed acid gas composition case and a set of training
points, i.e., combinations of potential pressure and temperature values. In Figure 5, points
in the green-colored area correspond to conditions where hydrates formation is favorable
as opposed to those in the blue background where pressure is too low or temperature is
too high to allow hydrates to form. The classifier training aims at developing an explicit
expression to evaluate the red line which separates the points in the two areas without
allowing for misclassifications. Clearly, the more training data points, the more densely
each area is populated, hence, the closer the red discriminating line lies to the exact,
thermodynamically rigorous phase boundary.
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3. Classification Models Development
3.1. Classification Models

Four popular ML classification techniques are evaluated in this work, namely Decision
Trees (DTs), Random Forests (RFs), Support Vector Classifiers (SVCs) and classification
Neural Networks (NNs). It must be emphasized that training time is not an issue in the
present case, as training is performed once, offline and prior to any fluid flow simulation run.
What really matters is the time required to evaluate the sign of the obtained discriminating
function, i.e., obtain the label during the simulation, once the training has been completed.
A very complex d(.) function expression may handicap the anticipated CPU time gain;
hence, it should be dropped and replaced by another classification technique that leads to a
simpler expression.

DTs construct a flowchart-like structure (Figure 6), where internal nodes represent
input features such as pressure and temperature, and branches represent decision rules
which split data points based on a chosen feature and threshold value (e.g., p < 10 bar,
T > 8 ◦C). Finally, the ending leaf nodes represent predicted class labels (True or False).
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Training the DT aims at defining the appropriate order of splits, i.e., selecting the feature to
be used and its splitting value, which minimizes or even zeros the misclassifications over
the training population while ensuring optimal generalization capability.
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To train a DT, the Gini impurity measure is utilized to select optimal splits in the
variable space as a criterion that quantifies the impurity or disorder within a set of class
labels. It is defined as the probability of misclassifying a randomly chosen data point
based on the distribution of class labels. By selecting the splits that minimize the Gini
impurity, the decision tree aims to segregate the data points into pure or nearly pure subsets,
optimizing the classification accuracy. This allows the DT to effectively partition the input
space (z, p, T) based on the training data, enabling accurate predictions for new, unseen
data points.

RF is an ensemble learning method that combines multiple simple DTs to create a
more robust and accurate prediction model. Each tree is trained on a different subset of
the data using a random subset of the input features and the algorithm randomly selects a
subset of data points with replacement, a procedure known as bootstrap aggregating or
“bagging”. Additionally, at each split in a DT, only a random subset of features is considered.
This randomization reduces overfitting and increases the diversity among the individual
DTs. The final prediction of the RF is determined by aggregating the predictions of all the
individual trees through majority voting. By combining the predictions of multiple DTs, RF
improves the generalization performance and provides robustness, scalability and better
overall predictive accuracy compared to a single DT.

SVCs are powerful supervised ML algorithms that aim to identify an optimal hy-
perplane for separating data points of different classes. Unlike traditional classification
algorithms that focus on minimizing misclassification error, SVMs seek to maximize the
margin, which is the distance between the class discriminating hyperplane and the closest
training data points, known as support vectors. The optimization task of SVMs involves
finding the optimal hyperplane that maximizes the margin while correctly classifying the
training data. This is achieved by solving a quadratic optimization problem subject to linear
inequality constraints. To handle non-linear relationships, SVMs utilize kernel functions,
such as polynomial or a Radial Basis Function (RBF), to implicitly map the input data into
a higher-dimensional feature space where the data becomes linearly separable. The choice
of the kernel function depends on the specific problem and the underlying characteristics
of the data. By employing SVMs with appropriate kernel functions, complex decision
boundaries can be captured, allowing for the effective classification of the data.
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NNs are a class of ML models inspired by the structure and functioning of the
human brain. They are composed of interconnected layers of artificial neurons, which
are organized in an input layer, one or more hidden layers and an output one. Each
neuron processes the information and passes it to the next layer through weighted
connections. During the training process, NNs learn to adjust the weights of these
connections based on a given objective, typically to minimize the error between the
predicted and actual output. This is done through an optimization algorithm, such
as gradient descent, which iteratively updates the weights to improve the network’s
performance. Classification NNs obtain a class label from the output of the neural
network, by applying a threshold to the value produced by the logistic function at the
single output layer. The logistic function produces a value between 0 and 1, which
can be interpreted as the probability of the input belonging to a particular class. By
setting a threshold, typically 0.5, the input data can be assigned to class 1 if the output
value is greater than or equal to the threshold, and class 0 otherwise. This way, the
neural network can produce a class label based on the input data. Once trained, NNs
can classify (p, T) points quickly by propagating the input through the network and
producing an output at the final layer.

3.2. Classification Models Input

The data required by a thermodynamically rigorous approach to determine hy-
drates formation conditions are the composition vector z, the prevailing pressure and
temperature values as well as the component properties. The same input needs to
be incorporated into the ML models apart from the component properties which are
constant and do not bear any information. Based on that, the data used to train the ML
models consisted of a large number of {xi, yi} pairs, where the input vector x = {z, p, T}
comprises the composition vector z containing the concentration of all four components
typically found in acid gas mixtures, that is, CO2, H2S, C1 and C2. To honor the condi-
tion that the composition vector z lies in the 3D simplex since valid composition mole
fractions sum up to unity and to avoid linear dependence of the inputs, only 3 indepen-
dent components concentrations were introduced, thus reducing the input vector size
to 5. The pressure and temperature values for each composition combination, pi and Ti ,
respectively, were uniformly drawn and the Prosper software by PetEx was used to
construct the hydrate dissociation curves that, ultimately, generate the corresponding
output vector yi which contains the assigned label that designates whether hydrates
will form or not (1 or 0, respectively). The generated dataset can be arbitrarily large
and the data itself is noise-free as it is generated by a thermodynamically consistent
method such as the solids thermodynamic model implemented in the HydraFLASH
software that is integrated into Prosper. For a given acid gas mixture, HydraFLASH
uses the multiphase equilibrium algorithm by Michelsen [50], the van der Waals and
Platteeuw theory and the CPA EoS [51] to predict the hydrate dissociation curve for
the acid gas mixture of interest.

Compositions were randomly generated from the uniform distribution shown in
Table 1 to densely cover the expected range of reservoir and surface conditions of the acid
gas re-injection system. To account for the anticipated acid gas re-injection conditions,
the pressure and temperature range of interest was determined based on the hydrate
formation conditions in acid gas streams (Figure 7) as studied by Wu and Carroll [52]. This
chart provides useful insight into the hydrate formation curves of three acid gas mixtures
of varying H2S and CO2 content, namely 75%/25%, 50%/50% and 25%/75% with the
rightmost and the leftmost lines corresponding to pure H2S and CO2, respectively. The
three test acid gas mixtures lie perfectly between the two bounding curves, with decreasing
maximum formation temperature as H2S decreases [5].
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Table 1. Range of acid gas mixture components concentration.

Component Range (mol%)

H2S 1–99%
CO2 1–99%
C1 0–5%
C2 0–3%
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Based on Figure 7, the temperature range selected is [−20, 40] ◦C to account for
the minimum possible subsea temperature (−20 ◦C) that may be encountered in colder
regions across the world, as well as for the maximum possible upper hydrate formation
temperature limit (approximately 35 ◦C) when a safe margin of 5 ◦C is added to secure a
safety window (40 ◦C). As far as the pressure range is concerned, the lower pressure limit
was dictated by the acid gas output pressure from the AU, which is close to the atmospheric
one. However, the selection of the upper-pressure limit is a trickier procedure since it
depends on the operation under consideration. For the case of acid/sour gas injection in
shallow formations, high-pressure compressors can reach high-pressure values, up until
1000 psi (70 bar), as is the case of the high-pressurized sour gas compressor in the Tengiz
field in Kazakhstan [53]. In the case of the pipeline distribution system, pressures can
be as high as 2800 psi (or 190 bar) [54]. Finally, for the case of the injection pressure at
the wellhead, which is determined during the process design phases and depends on the
reservoir properties, it can reach values as high as 4000 psi (275 bar) [5]. Subsequently, the
pressure range of [1, 300] bar was selected for the present study.

3.3. Classification Models Dataset Generation

To build the training dataset, hydrate formation curves were generated for several
acid gas mixtures which span the entire composition spectrum, using the Prosper software
by IPM [55]. Subsequently, for each composition, thousands of (p, T) pairs were randomly
generated. To properly classify the position of each test point relative to the curve (left
or right), an algorithm known as the winding number algorithm was used. The winding
number of a given reference point, in this case, a non-uniformly randomly generated (p, T)
one, is an integer that represents the total number of times that a closed curve travels
counterclockwise around the point under consideration. This algorithm is implemented by,
firstly, considering a horizontal line segment that starts at the reference point and extends
out to positive infinity (ray). Then, the algorithm iterates over each edge of the curve and
checks whether the ray cast from the point intersects the edge. If the ray intersects the
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edge from below and the slope of the edge is greater than the slope of the ray, the winding
number is incremented otherwise it is decremented.

As the above-mentioned procedure produces uniformly drawn samples, over the
operating space a tweak was used to generate a “biased” sampling procedure. Indeed, the
training dataset should include more points “close” to the phase envelope, as these points
provide more detailed information compared to the ones lying comfortably far to the left
or right. To achieve such a non-uniform distribution of training points, each point was
assigned a “keep or discard” probability π as soon as it was randomly generated, which
depended on its Euclidean distance d to the phase boundary in the Min–Max scaled (p, T)
space and takes the form

π(d) =
1

1 + 10d2 . (3)

The lower the distance, the higher the probability that the uniformly drawn data point
will eventually be included in the training population, thus densifying points close to the
phase boundary.

Ultimately, the dataset used to train the selected ML models consisted of approximately
40,000 pressure and temperature data points. A total of 60% of them were used for training
purposes and another 30% for testing after the training procedure was over. Furthermore,
the remaining 10% of the training dataset was retained for validation purposes to confirm
the efficiency of the trained models.

4. Results

MATLAB was the commercial software utilized for the purposes of this work and
all codes were developed using commands offered by the Classification Learner App
contained in the Machine Learning and Deep Learning Toolbox. In-house MATLAB codes
were further developed to split randomly the training dataset into training and testing
points while avoiding any bias and generating extra explanatory Figures. Note that the
same datasets were used to train and test all ML models.

Matlab can handle auto-tuning of model hyperparameters to identify the best set of
values that result in optimal performance for a given ML model. In the case of feedforward
NNs, hyperparameters include the number of hidden layers, the number of nodes in
each hidden layer, and the activation functions used in the neurons, among others. A
variety of optimization techniques is provided for hyperparameter tuning, such as grid
search, random search, and Bayesian optimization. These methods involve searching
through a predefined hyperparameter space to find the best combination that minimizes
a specified objective function, such as the validation misclassification error. This can be
performed using the Bayesopt function, which implements Bayesian optimization, or the
OptimizeHyperparameters name–value pair with the fitensemble function, which allows
for a manual specification of the hyperparameter search method.

4.1. Decision Tree Model

The first model to be tested is a DT model using the Gini index as the criterion for node
splitting. A maximum limit of 160 splits was imposed to prevent the DT from oversizing
and overfitting. To evaluate the performance of the classification model in predicting
whether hydrates are formed or not, the confusion matrix of the DT, shown in Figure 8,
was first evaluated. The confusion matrix rows correspond to the actual class labels, while
the columns represent the predicted class labels. The cells on the main diagonal indicate
correctly classified observations (shown in blue background), whereas the cells opposite to
the diagonal indicate observations that were misclassified. According to Figure 8, out of the
4000 validation samples, the model accurately predicts 1687 as stable and 2049 as unstable,
while incorrectly predicting 264 samples (86 + 178). As a result, false stable and false
unstable predictions account for 4% and 9.5% of all stable and unstable points, respectively.
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Figure 8. DT confusion matrix on validation data.

To further evaluate the classifier performance using fluid flow-oriented criteria rather
than ”blind” ML-based ones, the proximity of misclassifications obtained on the validation
dataset to the hydrates formation curve for two sample acid gas streams was evaluated.
The first acid gas mixture is very high in H2S (97.55%), with CO2 and light hydrocarbon
impurities (C1 and C2) only accounting for 2.45%. The second gas is a balanced mixture
consisting of 45.18% CO2, 52.10% H2S, and 2.72% of C1 and C2. Correctly labeled points are
shown in green, while false stable and false unstable answers are shown in red and blue,
respectively, in Figure 9. These results demonstrate that incorrect responses for the first acid
gas stream mainly occur very close to the hydrates formation curve. As a result, the impact
of such a misclassification is minimal to the flow simulation given that a safety margin will
be set on top of the predictions obtained. Therefore, the DT classifier is reliable, as the false
stable points, which are of the utmost interest, account for a negligible proportion of the
total population and are located in close proximity to the hydrate phase boundary of the
acid gas mixtures under investigation.
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Figure 9. Visualization of the DT model on training data points.

However, the classifier does exhibit weak performance when the phase boundary
shape becomes more complex, as is the case of the balanced acid gas at 27 ◦C and 40 bar
(enclosed by a rectangle). Clearly, the classifier has missed the part which is thermodynam-
ically related to the composition of the mixture. Nevertheless, this drawback could still be
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compensated by introducing a temperature “safety margin” of approximately 3 ◦C to the
flow simulation.

4.2. Random Forest Model

As part of the investigation procedure to determine the most suitable classifier, the
performance of RF models with Boosted Trees and AdaBoost, where each of the 30 DTs
has a maximum limit of 100 splits imposed, was also assessed. According to Figure 10, the
model performance on the validation data was significantly improved, resulting in only 2%
and 3.9% of false stable and false unstable predictions, respectively. The visualization of the
misclassifications for the two sample acid gas streams (Figure 11) further confirms the high
reliability of the RF model employed. The RF model’s misclassifications lie even closer to
the phase boundary whereas its behavior in the complex area has now been corrected. The
developed RF model clearly surpasses the DT solution in terms of accuracy; however, it is
worth noting that this improvement comes at the expense of increased complexity due to
its ensemble nature, consisting of 30 individual DTs, in stark contrast to the simplicity of a
single DT. As a result, the CPU time cost per each hydrates formation evaluation, although
still a tiny fraction of the currently available rigorous thermodynamic calculation, increases
by a factor of about 20 on average compared to the DT.
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Figure 10. RF confusion matrix on validation data.
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4.3. Support Vector Classifier

A SVC equipped with a Gaussian kernel function was also tested. SVCs, renowned for
their high accuracy and robustness, are powerful ML algorithms; however, one downside
to their implementation is that they are expected to be “expensive” in terms of CPU time to
provide predictions on new samples due to the kernel functions involved. In this work, a
total number of 5413 support vectors were identified. The results of the SVC’s assessment
are presented in Figure 12, in which the confusion matrix of the Gaussian SVC shows
moderate misclassification rates compared to the RF. Finally, Figure 13 illustrates the high
proximity of misclassifications made by the SVC model while also showing the inability
of the model to capture the complex behavior of the balanced mixture envelope. All
these figures collectively indicate that SVC demonstrates enhanced reliability in accurately
predicting the pressure and temperature conditions for hydrate formation but is clearly
overwhelmed by the RF as far as both accuracy and CPU time requirements on new points
are concerned.

Fluids 2023, 8, 226 15 of 22 
 

4.3. Support Vector Classifier 
A SVC equipped with a Gaussian kernel function was also tested. SVCs, renowned 

for their high accuracy and robustness, are powerful ML algorithms; however, one down-
side to their implementation is that they are expected to be “expensive” in terms of CPU 
time to provide predictions on new samples due to the kernel functions involved. In this 
work, a total number of 5413 support vectors were identified. The results of the SVC’s 
assessment are presented in Figure 12, in which the confusion matrix of the Gaussian SVC 
shows moderate misclassification rates compared to the RF. Finally, Figure 13 illustrates 
the high proximity of misclassifications made by the SVC model while also showing the 
inability of the model to capture the complex behavior of the balanced mixture envelope. 
All these figures collectively indicate that SVC demonstrates enhanced reliability in accu-
rately predicting the pressure and temperature conditions for hydrate formation but is 
clearly overwhelmed by the RF as far as both accuracy and CPU time requirements on 
new points are concerned. 

 
Figure 12. SVC confusion matrix on validation data. 

 
Figure 13. Visualization of the SVC model on training data points. 

  

-20 0 20 40
Temperature ( °C)

0

50

100

150

200

250

300

Pr
es

su
re

 (b
ar

)

SVC - CO2 = 1.66% H2S = 97.55% C1 = 0.50% C2 = 0.29%

Correct Model Prediction
False stable
False unstable

-20 0 20 40
Temperature ( °C)

0

50

100

150

200

250

300

Pr
es

su
re

 (b
ar

)

SVC - CO2 = 45.18% H2S = 52.10% C1 = 0.60% C2 = 2.13%

Correct Model Prediction
False stable
False unstable

Figure 12. SVC confusion matrix on validation data.

Fluids 2023, 8, 226 15 of 22 
 

4.3. Support Vector Classifier 
A SVC equipped with a Gaussian kernel function was also tested. SVCs, renowned 

for their high accuracy and robustness, are powerful ML algorithms; however, one down-
side to their implementation is that they are expected to be “expensive” in terms of CPU 
time to provide predictions on new samples due to the kernel functions involved. In this 
work, a total number of 5413 support vectors were identified. The results of the SVC’s 
assessment are presented in Figure 12, in which the confusion matrix of the Gaussian SVC 
shows moderate misclassification rates compared to the RF. Finally, Figure 13 illustrates 
the high proximity of misclassifications made by the SVC model while also showing the 
inability of the model to capture the complex behavior of the balanced mixture envelope. 
All these figures collectively indicate that SVC demonstrates enhanced reliability in accu-
rately predicting the pressure and temperature conditions for hydrate formation but is 
clearly overwhelmed by the RF as far as both accuracy and CPU time requirements on 
new points are concerned. 

 
Figure 12. SVC confusion matrix on validation data. 

 
Figure 13. Visualization of the SVC model on training data points. 

  

-20 0 20 40
Temperature ( °C)

0

50

100

150

200

250

300

Pr
es

su
re

 (b
ar

)

SVC - CO2 = 1.66% H2S = 97.55% C1 = 0.50% C2 = 0.29%

Correct Model Prediction
False stable
False unstable

-20 0 20 40
Temperature ( °C)

0

50

100

150

200

250

300

Pr
es

su
re

 (b
ar

)

SVC - CO2 = 45.18% H2S = 52.10% C1 = 0.60% C2 = 2.13%

Correct Model Prediction
False stable
False unstable

Figure 13. Visualization of the SVC model on training data points.

4.4. Neural Network Model

A feedforward NN was also employed, consisting of one hidden layer with 15 nodes
and a logistic function applied at the single output node. Despite its reduced size, the
NN outperformed any other ML model in terms of accuracy. Figure 14 illustrates that the
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error rate for false stable and unstable points was as low as 1% and 1.8%, respectively,
resulting in an overall misclassification rate of 2.8%. Figure 15 further demonstrates that
the misclassifications for the selected acid gas compositions essentially lie on the phase
boundary and the complex area is handled accurately.
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Table 2 provides a concise overview of the accuracy of each of the four classifiers employed.

Table 2. Range of acid gas mixture components concentration.

Classifier Classifier Type Accuracy (%)

Decision Trees Fine Tree 93.9
Ensemble Classifiers Boosted Trees 97.4
Support Vector Classifiers Gaussian 95.5
Neural Network Classifiers Neural Networks 98.6

It should be noted that the phase envelope of the quaternary mixtures studied
(H2S + CO2 + C1 + C2) would exhibit a continuous shape if it had not been for its in-
tersection with the two-phase, vapor (V)–liquid (L) envelope. As a result, the part of the
hydrates phase envelope corresponding to low pressures indicates LA + V + H equilibrium,
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that is, the liquid aqueous phase, Vapor and Hydrate. At the point where the hydrates
phase envelope intersects the low part of the two-phase boundary (such as the one shown
in Figure 7), lower dew point conditions take place and two-phase acid gas equilibrium
comes further into play (liquid acid gas appears), thus forming a quadruple point. Note
that this is thermodynamically consistent with Gibbs law as the mixture comprises four
components. The upper intersection of the hydrates phase envelope to the two-phase
boundary corresponds to the conditions where vapor vanishes (bubble point), thus leaving
only LA + LH + H equilibrium.

The effect of the increasing liquid acid gas (while travelling from the lower dew
point to the bubble point through the two-phase envelope) to the slope of the hydrates
phase boundary (i.e., what makes the difference between left- and right-hand side plots in
Figures 9, 11, 13 and 15) depends on the variety of the acid gas components concentration.
The left-hand side plots correspond to compositions that are dominated by H2S (97.55%)
and the two-phase boundary is too narrow to exhibit a considerable effect on the slope of
the hydrates phase envelope. On the other hand, when at least two components exhibit
significant concentration (as is the case with the right-hand side plots where CO2 = 45.18%,
H2S = 52.10%), the change in the slope is considerable, as marked by the red rectangle.

5. Case Study

Figure 16 depicts the initially proposed design of a CO2-rich acid gas re-injection
scheme. Firstly, the compressors receive the acid gas at the AU outlet and increase its pres-
sure at a compression ratio of 2.5. Throughout each compression stage strict temperature
control is maintained to ensure that the temperature of the gas exiting the compressor does
not exceed 150 ◦C (due to the Joule–Thompson effect). Subsequently, each compression
stage is followed by a cooling one (implemented using chillers) which cools down the
heated fluid at constant pressure. The whole process begins at atmospheric conditions and
gradually reaches a pressure of 100 bar, thus requiring a five-stage process that involves
both compression and cooling of the undesired acid gas mixture produced by the reser-
voir. After the last cooling stage, where the acid gas turns from a supercritical fluid to a
liquid, the stream is driven to the wellhead location through a subsea pipeline lying at a
minimum temperature of 9 ◦C according to the local weather data. At that stage, the acid
gas undergoes a slight pressure drop (due to friction) and a significant temperature drop
due to the low temperature and huge capacity of seawater. Finally, the high pressure to
ensure re-injection to the reservoir (250 bar) necessitates the inclusion of a pump.
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Figure 16. Initial design of the CO2-rich acid gas re-injection scheme.

The proposed design effectively avoids the two-phase region of the CO2-rich acid gas
by developing a pressure (100 bar) higher than the acid gas cricondenbar (76 bar). However,
a more thorough examination of the acid gas mixture hydrates formation curve (generated
using the trained NN model and a bisection method) verifies the flow simulation results
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which indicate the formation of hydrates halfway along the pipeline and all along the
pump path.

To remedy this situation, pipeline insulation is proposed, thus achieving a similar
pressure drop but reducing the temperature drop and keeping the acid gas conditions
safely away from the hydrate formation conditions (Figure 17). It should be noted that the
insulation quality and thickness are also a function of the flow rate, as the lower the latter,
the bigger the temperature drop since more time is allowed for the fluid to exchange heat
with the seawater.
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Figure 17. Enhanced design of the CO2-rich acid gas re-injection scheme.

According to the operator’s field development plans, it is expected that additional
H2S-rich sections of the reservoir will soon be brought into production, resulting in an
increased concentration of H2S in the acid gas. This way, the design shown in Figure 17 is
no longer suitable, although the prevailing conditions during compression still lie far away
from the two-phase region. This is due to the shifting of the hydrates formation curve to
the right-hand side by approximately 8 ◦C due to the increased H2S content of the acid
gas stream, as shown in Figure 18. As a precautionary measure, there are two potential
approaches to consider. Firstly, reinforcing the pipeline insulation can be considered to
provide extra protection against hydrate formation by further reducing the temperature
drop. Alternatively, the compressed gas can be mixed with some suitable additive, at a
considerable cost, which helps to inhibit hydrate formation, or electric heating elements
might be installed. By implementing these precautionary measures, the formation of
hydrates can be successfully prevented, as demonstrated in Figure 19.
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Figure 18. Initial design of the H2S-rich acid gas re-injection scheme.
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6. Conclusions

This study addresses the challenge of rapidly identifying hydrate formation in acid
gas re-injection schemes in oil and gas reservoirs where millions of such calculations are
required during the course of the flow simulation runs to properly design and optimize
the process. Recognizing that the conventional approach of calculating hydrate formation
through iterative multiphase equilibrium calculations is time-consuming and computation-
ally intensive, this work sought a more efficient solution. A set of classifiers was developed
to quickly determine the likelihood of hydrate formation given the prevailing pressure and
temperature conditions, as well as the composition of flowing acid gas mixtures. These
classifiers offer a direct, non-iterative approach, bypassing the need for lengthy calculations
and reducing by orders of magnitude the computational time required for multiphase
equilibrium analysis. In order to train the classifiers and ensure accurate predictions, a
large dataset of hydrate formation data was generated offline using traditional methods.

The results of the study demonstrated the effectiveness and high precision of the
classifiers in predicting hydrate formation. Among the classifiers tested, the NN classifier
exhibited the highest accuracy in detecting hydrate formation, providing reliable insights
into the occurrence of hydrates. The DTs classifier emerged as the fastest option, enabling
rapid assessments in real-time scenarios at the cost of reduced accuracy. By enabling rapid
and reliable predictions, the trained classifiers can help operators minimize operational
costs, comply with air emission standards, and optimize the flow scheme. The ability to
identify hydrate formation potential in an infinitesimal fraction of the time required by
conventional methods can greatly improve operational efficiency and decision making in
acid gas injection processes.

The potential impact of this study on future research and applications is substantial.
The development of classifiers for hydrate formation prediction opens up possibilities
for further advancements in fluid flow simulations and computational modeling in
the chemical industry. By reducing the computational time required for multiphase
equilibrium calculations, this research paves the way for a more efficient and accurate
analysis of hydrate-related issues in acid gas pipelines. Future studies can build upon
this work to refine the classifiers and explore additional applications to address more
challenges in the industry.
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