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Abstract: Evaluating the hydrodynamic force fluctuations acting on each structure in a group of
subsea objects of different cross-section shapes, sizes and relative positions represents a challenge due
to the sensitivity of the vortex shedding process, especially for a variety of sheared flows. The present
study uses the numerical 2D computational fluid dynamics model to estimate the flow-induced forces
on a group of small circular and D-shaped cylinders in the linear and parabolic sheared flow, which
are placed in proximity to a larger structure of the squared cross-section. This allows us to evaluate
loads, which are affected by the presence of subsea equipment located on the seabed. The average
Reynolds number of the considered linear flow profile is 3900, while the parabolic flow profile has
the maximum Reynolds number of 3900. The k-ω SST turbulence model is used for simulations.
The work demonstrates the effect of the cross-sectional shape of smaller cylinders on hydrodynamic
coefficients, explores the effect from the spacing in between the structures and highlights differences
between loads in the linearly sheared and parabolic flow. The results obtained show that the presence
of the squared cylinder notably influences the mean drag coefficient on the first cylinder, for both
circular and D-shaped cylinders. The parabolic sheared flow profile in this series leads to the highest
mean drag and the highest amplitudes of the fluctuating drag and lift coefficients.

Keywords: flow over cylinder; flow-induced forces; subsea structures; sheared flow; computational
fluid dynamics; drag force; lift force; turbulent flow

1. Introduction

Offshore renewable energy systems, complexes for carbon capture and storage and the
oil and gas production industry require a wide range of both rigid and flexible and dynamic
and stationary slender elements to be involved in the construction, drilling, operation,
repairs and decommissioning procedures. The failures of slender structures (especially
at the connection sites), disruptions and delays to the operations within these systems
may be due to unaccounted occurrences of vortex shedding, which refers to the increased
fluctuations of the fluid forces. The structural reliability can be enhanced by considering
the sheared flow conditions at the design stages, which becomes particularly challenging
when reaching to a seabed at the large depth of 3000 m.

The fundamental basis for the numerical simulation for the flow over a bluff body
is established by early numerical studies, such as [1], and reviews focusing on the vortex
dynamics phenomena over a single structure [2] and a pair of structures [3]. In the latter
work, the downstream cylinder position is close to be in line with the upstream structure
and leads to higher lift force amplitudes. Numerical studies for a single structure in the
uniform flow develop the LES methodology [4] and consider the advantages and challenges
for 2D and 3D flow simulations [5,6]. The very recent work for two structures in a tandem
position and in a uniform flow presents the effect of spacing variations on a group of
vibrating structures [7].
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Sheared flow conditions for a standalone structure are considered in the early nu-
merical studies for a rotating circular structure [8], a stationary circular structure [9] and
a squared cylinder [10]. Studies for a circular stationary structure in a sheared flow are
focused on testing the numerical schemes [11] and investigating the separation of the
boundary layer [12] and the flow effects observed in the subcritical flow regime [13], at a
low Reynolds number [14] and for a range of flow regimes [15].

The line of research on the numerical simulation of the fluid-structure interaction in
the uniform flow is continued by the works on three cylinders in tandem [16] and four
cylinders in a squared arrangement [17–20], with a detailed consideration of the flow
interference, hydrodynamic loads and vibration. The latest research [21–25] is focused on
the dynamics of three and four flexible structures in tandem and in side-by-side positions,
including experimental, numerical results and the identification of energy harvesting
perspectives [23]. More advanced arrangements of circular structures investigated to
date include: three objects placed in a triangle, studied in [26]; a set of five risers in a
cylindrical arrangement [27]; and the use of up to eight control cylinders around protected
circular structures, in order to mitigate vortex-induced loads [28]. A separate branch of
studies considers the flow over a structure placed close to a plane boundary [29]. The
review of existing studies indicates the overall research gap existing in the knowledge of
hydrodynamic loads in sheared currents and, specifically, in the knowledge of effects on the
vortex-induced loads when groups of structures with mixed shapes and sizes are subjected
to both uniform and sheared flows.

The current work continues the branch of numerical simulation studies performed for
a group of three-four structures while placed in a planar sheared flow. Previous research in
this direction considers circular structures: two objects of a different size [30] in the uniform
flow, a group of three small structures in several arrangements [31] and a group of small
structures in a triangular layout in proximity to a larger object [32] in both uniform and
sheared flows. A large group of structures of different cross-sections is considered in [33],
where the D-shape, previously implemented in [34], is found to have a positive effect on
the reduction of fluid loads. The current study investigates smaller structures with two
distinct cross-sectional shapes: circular and half-circular. These smaller cylinders are placed
in proximity to a larger squared structure, following the results in [31]. The arrangement
leads to a superposition of generated vortex streets, and the aim of this investigation is
to identify scenarios of reduced hydrodynamic loads for the considered range of cases,
which would be a practical choice of the structural layout. Two sheared flow profiles
are considered, based on the Reynolds number of 3900, corresponding to the developed
turbulent flow regime. The computational fluid dynamics model, based on the experience
in [35], is designed for these structural arrangements in order to achieve the goals.

The current paper is arranged as follows. Section 1 outlines the existing research
background on the sheared flow and groups of structures. Section 2 provides details of the
numerical model and parametric studies. Section 3 presents two sets of obtained results.
Section 4 summarizes the research findings.

2. Numerical Model

Sheared flow simulations in this work are performed for a system of three identical
circular or D-shaped structures of the diameter d = 0.3 m. This set of structures is considered
placed in proximity to a squared cylinder with a side equal to D = 5d in a rectangular
fluid domain. CFD simulations are performed for the computational domain with a size of
30D × 16D, and the distance from the squared cylinder to the domain border is G = 20d.
The incoming flow is entering the domain from the inlet left boundary, as illustrated in
Figure 1a. The right boundary is considered to be the outlet, and the periodic and shadow
boundary conditions are applied as the top and bottom boundaries.
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The planar linear and parabolic sheared flows in this work, following the previous 
research in this direction [30,31], are defined using velocity profiles 𝑈, depending on the 
velocity 𝑈௖, consistent with the Reynolds number of 3900 at the centreline of the compu-
tational domain. The definition of the linear velocity profile is as follows: 𝑈ሺ𝑦ሻ ൌ 𝑈௖ − 𝐵𝑦,  (1)

Figure 1. Rectangular computational fluid domain: (a) general schematic of the domain with four
structures under the linearly sheared flow; (b) general schematic of the domain with four structures
under the parabolic sheared flow; (c) enlarged group of smaller circular cylinders with the varying
distances in between the structures defined; (d) arrangement with a group of smaller D-shaped
cylinders with varying distances in between the structures subjected to both linear and parabolic
sheared flow; (e) example of the mesh of the computational domain.

The parametric studies are performed for the spacing ratios L/D, with respect to the
squared cylinder size of D, in the bandwidth from 0.6 to 1.0. Here, the variation of the
L/D ratio is equivalent to the ratio L/d varying from 3.0 to 5.0, with respect to the circular
cylinder size of d. Parametric investigations are organized in three different series. First,
the L1, L2 and L3 distances between smaller structures are simultaneously varied from
0.6D to 1.0D while the structures are subjected to the linearly sheared flow. Second, the L1
size is kept constant at 0.6D, while distances L2 and L3 between smaller structures vary
simultaneously from 0.6D to 1.0D and are subjected to both linear and parabolic sheared
flows. Third, L1, L2 and L3 are kept constant at 0.6D between the D-shaped structures
in both linear and parabolic sheared flows. Distance variations and corresponding case
(arrangement) numbers are given in Table 1, where Case 1 is the base case, Cases 1–5 form
the first series, Cases 1, 6–9 form the second series and the third series is consistent with
distances in Case 1.
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Table 1. Parametric investigations for the variation of distances between the structures.

Case Number L1/D L2/D L3/D

Case 1 0.6 0.6 0.6

Case 2 0.7 0.7 0.7

Case 3 0.8 0.8 0.8

Case 4 0.9 0.9 0.9

Case 5 1.0 1.0 1.0

Case 6 0.6 0.7 0.7

Case 7 0.6 0.8 0.8

Case 8 0.6 0.9 0.9

Case 9 0.6 1.0 1.0

The planar linear and parabolic sheared flows in this work, following the previous
research in this direction [30,31], are defined using velocity profiles U, depending on
the velocity Uc, consistent with the Reynolds number of 3900 at the centreline of the
computational domain. The definition of the linear velocity profile is as follows:

U(y) = Uc − By, (1)

where y is the vertical coordinate along the inlet boundary, and the gradient of the profile
is B = 0.022 c−1.

The parabolic sheared flow velocity profile is as follows:

U(y) = Uc(1− (
2y
h
)2), (2)

where h is the length of the inlet boundary.
Simulations are performed using the incompressible Navier-Stokes equation, k-ω SST

turbulence model, PISO algorithm and the time step of 0.1 s. The triangular grid is used for
simulation purposes, as shown in Figure 1e. The RANS equations are as follows:

∂ui
∂xi

= 0, (3)

∂ui
∂t

+ uj
∂ui
∂uj

= fi −
1
ρ

∂p
∂xi

+ ν
∂2ui

∂xi∂xj
, (4)

where u(x) is the fluid velocity, u(x) = u(x) + u′(x, t), with x = (x, y) being the position
vector for the two-dimensional analysis, t being the simulation time, u(x) being the mean
velocity value and u′(x, t) being the fluctuating velocity component. In Equation (4), ρ is
the fluid density, p stands for the fluid pressure, fi is the vector of external forces and i, j
indicate two components of the velocity vector.

The mesh independence test results are reported in Table 2 for the uniform flow of the
Reynolds number of 3900, including the mean drag coefficient CD0 and the dimensionless
wall distance y+. The Mesh 3 from Table 2 is shown in Figure 1e and is selected for all the
calculations in the next section. Since the k–ω SST turbulence model demands a very high
near wall grid resolution, the maximum element size is fixed to be less than 1 × 10−4.
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Table 2. Mesh independency test results.

Cases CD0 Number of Cells y+

Current study at Re = 3900

Mesh 1 0.87 31,297 0.0133

Mesh 2 0.91 53,951 0.0132

Mesh 3 0.93 86,637 0.0131

Mesh 4 0.93 153,227 0.0131

Published data at Re = 3900

Norberg (1987), Experiment [36] 0.98 - -

Franke and Frank (2002), LES [37] 0.99 - -

Wornom et al. (2011), VMS-LES [38] 0.99 - -

Ma et al. (2000), DNS [39] 0.96 - -

Results are reported in the next section for three series of parametric investigations
compared to the base case in terms of the lift coefficient amplitude of CL, the fluctuating
drag coefficient CD

fl and the mean drag coefficient CD0. The drag coefficient CD acting on
the cylinder is defined as a sum of the mean drag coefficient CD0 and the fluctuating drag
coefficient CD

fl:
CD = CD0 + C f l

D (5)

3. Results and Discussion
3.1. Simultaneous Variation of L1/D, L2/D and L3/D in the Linearly Sheared Flow

The results of the first series of simulations for Cases 1–5 are summarized in Figure 2.
Cylinder 2 in Figure 2a experiences the highest mean drag coefficient among smaller struc-
tures, with the maximum of 0.71 in Case 1. The mean drag coefficient for all three circular
cylinders generally fluctuates as L/D increases. The variation of the mean drag coefficient
of cylinder 1 and 2 with respect to L/D is less prominent, while cylinder 3 is subject to
significant changes in all three considered fluid force coefficients, with unstable trends.

The maximum amplitude of the lift coefficient and fluctuating drag coefficient is
observed for cylinder 3 at L/D = 0.75, as shown in Figure 2b,c, with a relatively prominent
variation with L/D. Figure 3a,b show the variation of frequencies of the fluctuating drag
and lift coefficients signal with L/D, respectively, where the statistics is presented for each
circular structure. A maximum frequency is indicated here to be 0.023 Hz for the fluctuating
drag coefficient signal and 0.015 Hz for the lift coefficient signal for the considered L/D
range for cylinders 2 and 1 respectively. In this figure, cylinders 2 and 3 appear to have a
similar frequency variation trend. All cylinders here display a change in fluid coefficient
frequency patterns between L/D = 0.7 and L/D = 0.8, with higher frequency fluctuations
at L/D ≤ 0.8.

Figure 4 shows the distribution of the pressure along the surface of cylinders 1, 2 and
3 at the various L/D. For cylinder 1 at L/D = 0.6, the magnitude of the pressure becomes
zero at θ = 149◦ and θ = 172◦, while it reaches its maximum positive value at θ = 161◦

and maximum negative values at θ = 86◦ and θ = 221◦. Here, zero pressure stands for the
pressure in the fluid away from structures, where the flow is perturbed. At L/D = 0.7,
the magnitude of the pressure becomes zero at θ = 159◦ and θ = 175◦, with the maximum
positive value observed at θ = 163◦ and maximum negative values observed at θ = 85◦

and θ = 226◦. At L/D = 0.8, the magnitude of the pressure becomes zero at θ = 149◦ and
θ = 176◦, and reaches its maximum positive value at θ = 164◦ and its maximum negative
values at θ = 89◦ and θ = 226◦. At L/D = 0.9, the magnitude of the pressure becomes zero
at θ = 146◦ and θ = 164◦, and it reaches the maximum positive value at θ = 156◦ and the
maximum negative values at θ = 88◦ and θ = 228◦. Finally, at L/D = 1, the magnitude of
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the pressure becomes zero at θ = 146◦ and θ = 161◦, with the maximum positive value
indicated at θ = 154◦ and maximum negative values observed at θ = 92◦ and θ = 230◦.
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Figure 4. Pressure distribution along the surface of (a) cylinder 1, (b) cylinder 2, (c) cylinder 3, during
the first series of simulations.

The time histories of hydrodynamic coefficients for three circular cylinders at different
spacing ratios, varying simultaneously, are shown in Figures 5–7. In all figures, the gap
ratio of L/D = 0.6 appears to have the most pronounced effect on the dynamics of both fluid
forces. Both the fluctuating drag and lift coefficient time histories for all three structures
display multi-frequency fluctuations at this spacing, although the dominant frequency of
both signals, as shown in Figure 3, remains relatively close to the ones indicated by signals
at other spacings. While the irregular nature of the lift coefficient at L/D = 0.6 manifests
in additional fluctuations only, the fluctuating drag coefficient for all three structures
displays overall higher amplitudes than for other considered gap ratios. The fluctuating
drag amplitudes’ jumps are observed to be the highest for cylinder 3, compared to other
structures, as illustrated in Figure 7a. These changes are likely to be the consequence of
the reattachment of shear layers, separated in the wake of cylinder 1. The fluctuating
drag coefficient amplitudes for all spacings and for all circular cylinders also appear to
be significantly asymmetric, compared to the nature of the lift coefficient signals for the
cases considered.
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3.2. Simultaneous Variation of L2/D and L3/D in the Linearly Sheared Flow

The second series of simulations starts with the consideration of the linear velocity
profile. Changes to the mean drag coefficient value, maximum fluctuating drag coefficient
and maximum amplitude of the lift coefficient for three smaller structures are shown in
Table 3 for the constant gap ratio of L1/D. The mean drag coefficient acting on cylinders 1
and 3 in Table 3 increases with the simultaneous growth of L2/D and L3/D. At the same
time, the reduction in the mean drag coefficient is observed for cylinder 2 as it moves away
from cylinder 1 and towards a high velocity region of the sheared flow profile, with a jump
at L/D = 0.9. The variation of the fluctuating drag coefficient with L/D is prominent for
cylinders 1 and 3 and is less pronounced for cylinder 2. The maximum value of the lift
coefficient amplitude, according to Table 3, is largely affected for all structures, with the
peak values observed at L/D = 0.8 or 0.9 and the strongest changes to forces acting on
cylinder 3.

The statistics of the hydrodynamic coefficients’ frequencies at a constant L1/D is
also summarized in Table 3. The frequency of the fluctuating drag coefficient signal for
cylinder 1 increases with L/D. The maximum frequency of 0.023 Hz of the drag coefficient
signal is observed for cylinder 2. At L/D = 0.8, the lift coefficient signals for cylinders 1 and
2 display the matching frequency. For cylinder 3, a gradual increase in the frequency of the
lift coefficient is observed for L/D from 0.6 to 0.9, followed by a sharp decrease at L/D = 1.
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Table 3. Result for simultaneous variation of L2/D and L3/D in the linearly sheared flow.

L/D
Cylinder 1 Cylinder 2 Cylinder 3

CD0 Cfl
D CL fD fL CD0 Cfl

D CL fD fL CD0 Cfl
D CL fD fL

0.6 0.36 0.2 0.45 0.003 0.007 0.51 0.22 0.55 0.012 0.011 0.10 0.54 0.57 0.005 0.010

0.7 0.36 0.16 0.51 0.011 0.008 0.44 0.19 0.58 0.012 0.012 0.20 0.38 0.76 0.022 0.009

0.8 0.39 0.23 0.54 0.0125 0.012 0.41 0.20 0.58 0.014 0.012 0.16 0.46 0.78 0.023 0.010

0.9 0.40 0.20 0.49 0.013 0.010 0.45 0.19 0.54 0.012 0.010 0.19 0.46 0.88 0.021 0.012

1.0 0.40 0.13 0.45 0.014 0.011 0.43 0.17 0.49 0.023 0.011 0.18 0.32 0.79 0.021 0.010

Figure 8 demonstrates the velocity contour for L/D = 0.8 at the time of 2000 s in the
simulation, when the flow is fully developed. In this setting, the vortices formed behind
the squared cylinder have a strong influence on the vortices shed by the group of circular
cylinders. The superposition of vortices first takes place behind cylinders 1 and 2 and
then behind cylinder 3, where all occasional vortex pairs merge into a general 2S vortex
street following this group for structures, which is relatively consistent in phase with the
vortex formation behind the squared cylinder. The high fluctuating drag and lift coefficient
amplitudes in Table 3 are closely related to this process. The half-cycle vortex shed by the
larger structure towards the group of three smaller structures merges with their vortex
street straightway into a grouped vortex formation. The vortex from another half-cycle
behind the larger object becomes a separate vortex, as well as a single vortex separating
from cylinder 2.
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3.3. Simultaneous Variation of L2/D and L3/D in the Parabolic Sheared Flow

The second series of simulations is continued by considering the same structures in
the parabolic flow. Table 4 shows the results of the hydrodynamic coefficients of three
circular cylinders under the parabolic sheared flow, when the L2/D and L3/D ratios are
simultaneously varied from 0.6 to 1.0. Here, upstream cylinders overall experience a higher
mean drag coefficient and significantly higher lift coefficient amplitudes, as compared to
the subsections above. This is due to their direct exposure to the sheared incoming flow.
The variation of L/D has a significant effect on the hydrodynamic coefficients acting on
structures. Cylinder 1 experiences a progressive increase in the mean drag coefficient from
L/D = 0.6 to L/D = 0.9. A similar trend is observed for the linearly sheared flow in Table 3.
However, the mean drag coefficient values in Table 4 for the parabolic flow are much higher
compared to the data for the linearly sheared flow in Table 3. A similar observation is made
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in the work [30]. The parabolic sheared flow leads to higher mean drag coefficient values
for cylinder 2 than for cylinders 1 and 3 with the maximum value of 1.02 at L/D = 0.7. As
observed for cylinder 1, cylinder 3 also experiences a progressive increase in the mean drag
coefficient values with the maximum value of 0.38 at L/D = 0.9. Cylinders 1 and 3 have a
higher fluctuating drag coefficient at L/D = 0.8 and 0.9 with cylinder 2 at L/D = 0.6 and 0.7.
A maximum amplitude value of 1.92 of the lift coefficient is experienced by cylinder 2.

Table 4. Results for the parabolic sheared flow for circular cylinders.

L/D
Cylinder 1 Cylinder 2 Cylinder 3

CD0 Cfl
D CL CD0 Cfl

D CL CD0 Cfl
D CL

0.6 0.68 0.29 0.62 1.01 0.84 1.72 0.14 0.27 0.58

0.7 0.75 0.29 0.63 1.02 0.84 1.91 0.29 0.40 1.30

0.8 0.94 0.70 1.52 0.87 0.65 1.66 0.34 0.70 1.34

0.9 1.0 0.87 1.65 0.95 0.67 1.74 0.38 0.80 1.57

1.0 0.93 0.67 1.43 0.88 0.60 1.41 0.37 0.56 1.23

The time histories of hydrodynamic coefficients and the corresponding FFT data for
three circular structures under the parabolic sheared flow are displayed in Figures 9–11.
A smaller amplitude of the fluctuating drag and lift coefficients is found for cylinder 1
at L/D = 0.6 and 0.7. The fluctuating drag and lift coefficient signals appear to be stable
for the parabolic sheared flow, which is different from the linearly sheared flow, where
signals seem to be unstable. The fluctuating drag coefficient of all three circular structures
appears to be asymmetric towards the positive direction. A single dominating peak of the
drag and lift coefficients is observed for cylinder 1, while multiple dominating peaks are
observed for cylinders 2 and 3. Overall, the hydrodynamic forces in these cases show low
frequency fluctuations.
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Figure 11. Fluid force coefficients for cylinder 3 immersed in the parabolic sheared flow in the second
set of simulations: (a) time history of the fluctuating drag coefficient; (b) time history of the lift
coefficient; (c) the fluctuating drag coefficient FFT; (d) the lift coefficient FFT.

Figure 12 shows the velocity contour for L/D = 0.8 at the time of 2000 s in the sim-
ulation in the parabolic sheared flow, when the flow is fully developed. In this case, the
vortices formed behind the squared cylinder have a strong influence on the vortices shed
by the group of circular cylinders, especially by circular cylinder 3. The superposition of
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vortices first takes place behind cylinders 1 and 2 and then behind cylinder 3. This process
is similar to the linearly sheared flow, where the vortices in the center of domain form a
vortex group behind the structures, while the final vortex street is dominated by the phase
of the vortex formation behind the squared cylinder.
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sheared flow.

3.4. Simulations for D-Shaped Structures in Linear and Parabolic Sheared Flow

The third simulation series considers smaller structures of a D-shaped cross-section.
Table 5 shows the hydrodynamic coefficients of three D-shaped cylinders under the linear
and parabolic sheared flow at a constant L/D = 0.6. Both flow profiles result in an increase
in the mean drag coefficient of upstream cylinders. The mean drag values and maximum
fluctuating drag and lift coefficient amplitudes are generally higher for the parabolic
sheared flow profile. The D-shaped cylinder 2, under both flow profiles, experiences the
highest hydrodynamic loads.

Table 5. Hydrodynamic coefficients for D-shaped cylinders in two sheared flows and at a constant spacing.

Constant
L/D

Cylinder 1 Cylinder 2 Cylinder 3

CD0 Cfl
D CL CD0 Cfl

D CL CD0 Cfl
D CL

Linearly sheared flow

0.6 0.63 0.32 0.51 0.92 0.50 0.80 0.10 0.25 0.46

Parabolic sheared flow

0.6 1.01 0.79 1.03 1.43 1.08 1.42 0.25 0.85 1.03

D-shaped cross-sections are considered in the literature [33,34] as overall reducing the
drag force. However, at L/D = 0.6 in the present work, as shown in Table 5, the D-shaped
cylinders indicate a higher mean drag coefficient, with relatively lower values in the case of
a linearly sheared current. The time histories of the fluctuating drag and lift coefficients for
both flow profiles are compared for three structures in Figure 13. Here, the fluctuations in
the hydrodynamic loads on cylinder 2 in the parabolic flow are substantially asymmetric,
which appears to be a combined effect of the proximity to a larger object, flow velocity
profile and type of the cross-section. Figure 14 illustrates velocity contours for both linear
and parabolic sheared flows at the simulation time of 2000 s, which indicates several regions
of the vortex formation, as considered in detail in the following subsection.
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Figure 14. Velocity contour in the third set of simulations for L/D = 0.6 at 2000 s: (a) in the parabolic
sheared flow profile, (b) in the linearly sheared flow.

The formation of individual vortex streets behind D-shaped structures and a larger
cylinder with the following merging into a single Karman street is shown for the parabolic
turbulent flow in Figure 15 in the form of streamlines. Here, the simulation times of 1000 s
and 2000 s show two different phases of the vortex shedding cycle. The vorticity variable in
Figure 16 demonstrates a minor vortex to be excited from the surface of cylinder 2. Vortex
streets from cylinders 1 and 3 merge and alter the vortex formation cycle from the larger
structure, with greater fluctuations in the flow on the side of smaller structures. Here, the 2S
vortex street from the squared cylinder transforms into a combination of about six vortices
formed per cycle, with a group of four vortices in the center of the street, as indicated in
Figure 17.
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4. Conclusions

This study presents a comprehensive numerical investigation on the flow over three
identical circular and D-shaped cylinders in close proximity to subsea equipment modeled
as a squared cylinder. The 2D linear and parabolic sheared flow velocity profiles based on
the Reynolds number of 3900 are analyzed, and simulations are performed using the k–ω
SST turbulence model.

Three series of parametric investigations reveal notable changes to the mean drag
coefficient on cylinder 1 and the fluctuating drag coefficient acting on cylinder 3.

Keeping the L1/D constant, during the second simulation series, leads to an increase
in the mean drag coefficient of upstream cylinders with the growth of the gap ratio for
both flow profiles. The parabolic sheared flow profile in this series produces the highest
mean drag, fluctuating drag and maximum amplitude of the lift coefficient signal. The
fluctuations of the drag and lift coefficients appear more stable in the parabolic flow than
in the linear flow.

Changing the geometrical shape of circular cylinders to a D-shape and assuming a
constant L/D = 0.6 between the structures results in an increase in the hydrodynamic coef-
ficient values for both sheared flow profiles. The parabolic profile is found to lead to higher
hydrodynamic coefficients than observed for the linearly sheared current. In this arrange-
ment, D-shaped structures do not display an advantageous reduction in hydrodynamic
loads, as was found in previous studies.

All vortex streets observed for simulated sheared flow profiles appear to be complex.
Vortex streets in the wake from the group of smaller cylinders in the cases considered
appear to combine into a single vortex street, while a separate Karman street with larger
vortices forms in the wake of the squared structure. These two vortex streets merge on one
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side and form a vortex group, and this interaction defines increased hydrodynamic loads
in the considered sheared flow. Future work in this direction may consider a wider range
of Reynolds numbers as a part of sheared flow variations and changes to the relative sizes
of structures.
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