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Abstract: We theoretically considered two-dimensional flow in a vertically aligned thick molten
liquid film to investigate the competition between cooling and gravity-driven draining, which is
relevant in the formation of metallic foams. Molten liquid in films cools as it drains, losing its heat to
the surrounding colder air and substrate. We extended our previous model to include non-isothermal
effects, resulting in coupled non-linear evolution equations for the film’s thickness, extensional flow
speed and temperature. The coupling between the flow and cooling effect was via a constitutive
relationship for temperature-dependent viscosity and surface tension. This model was parameterized
by the heat transfer coefficients at the film–air free surface and film–substrate interface, the Péclet
number, the viscosity–temperature coupling parameter and the slope of the linear surface tension–
temperature relationship. A systematic exploration of the parameter space revealed that at low
Péclet numbers, increasing the heat transfer coefficient and gradually reducing the viscosity with
temperature was conducive to cooling and could slow down the draining and thinning of the film.
The effect of increasing the slope of the surface tension–temperature relationship on the draining and
thinning of the film was observed to be more effective at lower Péclet numbers, where surface tension
gradients in the lamella region opposed the gravity-driven flow. At higher Péclet numbers, though,
the surface tension gradients tended to enhance the draining flow in the lamella region, resulting in
the dramatic thinning of the film in the later stages.

Keywords: thin film viscous flows; thermoviscous; thermocapillary

1. Introduction

Foams play crucial roles in a variety of applications, such as the fabrication of metallic
foams [1,2] and in the food industry (e.g., bread dough) [3]. They contribute to the mechan-
ical properties of metallic foams by enhancing their stiffness and energy absorption and
are ideal for applications in the automobile industry, for example. They also contribute to
the texture, aroma and visual appearance of food foams [3]. Therefore, understanding the
factors that influence a foam’s structure, stability and lifetime is of considerable interest.

The structures of metallic foams are broadly similar to those of aqueous foams, which
are characterized by networks of thin liquid films (lamellae) intertwined with gas bubbles.
The process of liquid drainage in Plateau borders and, consequently, the thinning of lamella
are important in understanding bubble collapse and predicting the lifetime of a foam
or its overall stability. This process has been well-studied in aqueous foams [4], where
surfactants are required to stabilize foams by reducing the surface tension of the air–liquid
interface. Surfactants do not affect the surface tension of metallic foams; therefore, nano-
and microparticles are often added during the foaming process to increase the effective
liquid viscosity and slow down the drainage, thinning and rupture times [2,5,6]. In addition,
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during metallic foam formation, solidification via the cooling of liquid metal in lamella is
a race against time [7] that competes against the liquid drainage. This competition then
determines the overall stability and pore structure of the metallic foam. The cooling and
subsequent freezing of metallic foams have received very little attention, even though they
are crucial in the manufacture of these foams.

Non-isothermal effects are important when there is a strong coupling between a flow
and temperature field due to the strong dependence of liquid properties on temperature.
The viscosity of most materials decreases with temperature. Some materials, such as glass,
metallic melts and polymer melts, can exhibit dramatic changes in their viscosity due to
variations in temperature, e.g., the cooling and solidification of silicate (or glass-like) lava
flows [8]. For glass and polymers, surface tension can also vary with temperature (surface
tension in most liquids decreases with an increase in temperature), although perhaps not
as dramatically as viscosity.

In the context of metallic foams, the heat transfer between hot liquid within the lamella
and Plateau borders and the cooler surrounding gas bubbles via the free surface could result
in the lamella cooling down considerably and rapidly in some situations. The resulting
thermoviscous (viscosity variations with temperature) and thermocapillary effects (surface
tension variations with temperature) could have significant influence on film drainage and
thinning and overall foam stability.

Indeed, Cox et al. [7] were the first to theoretically investigate the competition be-
tween liquid drainage and freezing in the formation of metallic foams. They combined the
so-called foam drainage equation [4] with the heat conduction equation to derive a bubble
coalescence criterion, which allows for the rupture of thin films. Their one-dimensional
model is restricted to cooling that takes place at the top and bottom surfaces and does
not account for heat loss from the air–liquid interface. Moreover, they only investigated
viscosity variations with temperature and not surface tension variations. More recently,
Shah et al. [9] investigated the influence of thermal fluctuations on the drainage, thinning
and rupture of liquid films. They showed that thickness variations due to thermal fluc-
tuations at the free surface (originating from the random thermal motion of molecules)
can compete with curvature-induced drainage at Plateau borders. In particular, when
drainage is weak, the film ruptures at a random location due to the spontaneous growth of
fluctuations originating from thermal fluctuations. This is in contrast to the scenario where
drainage is strong, which results in the film rupturing at a local depression (a so-called
dimple) between the lamella and Plateau border. It is worth mentioning that the roles of
thermoviscous and thermocapillary effects have also been investigated in the related con-
text of extensional flows associated with the drawing of viscous threads or sheets, focusing
on the stretching and pinching of threads [10,11] or sheet rupture [12,13]. The goal of this
paper was to fully investigate the coupling between gravity-driven extensional flows and
cooling, without the limitations imposed by Cox et al. [7]; while we did not consider phase
transition due to freezing, we accounted for cooling from both the air–liquid interface and
the top and bottom surfaces. Moreover, we considered the influence of both thermoviscous
and thermocapillary effects on the drainage and cooling of molten liquid films.

The outline of this paper is as follows. We formulate the two-dimensional mathemati-
cal problem in Section 2, which provides the governing equations and boundary conditions
for the flow and temperature field. The lubrication approximation using the fact that
the film’s aspect ratio is small allowed for the simplification of the governing equations
and boundary conditions in a system of three coupled PDEs for the evolution of one-
dimensional free-surface shapes and extensional flow speeds, as well as two-dimensional
temperature fields. In Section 4, we perform numerical simulations of the evolution equa-
tions to determine the free surface shapes, extensional flow speeds and temperature fields
for a variety of parameter values related to the Péclet number, heat transfer coefficients, an
exponential viscosity–temperature model and a linear surface tension–temperature model.
In Section 5, we discuss the main results.
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2. Methods

Following previous work [14,15], we consider the two-dimensional flow due to the
draining of a liquid in a vertically-aligned film. The film has two free surfaces and is
suspended between two horizontal solid frames as shown in Figure 1. The liquid in the
film is hot, at an initial temperature T∗i , compared to its cooler surroundings which are at
ambient temperature T∗a . The configuration shown in Figure 1 mimics the thinning of a
lamella draining into a Plateau border and is a simple idealization of a liquid foam film.
Other configurations that have been investigated include a film suspended over a liquid
bath [16–20]. It is much simpler to prescribe boundary conditions at the upper and lower
ends in the configuration considered here. In addition, we assume that the film is drawn
out sufficiently quickly for a stable initial film profile to exist. The speed at which the film
is drawn will influence its stability and whether a film of a specified height and thickness
can be achieved [16].

The initial liquid film is sufficiently thick for gravity to play a significant role in its
drainage. The liquid loses its heat via the cooler free surface at z∗ = h∗(x∗, t∗) and the top
and bottom supports at x∗ = 0, L∗. The flow evolves due to the effects of gravity, viscous
forces and surface tension causing the liquid in the film to drain downwards, resulting in
the thinning of the film. The liquid is assumed to be an incompressible and Newtonian
liquid with constant properties, except the liquid viscosity and surface tension, which
are dependent on the temperature. We do not consider phase transition associated with
solidification due to freezing near the surface or supports.The ambient temperature T∗a is
assumed to be much higher than the melting point to prevent the film from freezing.
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*
0

z
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z*= *( *, *)h x t

*

Figure 1. Schematic of a vertically-aligned two-dimensional free liquid film draining under gravity
between two rigid frames (adapted from Alahmadi et al. [14]). The liquid within the film is hot
compared to its cooler surroundings.

Figure 1 shows a schematic of the geometry. We consider a two-dimensional Cartesian
coordinate system (x∗, z∗) with the x∗-axis along the film’s length and the z∗-axis along
the film’s thickness. The horizontal frames are separated by a distance L∗ and have width
2H∗0 . We assume symmetry about the film’s centre line at z∗ = 0. The two free surfaces
of the film are represented by z∗ = ±h∗(x, t). Assuming left–right symmetry, we only
consider half of the film between z∗ = 0 and z∗ = h∗(x, t). The superscript ∗ refers to
dimensional quantities.
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2.1. Governing Equations

The flow is described by the Navier–Stokes equations. The density ρ∗ is assumed
constant, so the continuity equation reduces to

u∗x∗ + w∗z∗ = 0. (1)

In the above, v∗ = (u∗, w∗) are the flow speeds in the x∗ and z∗ directions, respectively, and
the subscript denotes differentiation with respect to the subscript variable. The momentum
equations can be written as:

ρ∗(u∗t∗ + u∗u∗x∗ + w∗u∗z∗) = −p∗x∗ + τ
∗xx
x∗ + τ

∗xz
z∗ + ρ∗g∗, (2a)

ρ∗(w∗t∗ + u∗w∗x∗ + w∗w∗z∗) = −p∗z∗ + τ
∗xz
x∗ + τ

∗zz
z∗ , (2b)

where p∗ is the liquid pressure, τ
∗xx and τ

∗zz are the extensional viscous stresses in the x∗

and z∗ directions, respectively, τ
∗xz is the viscous shear stress and g∗ is the acceleration due

to the gravity.
The constitutive relation between the viscous stress τ∗ and the shear rate γ̇∗ for a

Newtonian liquid with temperature-dependent viscosity is written as:

τ∗ = µ∗(T∗)γ̇∗, (3)

where µ∗(T∗) is the temperature-dependent liquid viscosity, T∗ is the temperature, and

τ∗ =

(
τ
∗xx τ

∗xz

τ
∗xz τ

∗zz

)
, γ̇∗ =

(
2u∗x∗ u∗z∗ + w∗x∗

u∗z∗ + w∗x∗ 2w∗z∗

)
, (4)

The two-dimensional governing equation for the temperature, T∗ in Cartesian coordi-
nates, (x∗, z∗) is given by

ρ∗c∗p(T
∗
t∗ + u∗T∗x∗ + w∗T∗z∗) = κ∗[T∗x∗x∗ + T∗z∗z∗ ], (5)

in a material with density ρ∗, specific heat c∗p, thermal conductivity κ∗ and thermal diffusiv-
ity κ∗d = κ∗/(ρ∗c∗p). These are assumed to be constant and independent of temperature. We
neglect the contribution from viscous dissipation.

2.2. Boundary Conditions

Symmetry along the center line z∗ = 0 is imposed through the boundary conditions:

w∗ = u∗z∗ = τ
∗xz = T∗z∗ = 0, at z∗ = 0. (6)

At the free surface z∗ = h∗(x∗, t∗), we have the stress boundary conditions normal
and tangential to the free surface. The normal stress boundary condition balances the jump
in the total normal stress (between the outside air and the liquid) with the product of the
surface tension times and the curvature of the free surface,

−p∗ +
1

1 + h∗2x∗

[
h∗2x∗τ

∗xx − 2h∗x∗τ
∗xz + τ

∗zz
]
=

σ∗(T∗)h∗x∗x∗(
1 + h∗2x∗

) 3
2

, (7)

where σ∗(T∗) is the temperature-dependent surface tension and h∗x∗x∗/
(

1 + h?
2

x∗

) 3
2 is the

surface curvature. Without loss of generality, we take the atmospheric pressure to be zero,
therefore, the liquid pressure p∗ is relative to the atmospheric pressure. The tangential
stress at the free surface for the non-isothermal case is driven by gradients in surface tension
due to variations in temperature (the so-called Marangoni stress). The tangential stress
boundary condition can be written as:
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(1− h∗2x∗)τ
∗xz + h∗x∗

(
τ
∗zz − τ

∗xx
)
= [σ∗x∗(T

∗) + h∗x∗σ
∗
z∗(T

∗)]
√

1 + h∗2x∗ . (8)

At the free surface z∗ = h∗(x∗, t∗), we also impose a heat flux boundary condition based on
Newton’s law of cooling which assumes that the heat flux is proportional to the temperature
difference across this boundary. This is written as:

−κ∗n∗ · ∇T∗ = a∗m(T
∗ − T∗a ), (9)

where a∗m is a heat transfer coefficient (assumed constant) and T∗a is the ambient temperature

(assumed constant), and n∗ =
1√

1 + h∗2x∗

(−h∗x∗ , 1) is the outward-pointing normal vector

to the free surface. We can write Equation (9) as:

κ∗
(

1 + h∗2x∗
)− 1

2
(T∗z∗ − h∗x∗T

∗
x?) = −a∗m(T

∗ − T∗a ). (10)

Finally, the kinematic boundary condition at the free surface is given by

h∗t∗ = w∗ − u∗h∗x∗ , at z∗ = h∗(x∗, t∗). (11)

At the top and bottom boundary x∗ = 0, L∗, respectively, the film is pinned to the end
of the frame and we impose no slip,

h∗ = H∗0 and v∗ = 0, at x∗ = 0, L∗. (12)

Here we also impose the following heat flux boundary condition:

−κ∗n∗ · ∇T∗ = b∗s (T
∗ − T∗s ), (13){

κ∗T∗x∗ = b∗s (T∗ − T∗s ), at x∗ = 0,
−κ∗T∗x∗ = b∗s (T∗ − T∗s ), at x∗ = L∗,

(14)

where b∗s is a heat transfer coefficient at the wire frames (assumed constant) and T∗s is the
temperature there (assumed constant). In the above, we have used the fact that n∗ = (−1, 0)
at x∗ = 0 and n∗ = (1, 0) at x∗ = L∗.

Using Equation (1) and applying Leibniz’s rule, one can re-write the kinematic bound-
ary condition, Equation (11), as

h∗t∗ + Q∗x∗ = 0, Q∗ =
∫ h∗

0
u∗(x∗, z∗, t∗) dz∗, (15)

where Q∗(x∗, t∗) is the liquid flux at any location x∗ along the length of the film. Equation (15)
represents the evolution of the film thickness, h∗(x∗, t∗).

The flow is coupled to the temperature field via a constitutive relationship between
the viscosity and temperature µ∗(T∗) and the surface tension and temperature σ∗(T∗). We
assume an exponential decay in viscosity with temperature [21] and a linear dependence of
surface tension on temperature [12] to describe this relationship, given by:

µ∗ = µ∗min + (µ∗0 − µ∗min)e
−α∗(T∗−T∗a ), (16a)

σ∗ = σ∗0 −M∗(T∗ − T∗a ), (16b)

where α∗ is a temperature–viscosity coupling constant, µ∗0 is a reference viscosity (at

temperature T∗a ), µ∗min is a minimum viscosity limit, M∗ =
dσ∗

dT∗
|(σ∗0 ,T∗a ) is the rate at which

surface tension depends linearly on temperature and σ∗0 is a reference surface tension (at
temperature T∗a ).
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Table 1 shows the physical quantities appearing in the model including their estimated
values. The melt properties are based on aluminium foam melts (Tripathi et al. [22] and
references therein).

Table 1. Physical quantities in the model. The liquid melt properties and temperatures are based on
Aluminium melts (Tripathi et al. [22] and references therein).

Physical Quantity Estimated Value

initial temperature, T∗i 700–800 ◦C
ambient temperature, T∗a >660 ◦C (melting point)

temperature drop, T∗i − T∗a 40–140 ◦C (based on melting point 660 ◦C)
temperature at wire frames, T∗s T∗a (assumed)

density at T∗a , ρ∗ 2.7 × 103 kg/m3

viscosity at T∗a , µ∗0
1Pa s (generally 1–1.4 mPa s but assumed to be

enhanced by addition of particles [2,5,6]
minimum viscosity limit, µ∗min µ∗0/10 Pa s (assumed)

surface tension at T∗a , σ∗0 850–1100 mN/m
speciic heat capacity, c∗p 0.9 kJ/kg K
thermal conductivity, κ∗ 237 W/m K

thermal diffusivity, κ∗d = κ∗/(ρ∗c∗p) 9.7 × 10−5 m2/s
free surface heat transfer coefficient, a∗m 1–103 W/m2 K (assumed)
wire frame heat transfer coefficient, b∗s a∗m (assumed)

temperature–viscosity coupling constant, α∗, 0.01–0.5 ◦C−1 (based on viscosity drop from µ∗0
to µ∗min in temperature range T∗i to T∗a )

slope of surface tension–temperature
relationship, M∗,

10−6–10−5 N/m◦C (based on 0.01% drop in
surface tension in temperature range T∗i to T∗a )

characteristic film length, L∗ 10−2 m
characteristic film thickness, H∗0 50 µm

characteristic flow speed, U∗ =
ρ∗g∗L∗2

µ∗0

2.7 m/s

characteristic pressure, p∗ = ρ∗g∗L∗ 270 N/m2

characteristic time, t∗ =
L∗

U∗
4 ms

2.3. Nondimensionalization of the Governing Equations and Boundary Conditions

We focus on the scenario where the flow is primarily extensional (or plug flow) and
there is a balance between extensional viscous stresses and gravity. Following Alahmadi
and Naire [14], the appropriate nondimensionalization is:

x∗ = L∗x, (z∗, h∗) = H∗0 (z, h), (u∗, w∗) =
ρ∗g∗L

∗2

µ∗0
(u, εw),

(p∗, τ
∗xx, τ

∗zz, τ
∗xz) = ρ∗g∗L∗(p, τxx, τzz,

1
ε

τxz),

(γ
∗xx, γ

∗zz, γ
∗xz) = µ∗0ρ∗g∗L

∗
(γxx, γzz,

1
ε

γxz),

t∗ =
µ∗0

ρ∗g∗L∗
t, Q∗ =

ρ∗g∗L
∗2

µ∗0
H∗0 Q,

T∗ = T∗a + (T∗i − T∗a )θ, (0 ≤ θ ≤ 1). (17)

where θ = 0 implies T∗ = T∗a and θ = 1 implies T∗ = T∗i . The ratio of the two length scales

is denoted by ε =
H∗0
L∗

, which is typically much less than one. We are interested in deriving
the thin film equations in the asymptotic limit ε→ 0.
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Substituting Equation (17) into the governing equations and boundary conditions
gives the following nondimensionalized system:

ux + wz = 0, (18a)

ε2Re(ut + uux + wuz) = −ε2 px + ε2τxx
x + τxz

z + ε2, (18b)

ε2Re(wt + uwx + wwz) = −pz + τxz
x + τzz

z , (18c)

Per[θt + uθx + wθz) = ε2θxx + θzz, (18d)(
τxx τxz

τxz τzz

)
= µ(θ)

(
2ux uz + ε2wx

uz + ε2wx 2wz

)
, (18e)

w = uz = τxz = θz = 0, at z = 0, (18f)

ε

Ĉa
σ(θ)hxx

(1 + ε2h2
x)

3
2
= −p+

1
1 + ε2h2

x

[
ε2h2

xτxx − 2hxτxz + τzz
]
, at z = h(x, t), (18g)

(1− ε2h2
x)τ

xz + ε2hx(τ
zz − τxx) =

ε

Ĉa
[σx(θ) + hxσz(θ)]

√
1 + ε2h2

x, at z = h(x, t), (18h)

θz = ε2hxθx − aε2θ
√

1 + ε2h2
x, z = h(x, t), (18i)

ht + Qx = 0, Q =
∫ h

0
u(x, z, t) dz, (18j)

h = 1, u = w = 0, at x = 0, 1, (18k)

θx = ε2b(θ − θs), at x = 0, (18l)

θx = −ε2b(θ − θs), at x = 1, (18m)

µ(θ) = µmin + (1− µmin)e−αθ , σ(θ) = 1− ε2Mθ. (18n)

In the above, the dimensionless number Re =
ρ∗U∗

2
/L∗

µ∗0U∗/L∗2 is the Reynolds number (which

compares inertial and extensional viscous forces with U∗ =
ρ∗g∗L∗2

µ∗0
), Ĉa =

µ∗0U∗

σ∗0
is the

capillary number (which compares extensional viscous and surface tension forces), the
reduced Péclet number Per = ε2Pe, Pe = (ρ∗c∗pU∗L∗)/κ∗ = U∗L∗/κ∗d is the Péclet number
(which compares convective to diffusive heat transport), α = α∗(T∗i − T∗a ) is a temperature–
viscosity coupling constant, µmin = µ∗min/µ∗0 , M = [M∗(T∗i − T∗a )/σ∗0 ]/ε2 is the rate of
decrease in surface tension with temperature, a = a∗mH∗0 /(ε2κ∗) and b = b∗s H∗0 /(ε2κ∗)
are the heat transfer coefficients at the free surface and substrate, respectively, and θs =
(T∗s − T∗a )/(T∗i − T∗a ). We will see later on that surface tension effects will be important
over smaller lengthscales; in anticipation of this, we define a rescaled capillary number

Ca =
µ∗0U∗

εσ∗0
= Ĉa/ε, Ĉa = O(1), and retain the surface tension term at leading order. We

assume (Per, M, a, b) = O(1).
Table 2 shows the dimensionless parameters appearing in the model and their esti-

mated values.
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Table 2. Dimensionless parameters in the model and their estimated values.

Dimensionless Parameters Values

Aspect ratio, ε = H∗0 /L∗ 5× 10−3

Reynolds number, Re =
ρ∗U∗L∗

µ∗
72

Capillary number, Ĉa =
µ∗0U∗

σ∗0
0.27–2.7

Rescaled Capillary number, Ca = Ĉa/ε 540–5400
Péclet number, Pe = U∗L∗/κ∗d 102

Reduced Péclet number, Per = ε2Pe 2.5× 10−3

Temperature–viscosity coupling,
α = α∗(T∗i − T∗a )

0.4–70

Minimum viscosity, µmin = µ∗min/µ∗0 10−1

Rescaled surface tension–temperature slope,
M = [M∗(T∗i − T∗a )/σ∗0 ]/ε2 0.04–0.1

Rescaled heat transfer coefficients,
(a, b) = (a∗m, b∗s )H∗0 /(ε2κ∗)

10−2–10

Wire frame temperature,
θs = (T∗s − T∗a )/(T∗i − T∗a )

0

2.4. The Small Aspect Ratio, ε =
H∗0
L∗
� 1, Approximation

We exploit the fact that ε =
H∗0
L∗
� 1 and expand each of the unknowns variables

(u, w, p, τxx, τzz, τxz) as a power series in ε2 of the form:

(u, w, p, τxx, τzz, τxz, θ) = (u, w, p, τxx, τzz, τxz, θ)0(x, z, t) + ε2(u, w, p, τxx, τzz, τxz, θ)1(x, z, t) + O(ε4). (19)

Substituting this in Equation (18), we can sequentially solve for the O(1) and O(ε2) quanti-
ties, using which the PDEs and boundary conditions describing the evolution of the film’s
free surface h(x, t) and the extensional flow speed u0(x, t) can be derived as the leading
order. The details of the derivation are provided in Appendix A. The system of PDEs and
boundary conditions are given by the following (for simplicity, we drop the subscript 0):

ht + Qx = 0, Q = uh, (20a)

Re h(ut + uux)− 4
[

µ(θ)hxux +
∫ h

0
(µ(θ)ux)x dz

]
= h

[
1

Ca
hxxx + 1

]
− M

Ca
[θx + hxθz|z=h], (20b)

µ(θ) = µmin + (1− µmin)e−αθ , (20c)

Per[θt + uθx + wθz] = ε2θxx + θzz, w(x, z, t) = −uxz, (20d)

θz = −aε2θ, at z = h(x, t), θz = 0, at z = 0, (20e)

θx = ε2b(θ − θs), at x = 0, θx = −ε2b(θ − θs), at x = 1 (20f)

h(0, t) = h(1, t) = 1, hxxx(0, t) = hxxx(1, t) = −Ca, (20g)

u(0, t) = u(1, t) = 0. (20h)

The boundary conditions in Equations (20g) and (20h) correspond physically to the film
being pinned at the top and bottom (first two boundary conditions in Equation (20g)), and
no flux out of the rigid wire supports, so Q = 0 (represented by the last two boundary
conditions in Equation (20g) and boundary conditions in Equation (20h)). As a consequence
of this, both u and ux are forced to be zero near the ends and the film evolves to quasi-
static shapes there. We also retain the O(ε2) term in Equation (20d) in order to satisfy the
boundary conditions for θ at x = 0, 1 (boundary conditions in Equation (20f)).
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3. Numerical Methods

Equations (20a) and (20b) for h(x, t) and u(x, t), respectively, are solved for x ∈ [0, 1] with
boundary conditions given by Equations (20g) and (20h). The two-dimensional evolution equa-
tion, Equation (20d), for the temperature θ(x, z, t) is solved for (x, z) ∈ [0, 1]× [0, h(x, t)] with
boundary conditions given by Equations (20e) and (20f). For computational convenience, it
is useful to map the temperature field θ(x, z, t) onto a rectangular domain using the change
of variables z̄ = z/h. The transformed evolution equation for the temperature θ(x, z̄, t) is
solved for (x, z̄) ∈ [0, 1]× [0, 1]. The transformed evolution equations for h, u and θ are
given by Equations (A22) and (A23) shown in Appendix B. In what follows, we drop the
bar in z with the implicit understanding that z ∈ [0, 1].

The equations are solved numerically using the method of lines on a uniform and
fixed computational mesh in the spatial directions (x, z) [23]. The spatial derivatives are
discretised using second-order centered finite difference schemes including a first-order
upwind scheme for convection terms in the temperature equation (the terms multiplying
θx and θz on the left-hand-side of Equation (A22a)). The time derivatives appearing in the
equations are kept continuous. We use the trapezoidal rule to approximate the integral
in the expression for u(x, t) in (A23b). The resulting systems of differential-algebraic
equations for the unknowns in h, u and θ at each grid point are solved in MATLAB
(Release 2013a, The MathWorks Inc., Natick, MA, USA) using the stiff ODE solver ode15i.
The corresponding computational mesh sizes were ∆x, z = 10−3–10−2 resulting in a system
of O(104–106) differential-algebraic equations (DAEs) required to be solved at each time
step. For Per � 1, the problem can have very narrow thermal boundary layers near
z = h(x, t) of width O(Pe−1/2

r ) and x = 0, 1 of width O(εPe−1/2
r ). The smallest value of

∆z = 10−3 is sufficient to resolve these boundary layers for Per ≤ 103. For Per > 103, much
smaller values of ∆x, z are required which increase the number of DAEs at each time step,
hence the computational effort. These results are not shown here as they are not different
from the Per = 103 results. The time step was controlled within the solver to maintain
the stability of the numerical solutions. The accuracy and convergence of the numerical
scheme are formally checked by systematically reducing the mesh sizes ∆(x, z) for sample
cases corresponding to a low, intermediate and high reduced Péclet number Per. Based on
this, we can confirm that for the mesh sizes stated above, the numerical solutions presented
below are an accurate reflection of the draining process.

4. Results

We seek numerical solutions to the evolution of film thickness h(x, t), extensional
flow speed u(x, t) and temperature θ(x, z, t) by varying the key parameters: the reduced
Péclet number Per (or Péclet number Pe), rate of linear decrease in surface tension with
temperature M, the heat transfer coefficients a, b at the free surface and substrate, respec-
tively, and the temperature–viscosity coupling constant α. Table 2 provides a range of
values for the dimensionless parameters. We do not restrict the choice of the values of these
parameters to be based on Table 2, but allow for a full range of realistic values to be explored
in (Per, M, a, b, α) space. We consider variations in the above parameters for Ca = 103 (rep-
resentative of Ca� 1) and Re = 0. Re� 1 has no significant influence on the evolution of
the film and the extensional speed, hence we choose Re = 0. Additionally, we choose the
heat transfer coefficient at the top and bottom ends b = 0 focusing on a and the heat transfer
coefficient at the free surface only. The initial condition is h(x, 0) = θ(x, z, 0) = 1 and the
corresponding initial condition for the extensional flow speed is u(x, 0) = x(1− x)/8,
obtained by solving Equation (20b) for (h, θ) = 1 and Re = 0.

We first investigate the influence of viscosity varying with temperature, and take the
surface tension to be constant (M = 0). The solid curves in Figure 2a,e show that the
evolution of h(x, t) (h(x, t) is plotted on a logarithmic scale) for t = 0–160 (in steps of 20)
with µ = 1 (or θ = 0 everywhere corresponding to a film with liquid at the ambient
temperature T∗a ) and µmin = 5× 10−2 (or θ = 1 corresponding to a film with liquid at
a hotter temperature T∗i everywhere), respectively. Both these cases are isothermal with
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differing liquid viscosities. The solid curves in Figure 2b,f show the extensional speed
u(x, t) corresponding to µ = 1, µmin, respectively. The remaining curves in Figure 2a,c,e
show the evolution of h(x, t) (h(x, t) is plotted on a logarithmic scale) for t = 0–160 (in steps
of 20) for Per = 10−1, 10, 102 and 103, respectively, with fixed α = 2, a = 0.02, Ca = 103 and
Re = 0. Figure 2b,d,f show the corresponding evolution of u(x, t), respectively.
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Figure 2. The evolution of the film thickness h(x, t) (on a logarithmic scale) for t varying between
t = 0–160 (in steps of 20) corresponding to (a) µ = 1 (solid curves; isothermal case with θ = 0
everywhere) and Per = 10−1 (dashed curves), (c) Per = 10 (solid curves) and Per = 102 (dashed
curves) and (e) Per = 103 (dashed curves) and µ = µmin = 5× 10−2 (solid curves; isothermal case
with θ = 1). The corresponding extensional flow speed u(x, t) is shown in (b,d,f). The evolution
(g) of the global minimum hmin as a function of time t for varying Per. The parameter values are:
α = 2, a = 0.02, Ca = 103 and Re = 0.
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At early times, the fluid in the film drains downwards leading to thinning of the
film in the upper region and a thickening in the lower region, and the film shape is
concave-out (Figure 2a,c,e; see also the outline profile for h shown in the leftmost panel
in Figure 3a,d,g,j). At late times, the fluid has drained significantly towards the lower
end of the domain forming a quasi-static pendant drop there, leaving a very thin and
almost flat film (lamella) in the middle region, and a quasi-static capillary meniscus at the
upper end (Figure 2a,c,e; see also the outline profile for h shown in the rightmost panel in
Figure 3c,f,i,l). This late-time behaviour can be clearly observed using a logarithmic scale
for h(x, t) shown in Figure 2a,c,e. This shows the middle lamella region connecting onto
quasi-static curves at the top and bottom represented by the capillary meniscus and the
pendant drop, respectively. The maximum flow speeds are in the middle lamella section
of the film (Figure 2b,d,f) which causes the film thickness to decrease severely there. The
flow speed is zero near the top in the capillary meniscus region and at the bottom in the
pendant drop region.

Figure 3. The contour plot for (a) θ(x, z, t = 5), (b) θ(x, z, t = 20) and (c) θ(x, z, t = 100) for
Per = 1; (d) θ(x, z, t = 5), (e) θ(x, z, t = 20) and (f) θ(x, z, t = 100) for Per = 10; (g) θ(x, z, t = 5),
(h) θ(x, z, t = 20) and (i) θ(x, z, t = 100) for Per = 102; (j) θ(x, z, t = 5), (k) θ(x, z, t = 20) and
(l) θ(x, z, t = 100) for Per = 103. The other parameter values kept fixed are: α = 2, a = 0.02, Ca = 103

and Re = 0.

For small Per (dashed curves in Figure 2a), the cooling is significant over the entire film
resulting in the temperature quickly dropping to its equilibrium value θ = 0 (or T∗ = T∗a ),
and the evolution of h(x, t) is similar to that of isothermal draining with µ(θ) = 1 (dashed
curves in Figure 2a). For intermediate Per (Figure 2c with Per = 10, 102, respectively), the
cooling is less uniform and pronounced in the thinner lamella section of the film while the
temperature is much higher in the thicker pendant drop and upper meniscus regions; the
overall viscosity of the liquid is lower than that for low Per leading to faster extensional
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flow speed as Per increases (Figure 2d) and hence faster draining and thinning of the
lamella region. For much larger Per (dashed curves in Figure 2d,e with Per = 103), the
cooling is confined to a skin near the film’s free surface (a diffusive boundary layer) and a
collar of cooler liquid forms in the lamella region, with the rest of the liquid within the film
insulated at a higher temperature θ ≈ 1. This results in a much lower overall viscosity, and
consequently faster draining and thinning compared to lower values of Per. The evolution
of h(x, t) is almost indistinguishable from that of isothermal draining with µ(θ) = µmin
(solid curves in Figure 2e).

Figure 2g tracks the evolution of the minimum in h, hmin, as a function of t for Per
between 10−1 ≤ Per ≤ 103. hmin is representative of the thickness of the lamella film region.
We observe increased thinning of the minimum film thickness, hmin(t), as Per increases. As
Per increases, the fluid drains more quickly, which causes the middle section to become
thinner sooner and therefore is more likely to rupture at earlier times. We also observe
that hmin is always bounded by the two isothermal curves corresponding to µ(θ) = 1, µmin,
respectively, (red dashed curves in Figure 2g) and the thinning rates for small and large Per
tend towards these limiting rates (∝ t−2.25) [14]. To characterise the time taken for the film
to thin, we define a rupture time trupt as the time taken for the film to drain to a prescribed
thickness. In practice, we estimate trupt to be the time taken until hmin reduces to 5× 10−2

of its initial thickness. We observe that the rupture time is almost doubled as Per → 0.
To highlight the temperature variations within the film and the non-uniform cooling

as Per is increased, in Figure 3a–l, we show the contour plot for θ(x, z, t) at times t = 5
(Figure 3a,d,g,j), t = 20 (Figure 3b,e,h,k) and t = 100 (Figure 3c,f,i,l) for Per = 1, 10, 102, 103,
respectively. The other parameter values kept fixed are: α = 2, a = 0.02, Ca = 103 and
Re = 0.

For very small Per (not shown here), the heat loss at the free surface results in the
temperature dropping from its initial value θ = 1 (T = Ti) to its equilibrium value θ = 0
(T = Ta) very quickly. At small values of Per, the diffusion of temperature across the
thickness of the film dominates, i.e., θzz, resulting in the film cooling uniformly. As Per
increases, the diffusion rate is even slower, and is less dominant in suppressing spatial
variations in temperature due to non-uniform cooling both along the film (Figure 3a–c
for Per = 1 and Figure 3d–f for Per = 10) as well as within the film (Figure 3d–f for
Per = 10). This results in more pronounced cooling in the lamella section of the film where
h is much smaller compared to near the ends where the temperatures are much higher as
h is comparatively larger there. This non-uniformity in the cooling is due to the rate of
heat loss being inversely proportional to h—the thicker regions of the film retain their heat
more compared to the thinner regions, which lose their heat and therefore cool relatively
quickly. This non-uniformity in cooling can be clearly observed in Figure 4a,b which shows
the evolution of the temperature along the free surface θ(x, z = h(x, t), t) for t varying
between t = 1 and 160 (in steps of 20) and corresponding to Per = 1, 10, respectively. For
Per = 1, we observe the highest temperatures in the pendant drop region followed by the
temperatures in the upper meniscus (Figure 4a). For Per = 10, the highest temperatures are
in the pendant drop and upper meniscus regions, and we start to observe the development
of steep temperature gradients between these regions and the lamella region (Figure 4b).
Increasing Per further, the spatial variations in θ are much more pronounced, with cooling
in the middle section of the film where h is much smaller compared to near the ends where
h is comparatively larger (Figure 3g–i for Per = 102). At early times, we also observe
variations in θ within the film (Figure 3g), with the film slowly cooling from the free surface.
At later times, it appears that θ is uniform across the film (Figure 3h,i). The large spatial
variation in θ between the ends and the lamella region is clearly observed in Figure 4c,
which shows the evolution of the temperature along the free surface θ(x, z = h(x, t), t)
for t varying between t = 1 and 160 (in steps of 20) and corresponding to Per = 102. For
even larger values of Per, we clearly observe that the majority of the cooling is in the
lamella section of the film, where the film is very thin; the upper capillary meniscus and the
pendant drop region at the bottom remain almost insulated at its initial temperature from
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the cooler middle section and a thin cooler boundary layer near the free surface (Figure 3j,k
for Per = 103 where the boundary layer is clearly visible; in Figure 3l, the boundary layer is
very thin and not resolved here). This is also clearly identified in Figure 4d which shows
the evolution of the temperature along the free surface θ(x, z = h(x, t), t) for t varying
between t = 1 and 160 (in steps of 20) and corresponding to Per = 103. The significant
reduction in the cooling of the middle lamella section is clearly evident at higher Per. This
is due to the enhanced convection of heat through the flow coming from the hotter upper
meniscus region.
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Figure 4. The evolution of the temperature at the free surface, θ(x, z = h(x, t), t) for t varying between
t = 0–160 (in steps of 20) corresponding to (a) Per = 1, (b) Per = 10, (c) Per = 102 and (d) Per = 103.
The other parameter values kept fixed are: α = 2, a = 0.02, Ca = 103 and Re = 0.

Next, we investigate the influence of the viscosity–temperature decay constant α, the
heat transfer coefficient at the free surface a and the surface tension–temperature parameter
M on the global minimum film thickness hmin.

Figure 5a investigates the influence of varying α on hmin(t) for fixed Per = 103 and
a = 0.02. We observe the increased thinning of the minimum film thickness hmin(t) as
α increases. As α increases, the fluid drains more rapidly (due to the larger reduction in
viscosity), which accelerates the the thinning of the middle section, therefore lowering the
rupture times (by almost half the time compared to the isothermal µ = 1 case). In the limit
α→ 0, ∞, we recover the isothermal cases corresponding to µ = 1, µmin, respectively (red
dashed curves in Figure 4a). Figure 5b investigates the influence of varying a on hmin(t) for
fixed Per = 103 and α = 2. We observe that the thinning of the minimum film thickness
hmin(t) decreases as a increases. The fluid drains more slowly, which slows down the
thinning of the lamella section, therefore delaying the rupture times. We now study the
influence of varying M on hmin(t) for two cases corresponding to a low value of Per = 1
(Figure 5c) and a high value of Per = 103 (Figure 5d). We fix α = 2 and a = 0.02. For low
values of Per, we observe hmin to marginally increase with M; the increase is exaggerated
for larger values of M (Figure 5c). This is due to gradients in surface tension generated due
to variations in θ along the film (i.e., θx), which is much stronger in the transition region
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between the downstream end of the lamella region and the pendant drop compared to the
transition region between its upstream end and the upper meniscus region (see Figure 4a).
Moreover, the stronger surface tension gradients at the downstream end of the lamella
region oppose the gravity-driven flow, hence slowing down the extensional flow speed and
thereby reducing the thinning of the lamella region.
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Figure 5. The global minimum hmin as a function of time t for (a) varying α (Per = 103, a = 0.02),
(b) varying a (Per = 103, α = 2), (c) varying M (Per = 1, a = 0.02) and (d) varying M (Per = 103,
a = 0.02). The other parameter values kept fixed are Ca = 103 and Re = 0.

In contrast, for high values of Per, we observe a decrease in hmin at late times as
M increases; the drop in hmin is quite dramatic for higher values of M. In this case,
the surface tension gradients in the transition region between the upstream end of the
lamella and the upper meniscus region are stronger than that in the transition region
between its downstream end and the pendant drop region (due to θx being larger at the
upstream end; see Figure 4d). This contribution cooperates with the gravity-driven flow,
hence increasing the extensional flow speed and thereby accelerating the thinning of the
lamella region.

5. Discussion

In this paper, we coupled the thin-film flow equations to a two-dimensional advection-
diffusion equation for the temperature field and investigated the draining and thinning
of a cooling liquid film. We considered non-isothermal conditions which included a
temperature-dependent viscosity and surface tension and heat loss due to cooling at the
free surface. A systematic parameter study revealed the influence of the system parameters
on this cooling, particularly the reduced Péclet number Per, the decay constant in the expo-
nential viscosity–temperature model α, the heat transfer coefficient a, and the slope of the
linear surface tension–temperature model M. The resulting temperature and corresponding
viscosity and surface tension contrast arising due to the cooling near the film’s free surface
significantly influenced the draining and subsequent thinning of the film.
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A key contribution of this work distinguished the thinning rate and rupture times of
the lamella between the non-isothermal cases studied here and the isothermal cases from
our previous work [14]. Indeed, we demonstrated the significant influence of cooling and
showed that the lamella can thin and rupture either faster or slower than the corresponding
isothermal cases (Figures 2g and 5). This was dependent on the parameter values.

The main highlight of our results identified an important feature during the draining
and thinning process—the preferential cooling in the film’s flat middle section (lamella)
compared to the top and bottom regions (Plateau borders). The rate of heat loss in the
lamella was maximum due to its much smaller thickness compared to the much thicker
Plateau borders (Figure 4). The extent of this cooling was dependent on the parameter
values, in particular the reduced Péclet number Per. For intermediate and large Per, a
draining collar of colder liquid was observed in the lamella sandwiched between two
much hotter Plateau border regions. The hotter regions appeared to be almost insulated
from the cooler middle section and a thin cooler boundary layer near the free surface
(Figures 3i,l and 4c,d). In contrast, for small values of Per, the temperature isotherms
are almost constant across the film thickness (Figure 3a–c) and the film cooled almost
uniformly along its thickness. The non-uniform cooling and its influence on foam film
drainage identified in our work clearly suggests that it is necessary to include the heat
transfer and drainage both in the lamella and Plateau borders, which was not considered in
previous work [7]. Moreover, the cooling of the free surface was also shown to be important,
which was neglected in previous work [7]. In our model, we have assumed that the wire
frames are insulated; future work will include heat transfer from both the free surface and
wire frames.

We observed that the cooling rate could be enhanced by increasing the heat transfer
coefficient a which slowed down the draining and thinning of the film. Moreover, a rapid
drop in the viscosity with temperature controlled by the parameter α increased the draining
flow and the subsequent thinning of the film. The low Per limit is preferred in metallic
films since the hot liquid in the film cools uniformly and rapidly. Consequently, the liquid
viscosity increases uniformly within the film, resulting in slower drainage and thinning of
the film. This can be achieved if the Péclet number Pe = U∗L∗/κ∗d is small (equivalently
if the thermal diffusivity for the liquid κ∗d is large or the aspect ratio ε is small). For melts
with low diffusivity, one would need very thin films for the low Per results to be achieved.
Another method to sufficiently reduce the drainage so that cooling can occur is to disperse
particles within the melt that can increase its effective viscosity, e.g., alumina particles are
dispersed in aluminium foam to increase the viscosity [5,6].

Our investigations on the influence of temperature variations in surface tension
showed that effect of increasing the slope of the linear surface tension–temperature rela-
tionship M∗ was observed to be more effective at lower Péclet numbers. In this parameter
range, surface tension gradients in the lamella region opposed the gravity-driven flow.
At higher Péclet numbers, though, the surface tension gradients tended to enhance the
draining flow in the lamella region resulting in the dramatic thinning of the film at late
times. Our results indicated that the thermocapillary effect had much less influence on
the draining and thinning of the film in comparison to thermoviscous effects. This was
due to a limitation in our model which restricted the variation in surface tension with
temperature to O(ε2) in order to relegate the influence of surface tension gradients to
O(ε2). To accommodate larger variations in surface tension, this needs to be relaxed, and a
different dominant balance, including surface tension gradients at the leading order in ε,
will need to be explored.

A major limitation of this study was not considering the influence of phase transition
due to solidification. This limited our results to be only valid for temperatures much larger
than the melting temperature. We were unable to investigate scenarios where, for example,
a solid crust forms at the air–liquid interface and its interaction with the hot liquid core [7].
As part of future work, we will need to modify the viscosity–temperature relationship in
Equation (16a) to model the change in viscosity at temperatures close to the melting point,
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e.g., Cox et al. [7] chose a step function for µ that gives small values at high temperatures
and high values at low temperatures. In addition, the latent heat of fusion will need to be
considered. Cox et al. [7] use a simple specific heat–temperature relationship to mimic a
peak in the specific heat around the melting temperature to represent the heat that must be
absorbed before the foam solidifies. Incorporating these relationships into our model will
allow us to fully describe the cooling and solidification of metallic foam films.

The theoretical framework developed here is versatile and can be readily adapted to
accommodate complex melts exhibiting non-Newtonian or viscoelastic behaviour with
temperature-dependent properties. This insight would form the basis for future develop-
ments of this model to investigate the overall behaviour of a foam network, for example,
using the framework proposed by Stewart et al. [24].
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Appendix A. Derivation of the PDEs in (20)

We exploit the fact that ε =
H∗0
L∗
� 1 and expand each of the unknowns variables

(u, w, p, τxx, τzz, τxz, h) as a power series in ε2 of the form:

(u, w, p, τxx, τzz, τxz, θ) = (u, w, p, τxx, τzz, τxz, θ)0(x, z, t) + ε2(u, w, p, τxx, τzz, τxz, θ)1(x, z, t) + O(ε4). (A1)

Substituting this into Equations (18a)–(18n). we obtain at O(1):

u0x + w0z = 0, (A2)

τxz
0z = 0, (A3)

− p0z + τxz
0x + τzz

0z = 0, (A4)

w0 = u0z = τxz
0 = 0, at z = 0, (A5)

− p0 + τzz
0 − 2hxτxz

0 =
1

Ca
hxx, at z = h (A6)

τxz
0 = 0, at z = h. (A7)

Equations (A3), (A5) and (A7) imply that

τxz
0 (x, z, t) = 0. (A8)

Integrating Equation (A4) with respect to z and using Equation (A5) and (A6), we obtain

p0 = τzz
0 −

1
Ca

hxx. (A9)

To determine τxx,zz
0 , we need to analyse the O(ε2) equations. Before we do this, we

note the following: u0z = 0, so u0 = u0(x, t), using τxz
0 = 0 and Equation (18e) at leading

order. In addition, τzz
0 = −τxx

0 , using Equation (A2) in Equation (18e). Equation (A2) also
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gives w0z = −u0x, which on integrating with respect to z and using w0 = 0 at z = 0, gives
w0(x, z, t) = −u0xz. At O(ε2), we have

Re(u0t + u0u0x + w0u0z) = −p0x + τxx
0x + τxz

1z + 1, (A10)

Re(w0t + u0w0x + w0w0z) = −p1z + τxz
1x + τzz

1z , (A11)

w1 = u1z = τxz
1z = 0, at z = 0, (A12)

τxz
1 − h2

xτxz
0 + hx(τ

zz
0 − τxx

0 ) = −M
Ca

[θ0x + hxθ0z], at z = h. (A13)

Integrating Equation (A10) with respect to z and using Equation (A12), we obtain

τxz
1 = −2

∫ z

0
τxx

0x dz−
[

1
Ca

hxxx + 1− Re(u0t + u0u0x)

]
z. (A14)

Substituting this into Equation (A13) gives

2
∫ h

0
τxx

0x dz + 2hxτxx
0 + h

[
1

Ca
hxxx + 1− Re(u0t + u0u0x)

]
=

M
Ca

[θ0x + hxθ0z|z=h]. (A15)

Equation (A15) represents the force balance at the free surface of the extensional stress
(represented by the first two term), surface tension (represented by the third term), gravity
(represented by the fourth term), inertia (represented by the fifth and sixth terms) and
variations in surface tension (represented by the last term).

To determine the evolution equation of h using Equation (18j), we also need to deter-
mine u0 and the O(ε2) correction u1. We use the constitutive law to determine these. From
Equation (18e), we obtain

u0x =
1

2µ(θ0)
τxx

0 , (A16)

u1z + w0x =
1

µ(θ0)
τxz

1 ⇒ u1z =
1

µ(θ0)
τxz

1 − w0x =
1

µ(θ0)
τxz

1 + u0xxz, (A17)

where µ(θ0) is given by Equation (18n). We can combine Equations (A15) and (A16) to
write a single evolution equation for u0. This can be written as:

Re h(u0t + u0u0x)− 4
[

µ(θ0)hxu0x +
∫ h

0
(µ(θ0)u0x)x dz

]
= h

[
1

Ca
hxxx + 1

]
− M

Ca
[θ0x + hxθ0z|z=h]. (A18)

Finally, the evolution equation for h can be obtained from Equation (18j) as:

ht + Q0x = 0, Q0 = u0h. (A19)

Hence, Equations (A18) and (A19) provide a coupled system of two PDEs for the film’s free
surface evolution, h(x, t) and the extensional flow speed u0(x, t), respectively.

Appendix B. Mapping (x, z) ∈ [0, 1]× [0, h] to a Rectangular Domain (x, z) ∈ [0, 1]× [0, 1]

In order to solve Equation (20) numerically, it is instructive to map (x, z) ∈ [0, 1]× [0, h]
to a rectangular domain (x, z) ∈ [0, 1]× [0, 1]. We apply the following change of variables:

x̄ = x, z̄ =
z

h(x, t)
, t̄ = t. (A20)

Using the chain rule, we can write

∂

∂x
=

∂

∂x̄
− z̄hx̄

h
∂

∂z̄
,

∂

∂z
=

1
h

∂

∂z̄
,

∂

∂t
=

∂

∂t̄
− z̄ht̄

h
∂

∂z̄
. (A21)
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Applying the above change of variables to Equations (20d)–(20f), we obtain the transformed
evolution equation for θ(x̄, z̄, t̄) given by

Per

[
θt̄ + uθx̄ + (w− z̄uhx̄ − z̄ht̄)

1
h

θz̄

]
=

1
h2 θz̄z̄ + ε2

[
θx̄x̄ − z̄

(
hx̄

h

)
x̄
θz̄ −

z̄hx̄

h

(
2θx̄z̄ −

(
z̄hx̄

h
θz̄

)
z̄

)]
, (x̄, z̄) ∈ [0, 1]× [0, 1],

w(x̄, z̄, t̄) = −ux̄hz̄, (x̄, z̄) ∈ [0, 1]× [0, 1], (A22a)

θz̄ = 0, at z̄ = 0, ∀x̄ ∈ [0, 1], θz̄ = −aε2hθ, at z̄ = 1, ∀x̄ ∈ [0, 1], (A22b)

θx̄ = ε2b(θ − θs) +
z̄hx̄

h
θz̄, at x̄ = 0, ∀z̄ ∈ [0, 1], θx̄ = −ε2b(θ − θs) +

z̄hx̄

h
θz̄, at x̄ = 1, ∀z̄ ∈ [0, 1]. (A22c)

The film thickness evolution, Equation (20a), and the extensional flow speed evolution,
Equation (20b), in the transformed coordinates become,

ht̄ + Qx̄ = 0, Q = uh, (A23a)

Reh(ut̄ + uux̄)− 4
[

µ(θ)hx̄ux̄ +
∫ 1

0
(µ(θ)ux̄)x̄h dz̄−

∫ 1

0
z̄hx̄(µ(θ)ux̄)z̄ dz̄

]
= h

[
1

Ca
hx̄x̄x̄ + 1

]
− M

Ca

[
θx̄ +

hx̄

h
θz̄|z̄=1

]
. (A23b)
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