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Abstract: In this study, we investigate the performance of the smoothed particle hydrodynamics
(SPH) method regarding the computation of confined flows in microchannels. Modeling and nu-
merical simulation with SPH involve the representation of flowing matter as distinct mass points,
leading to particle discretization of the Navier–Stokes equations. The computational methodology
exhibits similarities with other well-established particle methods, such as molecular dynamics (MD),
dissipative particle dynamics (DPD), and smooth dissipative particle dynamics (SDPD). SPH has been
extensively tested in the simulation of free-surface flows. However, studies on the performance of
the method in internal flow computations are limited. In this work, we study flows in microchannels
of variable cross-sections with a weakly compressible SPH formulation. After preliminary studies of
flows in straight constant cross-section ducts, we focus on channels with sudden expansion and/or
contraction. Flow models based on periodic or various inlet/outlet boundary conditions and their
implementations are discussed in the context of 2D and 3D simulations. Numerical experiments
are conducted to evaluate the accuracy of the method in terms of flowrate, velocity profiles, and
wall shear stress. The relation between f and Re for constant cross-section channels is computed
with excellent accuracy. SPH captured the flow characteristics and achieved very good accuracy.
Compressibility effects due to the weakly compressible smoothed particle hydrodynamics (WCSPH)
formulation are negligible for the flows considered. Several typical difficulties and pitfalls in the
application of the SPH method in closed conduits are highlighted as well as some of the immediate
needs for the method’s improvement.

Keywords: microflows; confined flows; smoothed particle hydrodynamics (SPH); three-dimensional
flow; sudden expansion/contraction

1. Introduction

Fluid flow numerical simulation has gained wide acceptance in various industrial
applications over the last decades. Conventional methods have faced insurmountable
difficulties in some cases where the fluid flow involves geometrical complexities, chemical
reactions, and scale problems, to mention a few [1,2]. Therefore, the use of novel numerical
tools, which have been validated and proven reliable, may provide satisfactory solutions in
many industrial problems, such as chemical analysis, biomedical devices, and microscopic
interactions [3]. In addition, developments in microelectromechanical systems (MEMS)
make it possible to fabricate very small devices [4]. Thus, the need for better evaluation of
flow in such systems is of great practical importance.

Numerical methods are broadly classified into Lagrangian, Eulerian, and mixed-type
Lagrangian–Eulerian methods. In the nonadaptive Eulerian approach, a fixed Cartesian
mesh covers the computational domain, no remeshing is performed, and large deformations
of the continuum are resolved, possibly without mesh adaptation. In adaptive Eulerian
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methods, the mesh adapts to the solution and allows the computation of rather challenging
flow fields. However, adaptive Eulerian methods may have limitations in terms of cost and
convergence to the correct solution. In the Lagrangian approach, the mesh (when used)
moves naturally and follows the boundaries, leading to a simplified numerical handling
of free surfaces and interfaces, since no grid points are needed outside the continuum.
Yet, large deformation of the continuum may negatively affect numerical accuracy [5]. To
account for this issue, various adaptive Lagrangian methods have been proposed.

Smoothed particle hydrodynamics (SPH) is a mesh-free method, based on the concept
of describing the flow by following the motion of fluid particles (point masses). The
information contained in a mathematical model of a continuum medium in motion, usually
a set of partial differential equations, is passed to several neighboring particles within
a prescribed range [6]. The particles serve as “nodes” for the computation of any field
variable, based on a built-in approximation utilizing a kernel function [7,8]. A number of
SPH formulations have been proposed, covering the whole spectrum between the original
Lagrangian formulation and recent Eulerian variants [9,10]. Similarities can be found
in other particle methods, such as molecular dynamics (MD) [11], dissipative particle
dynamics (DPD) [12], smooth dissipative particle dynamics (SDPD) [13], while hybrid
or multiscale methods have been also proposed [14,15]. However, SPH is a numerical
approximation of the partial differential equations of continuum mechanics, and MD, DPD,
and SDPD may be implemented in flows where the continuum theory may or may not
break down [16,17].

The mass conservation law should be satisfied for all cases in particle flows. Notwith-
standing the fact that this is a minor problem in low Re flows, care has to be taken in violent,
turbulent open-channel flows. In terms of particle methods applied to internal flows, this
means that no fluid particles escape the walls. To account for particle penetration through
the solid boundaries under no-slip and partial slip conditions, a boundary volume fraction
wall approach along with a transport velocity method have been embedded in the SPH
formulation, suggesting an accurate method that allows for accurate modeling of fixed and
moving boundaries [18]. Issues related to the volume nonconservation and the nonphysical
gap considered at the free surface are anticipated when introducing of a corrective cohesion
force, which accounts for the proper characterization of the interaction region between a
particle under study and its neighboring particles. This is implemented in the framework of
weakly compressible SPH (WCSPH), aided by particle shifting techniques (PSTs) [19] and
the WCSPH form with density diffusion term (named δ-SPH) in its original iteration [20] or
the recently introduced improved accuracy method [21].

Another computational challenge that SPH-oriented research has recently been facing
is the treatment of viscosity, which is closely connected to the investigation of turbulent
flows. For the simulated cases studied in this work, which are characterized by low Re
numbers, this is not a problem, since the turbulence is not activated. An artificial viscosity
term has been proposed by Monaghan [22] to improve computational efficiency. However,
the real viscosity term has also been introduced, providing a better connection to real
physics [23]. A comparison of existing viscosity models [24] concludes that the correction-
based scheme on the irregular distribution of neighboring points around the particle under
consideration performs better in terms of accuracy [25]. Emphasis has also been placed on
the treatment of fluid/solid interaction boundaries. In this region, decreased accuracy has
been observed due to the truncation of the integration domain. Suggested solutions include
treatment of the boundary as virtual particles, similar to the Lennard–Jones methods in
MD [22], ghost [26], or dummy [27] particles, and, recently, the combination of dummy
particles and the normal flux method [28].

In this work, we focused on the application of SPH on low Reynolds number flows,
in closed microchannels characterized by the presence of abrupt changes in cross-section
area, given that there are not many published results in the literature. Open questions on
such flows include the treatment of boundary conditions, the viscosity models exploited,
and the accuracy of 2D and 3D geometries, among others. Turbulence modelling is another
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major issue. Simulations are run using DualSPHysics code, which is implemented in C++
and CUDA languages, providing the advantage of high-performance computing (HPC)
and, thus, simulating millions of particles with either CPUs or GPUs. The parallelization
achieved saves computational time, which is a major issue in real-life engineering simu-
lations [29]. Integration in time is performed with either Verlet’s or Symplectic method.
Results have shown very good accuracy in terms of comparison with analytical solutions in
terms of flowrate, velocity profiles, and friction factor. However, further study is necessary
in order to resolve convergence issues close to the fluid/solid interface and to improve the
accuracy in the imposition of BCs.

2. Materials and Methods

In the weakly compressible SPH formulation, the partial differential equations (PDEs)
of the continuity equation and momentum equation are written in the form

dρ

dt
= −ρ∇·v (1)

dv
dt

= −1
ρ
∇P + g + Γ (2)

In Equations (1) and (2), P is pressure, ρ refers to density, g represents external forces,
and Γ stands for the dissipative terms in the momentum equation.

2.1. Function Approximation in SPH

The fluid is divided into a set of discrete moving particles. The method interpolates
the set of the field variables by means of a kernel smoothing function, W. For function f (r),
we write

f (ri) = ∑
j

mj
f j

ρj
W
(
ri − rj

)
(3)

The sum in Equation (3) theoretically extends over all the fluid particles, yet only
particles for which ri − rj < h need to be considered for appropriately selected kernel
function of compact support. This saves computational cost but can lead to inaccuracies
close to the boundaries (especially at the wall/fluid interface).

2.2. Weakly Compressible SPH Approximation Equations

Introducing the SPH approximations, the governing equations are written (in indicial
notation) as

dρi
dt

= ρi∑
j

mj

ρj
vij·∇iWij (4)

dvi
dt

= −∑
j

mj

(
Pj + Pi

ρjρi

)
∇iWij + g + ∑

j
mj

(
4ν0rij·∇iWij(

ρi + ρj
)(

rij
2 + η2

))vij (5)

where ν0 is the kinematic viscosity and η2 = 0.01h2, which is a small number introduced
to maintain a nonzero denominator. Equation (4) is the general SPH form of mass conser-
vation while Equation (5) is the expression of momentum conservation for the Laminar
viscosity model.

2.3. Computation of the Pressure Field

In the SPH approximation, the fluid is treated as weakly compressible, and an equation
of state is used to determine fluid pressure according to the particle density. The pressure
field is computed using Tait’s equation of state:

P = B
[(

ρ

ρ0

)γ

− 1
]

(6)
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In Equation (6), B = cs
2ρo
γ , ρo is the reference density; cs is the speed of sound, which

should be at least ten times faster than the maximum fluid velocity in order to prevent
major deviations from an incompressible approach [29]; and γ = 7.

2.4. SPH Treatment of Viscosity

The DualSPHysics code provides two viscosity treatment models. “Artificial viscosity”
and “Laminar + SPS.” In this work, both models were tested and delivered with almost
identical results regarding the 2D cases. However, for the 3D cases, the “Laminar + SPS”
model provided better quantitate results and, therefore, it has been incorporated for all
cases simulated here. It should be emphasized that the flows discussed in this work are
laminar and, consequently, the sub-particle scale stress is negligible and the momentum
equation takes the form of Equation (5).

2.5. Kernel Function

As mentioned in Section 2.1, a kernel function, W, is used in SPH function approxima-
tion. Furthermore, a characteristic cut-off length, h, is selected. The physical property of
any particle is calculated by the summation of the relevant properties of all neighboring
particles within the selected range. In this study, the quintic Wendland function is used as
kernel defined as

W(r, h) = αD

(
1− q

2

)4
(2q + 1) 0 ≤ q ≤ 2 (7)

where q is the nondimensional distance between particles, αD = 7/
(

4πh2
)

for 2D simula-

tions, and αD = 21/
(

16πh3
)

in 3D.

2.6. Integration in Time

In the weakly compressible formulation of SPH the governing partial differential
equations (PDEs), Equations (1) and (2) are transformed into a set of ordinary differential
equations (ODEs), namely Equations (4) and (5). For a representative particle α, the ODEs
are written symbolically in the form

dρa

dt
= Ra;

dVa

dt
= Fa;

dra

dt
= Va; (8)

where an ODE is added for the particle position, ra.
The formulae in Equation (8) are integrated in time using the symplectic position or

Verlet algorithm. The timestep, ∆t, is limited by Courant–Friedrichs–Lewy (CFL) conditions
because of the underlying PDEs. Furthermore, the time step depends on the forcing term,
Fα, and the viscous diffusion term. Specifically, the timestep satisfies the relations

∆t = CFLmin
(

∆t f , ∆tcv

)
(9)

where

∆t f = min
α

(√
h
| fa|

)
and (10)

∆tcv = min
α

 h

cs + max
b

∣∣∣ hva ·ra
rab

2+η2

∣∣∣
 (11)

In Equation (11), cs denotes the speed of sound and | fa| is the force per unit mass.
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3. Results
3.1. Two-Dimensional Flows

The first group of simulations includes four cases of water flow through closed 2D
microchannels. The nominal water density is assumed equal to 1000 kg/m3. In simulations
using DualSPHysics code, the liquid is considered weakly compressible [29]. Small devia-
tions of the water density (of the order of 0.1%) are observed locally. The parameters of
the baseline simulations, the BCs, as well as the computational time that is needed on a
GPU RTX 3060 card are summarized in Table 1. Here, DBC stands for dynamic boundary
conditions, Np denotes the number of fluid particles, dp is the initial interparticle distance,
and ν0 the kinematic viscosity.

Table 1. Model parameters of 2D baseline simulations.

Case Poiseuille Developing Flow Sudden Expansion Expansion/Contraction

Np 10,000 10,060 10,340 15,300
dp (m) 2.00 × 10−5 2.00 × 10−5 2.98 × 10−5 2.98 × 10−5

ν0 (m2/s) 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6

BCs at solid wall DBC DBC DBC DBC
BCs in x-direction Periodic Inlet/outlet Inlet/outlet Periodic

Force per unit mass (m/s2) gx = 0.001 gx = 0.0 gx = 0.0 gx = 0.001
Time Integration Verlet Verlet Symplectic Symplectic

Simulation time (s) 5 5 20 30
GPU time (min) 2.1 2.5 10 8

3.1.1. Constant Cross Section Microchannel
Fully Developed Flow Model

In the first preliminary test case, the fluid is confined between two very large parallel
solid plates (Figure 1a). The gap between the plates is H = 2h = 0.985 mm. Periodic
boundary conditions (PBCs) are applied in streamwise (x-axis) and in spanwise (z-axis)
(Figure 1b). This computational setup corresponds to the well-known Poiseuille flow. Zero
velocity is applied at t = 0 everywhere in the flow field in the baseline simulation. After
a certain simulation time, the flow reaches steady conditions. In further simulations, the
same solution is reached independently of the initial flow conditions considered.

The x-velocity component, computed using the SPH method, is compared to the
analytical velocity profile in Figure 2. For easy reference, we provide the analytical solution
to the N–S equations for laminar Poiseuille flow here [30]. The exact velocity field is

u = −Gh2

2µ

(
1− y2

h2

)
, v = 0, w = 0 (12)

where the y-axis is in the wall–normal direction, µ is the dynamic viscosity of the fluid, and
2h is the gap between the two plates. Equation (12) is valid for a coordinate system with
the x-axis in the mid-plane of the configuration. The driving pressure gradient is denoted
by G = ∂P

∂x and is a negative constant. It is noted that, instead of a pressure gradient, one
can, equivalently, apply a body force of ρgx to drive the flow (see Table 1). For values up to
gx = 0.1 m/s2, the velocity profile is in very good agreement with the analytical solution
and the linear behavior is obvious. Values greater than 0.1 m/s2 have not been tested.

The size of the gap between the two parallel plates as well as the bulk velocity of
the water are small and, consequently, in all simulations, the flow Reynolds number is
low [30]. As a result, the nonlinear terms of the N–S equations are negligible. The linear
response of the flow is verified by doubling the driving force per unit mass using a number
of numerical experiments.



Fluids 2023, 8, 137 6 of 20

Fluids 2023, 8, 137 5 of 21 
 

𝛥𝑡 = 𝑚𝑖𝑛( ℎ𝑐 + 𝑚𝑎𝑥 ℎ𝑣 ∙ 𝑟𝑟 + 𝜂 ) (11)

In Equation (11), cs denotes the speed of sound and |𝑓 | is the force per unit mass. 

3. Results 
3.1. Two-Dimensional Flows 

The first group of simulations includes four cases of water flow through closed 2D 
microchannels. The nominal water density is assumed equal to 1000 kg/m3. In simulations 
using DualSPHysics code, the liquid is considered weakly compressible [29]. Small devi-
ations of the water density (of the order of 0.1%) are observed locally. The parameters of 
the baseline simulations, the BCs, as well as the computational time that is needed on a 
GPU RTX 3060 card are summarized in Table 1. Here, DBC stands for dynamic boundary 
conditions, Np denotes the number of fluid particles, dp is the initial interparticle distance, 
and 𝜈  the kinematic viscosity. 

Table 1. Model parameters of 2D baseline simulations. 

Case Poiseuille Developing Flow Sudden Expansion Expansion/Contraction 
Np 10,000 10,060 10,340 15,300 

dp (m) 2.00 × 10−5 2.00 × 10−5 2.98 × 10−5 2.98 × 10−5 𝜈  (m2/s) 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6 
BCs at solid wall DBC DBC DBC DBC 

BCs in x-direction Periodic Inlet/outlet Inlet/outlet Periodic 
Force per unit mass (m/s2) gx = 0.001 gx = 0.0 gx = 0.0 gx = 0.001 

Time Integration Verlet Verlet Symplectic Symplectic 
Simulation time (s) 5 5 20 30 

GPU time (min) 2.1 2.5 10 8 

3.1.1. Constant Cross Section Microchannel 
Fully Developed Flow Model  

In the first preliminary test case, the fluid is confined between two very large parallel 
solid plates (Figure 1a). The gap between the plates is H = 2h = 0.985 mm. Periodic bound-
ary conditions (PBCs) are applied in streamwise (x-axis) and in spanwise (z-axis) (Figure 
1b). This computational setup corresponds to the well-known Poiseuille flow. Zero veloc-
ity is applied at t = 0 everywhere in the flow field in the baseline simulation. After a certain 
simulation time, the flow reaches steady conditions. In further simulations, the same so-
lution is reached independently of the initial flow conditions considered. 

 
(a) 

Fluids 2023, 8, 137 6 of 21 
 

(b) 

Figure 1. (a) Longitudinal illustration of the Poiseuille case. (b) Two-dimensional constant cross sec-
tion channel. Geometry and coordinate system in 2D simulations. 

The x-velocity component, computed using the SPH method, is compared to the an-
alytical velocity profile in Figure 2. For easy reference, we provide the analytical solution 
to the N–S equations for laminar Poiseuille flow here [30]. The exact velocity field is 𝑢 = − 𝐺ℎ2𝜇 1 − 𝑦ℎ , 𝑣 = 0, 𝑤 = 0 (12)

where the y-axis is in the wall–normal direction, µ is the dynamic viscosity of the fluid, 
and 2h is the gap between the two plates. Equation (12) is valid for a coordinate system 
with the x-axis in the mid-plane of the configuration. The driving pressure gradient is 
denoted by 𝐺 =  and is a negative constant. It is noted that, instead of a pressure gra-
dient, one can, equivalently, apply a body force of 𝜌𝑔  to drive the flow (see Table 1). For 
values up to 𝑔  = 0.1 m/s2, the velocity profile is in very good agreement with the analyt-
ical solution and the linear behavior is obvious. Values greater than 0.1 m/s2 have not been 
tested. 

 
Figure 2. Poiseuille flow. Computed velocity profile at x = 2 mm. Comparison with the analytical 
profile (Equation (12)). 

The size of the gap between the two parallel plates as well as the bulk velocity of the 
water are small and, consequently, in all simulations, the flow Reynolds number is low 

Figure 1. (a) Longitudinal illustration of the Poiseuille case. (b) Two-dimensional constant cross
section channel. Geometry and coordinate system in 2D simulations.

Fluids 2023, 8, 137 6 of 21 
 

(b) 

Figure 1. (a) Longitudinal illustration of the Poiseuille case. (b) Two-dimensional constant cross sec-
tion channel. Geometry and coordinate system in 2D simulations. 

The x-velocity component, computed using the SPH method, is compared to the an-
alytical velocity profile in Figure 2. For easy reference, we provide the analytical solution 
to the N–S equations for laminar Poiseuille flow here [30]. The exact velocity field is 𝑢 = − 𝐺ℎ2𝜇 1 − 𝑦ℎ , 𝑣 = 0, 𝑤 = 0 (12)

where the y-axis is in the wall–normal direction, µ is the dynamic viscosity of the fluid, 
and 2h is the gap between the two plates. Equation (12) is valid for a coordinate system 
with the x-axis in the mid-plane of the configuration. The driving pressure gradient is 
denoted by 𝐺 =  and is a negative constant. It is noted that, instead of a pressure gra-
dient, one can, equivalently, apply a body force of 𝜌𝑔  to drive the flow (see Table 1). For 
values up to 𝑔  = 0.1 m/s2, the velocity profile is in very good agreement with the analyt-
ical solution and the linear behavior is obvious. Values greater than 0.1 m/s2 have not been 
tested. 

 
Figure 2. Poiseuille flow. Computed velocity profile at x = 2 mm. Comparison with the analytical 
profile (Equation (12)). 

The size of the gap between the two parallel plates as well as the bulk velocity of the 
water are small and, consequently, in all simulations, the flow Reynolds number is low 

Figure 2. Poiseuille flow. Computed velocity profile at x = 2 mm. Comparison with the analytical
profile (Equation (12)).

Wall Shear Stress and Friction Factor

The shear stress at the solid walls of channels is of great practical importance across
all scales: nano, micro, and macro [31], since it is directly related to the pressure drop along
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the channel and, consequently, to the power required for fluid transport. For a Newtonian
fluid, the wall shear stress is calculated as

τw = µ
du
dy

∣∣∣∣
wall

(13)

and, for the coordinate system described in the context of Equation (12), |τw| = |G|h = µumax
2
h .

In Table 2, we summarize the comparison between the computed velocity derivative at the
wall in the baseline simulation and its exact analytical value, and the relative difference
obtained is 2.04% for both boundary conditions. By increasing the driving force per unit
mass, we further simulated Poiseuille flow at different values of the Reynolds number.
In Figure 3, we present the relation between the friction factor, f, and the flow Reynolds
number as predicted by the SPH simulation. The definitions adopted here are

f =
τw

1
8 ρV2 =

(
− ∂p

∂x

)
Dh

ρ V2

2

, Re =
VDh

ν0
, Dh =

4A
P

= 2H = 4h, (14)

where Dh is the hydraulic diameter and V is the mean velocity at the cross-section.

Table 2. Two-dimensional constant cross-section channel. Comparison between SPH results with
analytical solution for the derivative of x-velocity component.

Baseline Simulation SPH Analytical Rel. Diff. (%)

Periodic BCs 0.48 0.49 2.04%
Inlet/outlet BC with buffer zones 0.48 0.49 2.04%
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The least squares fit of the computed values of the friction factor delivers f = 95.9/Re
(see Figure 3), which is in excellent agreement with the exact value of the Poiseuille number,
Po = f × Re = 96 = const. [30].

Developing Flow Model

Next, we studied the developing laminar flow in the gap between two very large
parallel plates. Since the developing length of the flow is not known a priori, PBCs in
the x-direction are not appropriate and they are replaced by inlet/outlet BCs. In this
formulation, two buffer zones are constructed at the pre-processing step. Uniform-in-space
and constant-in-time velocity and pressure, respectively, are applied at the inlet buffer
zone. These buffer zones interact with the fluid particles using ghost nodes, passing all the
information to fluid particles at the inflow and outflow [29]. In the baseline simulation,
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the uniform velocity at the inlet is set equal to 8.075 × 10−5 m/s. The initial conditions
correspond to water in equilibrium. After the flow reaches fully developed flow conditions,
the fully developed SPH results are in excellent agreement with the exact solution of the
fully developed Poiseuille flow (see Figure 4a).
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Figure 4. Developing flow model. Computed velocity profile at x = 2 mm and x = 3 mm. Comparison
with the analytical profile (Equation (12)). (a) Vinlet = 8.075× 10−5 m/s. (b) Vinlet = 1.605× 10−4 m/s.

To assess the model’s behavior regarding the increase in flowrate, we doubled the
magnitude of the inlet velocity. The maximum velocity, mean velocity, and, consequently,
flowrate and Reynolds number doubled. The fully developed SPH results show excellent
agreement with the analytical Poiseuille profile (see Figure 4b).

3.1.2. Two-Dimensional Sudden Expansion

In this numerical experiment, a sudden increase in the linear dimensions of the channel
cross-section is introduced. The distance between the two solid walls increases suddenly
from 0.4925 mm to 0.985 mm at x = 4 mm. The geometry of the channel and the length of
each portion of the channel are shown in Figure 5. Boundary conditions in the streamwise
direction are applied using an inlet buffer zone with constant-in-time and uniform-in-space
velocity and free outflow conditions at the outlet of the computational domain (see Figure 5).
The inlet velocity is set equal to 3.125 × 10−5 m/s, while the initial velocity conditions are
set equal to zero u = v = w = 0 everywhere in the flow field.
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Figures 5 and 6 show the particles and the trajectory lines at t = 20 s when the flow
reaches steady flow conditions. Well-defined vortices are formed immediately after the
channel’s sudden expansion. Although the Reynolds number is small, the flow separates
because of the sharp 90◦ corner and reattaches after a length slightly larger than the “step”
height (see Figure 6).
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Velocity profiles in two different longitudinal positions (Figure 7) exhibit the expected
parabolic behavior with the max velocity values to be located at the center of the closed
channel and velocity values tend to zero, close to the boundary (solid–fluid interface). Some
inaccuracies occurred, mainly due to the treatment of fluid–solid interface BCs since strict
no-slip conditions have not been implemented yet in the DualSPHysics version used for
this study [29]. Inaccuracies are more apparent in the narrower cross-section. This is mainly
due to the separation distance between the plates in combination with the larger velocity.
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Figure 7. Two-dimensional sudden expansion. Velocity profiles at longitudinal positions
x1 = 4 mm, x2 = 6 mm. At x1, V1 = 2.89 × 10−5 m/s,

(
Q1 = 1.42× 10−11 m3/s

)
, while at x2,

V2 = 1.43× 10−5 m/s,
(
Q2 = 1.41× 10−11 m3/s

)
(rel. difference 0.7%).

3.1.3. Two-Dimensional Sudden Expansion/Contraction

In the last 2D case considered, the distance between the solid walls increases suddenly
at x = 0 from 0.4925 mm to 0.985 mm and decreases suddenly at x = 3.6 mm back to
0.4925 mm (see Figure 8). The aim, in this case, is to model the flow in a very long channel
with periodic expansions and contractions. The SPH model described in this subsection
solves the Navier–Stokes equation in a single module of the channel as shown in Figure 8.
Periodic BCs are imposed in the streamwise direction, and the initial velocity field is set
equal to zero. The flow reaches a steady state after a certain time.
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An expanded view of the streamline/pathline (trajectories) pattern in the central part
of computational domain is shown in Figure 9. SPH successfully captures the streamline
curvature and the formation of the vortices near the corners.
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Figure 9. Two-dimensional sudden expansion/contraction. Trajectory lines (not scaled) in the
expanded section of the channel at t = 30 s.

The computed velocity profiles exhibit the expected parabolic behavior at cross sec-
tions located far from the sudden expansions and contractions. In Figure 10, the ve-
locity profiles at longitudinal positions x1 = −2 mm, x2 = 2 mm, and x3 = 6 mm are
shown. Corresponding cross-sectional average velocities are V1 = 1.5× 10−5 m/s = V3,
V2 = 3× 10−5 m/s, and Q1 = Q2 = Q3 = 7.38× 10−12(m3/s) = 7.38× 10−2 µL/s.
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3.6 mm. The flow is considered fully developed so that periodic BCs are applied in the x-
direction. DBCs are imposed on solid walls. A number of initial conditions for the velocity 
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Figure 10. Two-dimensional sudden expansion/contraction. Velocity profiles at longitudinal po-
sitions x1 = −2 mm, x2 = 2 mm, and x3 = 6 mm. Corresponding cross-sectional average (mean)
velocities V1 = 1.5× 10−5 m/s = V3, V2 = 3× 10−5 m/s, and volume flowrates are Q1 = Q2 =

Q3 = 7.38× 10−12(m3/s) = 7.38× 10−2 µL/s.

The conservation of mass principle is perfectly satisfied. This implies that there is no
leakage of fluid particles through the walls of the channel, a typical difficulty in purely
particle numerical methods.
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3.2. Three-Dimensional Flows

In this section, we present results of SPH simulations of flows in straight microducts of
a square cross-section. Transverse and longitudinal sections of the microchannels studied
are presented in Figure 11. We bring to the attention of the reader that, in the 3D SPH
simulations, the x-axis lies in the lower wall and the z-axis is chosen in the direction
normal to the upper and lower walls. The y-axis is in the spanwise direction. Physical
and computational parameters, BCs, and the methods of integration-in-time used in the
baseline simulations are listed in Table 3.
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Figure 11. Transverse and longitudinal sections of the 3D channel model and coordinate system used
in 3D SPH simulations. (a) Constant cross-section, (b) with sudden expansion of cross section.

Table 3. Parameters of 3D baseline simulations.

Case Const. C.S. (A) Const. C.S. (B) Sudden Expansion Expan./Contr.

Np 216,480 308,788 581,040 897,334
dp (m) 2.98 × 10−5 2.98 × 10−5 2.98 × 10−5 2.98 × 10−5

ν0 (m2/s) 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6

BCs at solid walls DBC DBC DBC DBC
BCs in x-direction Periodic Inlet/outlet Inlet/outlet Periodic

Force per unit mass (m/s2) gx = 0.001 gx = 0.0 gx = 0.0 gx = 0.001
Time integration Symplectic Symplectic Symplectic Symplectic

T (s) 20 50 60 50
GPU time (min) 13.6 24.6 38.85 51

3.2.1. Fully Developed Flow in a Square Duct of Constant Cross-Sectional Area

The first 3D case considered consists of a constant cross-section long microchannel with
Ly = Lz = 1.104 mm(see Figure 11a). The fluid occupies a net area of 0.985 mm × 0.985 mm
while the length of the computational domain in the x-direction is set equal to 3.6 mm.
The flow is considered fully developed so that periodic BCs are applied in the x-direction.
DBCs are imposed on solid walls. A number of initial conditions for the velocity field were
tested (zero, uniform in space, etc.), complying with the conservation of mass principle.
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The magnitude of the streamwise velocity component (obtained using SPH) is shown in
Figure 12 using a color-coded plot.
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An exact infinite series solution of laminar flow in a straight channel of a rectangular
cross-section can be found in the literature [32]. Specifically, the velocity field and the
volume flowrate are

u(y, z) =
16a2

µπ3

(
−∂P

∂x

) ∞

∑
i=1,3,5..

(−1)(i−1)/2
[

1− cosh(iπz/2a)
cosh(iπb/2a)

]
×

cos
(

iπy
2a

)
i3

(15a)

Q =
4bα3

3µ

(
−∂P

∂x

)1− 192a
π5b

∞

∑
i=1,3,5..

tanh
(

iπb
2a

)
i5

 (15b)

In Equations (15a) and (15b), α and b represent the half lengths of the rectangular cross
section along the y-axis and z-axis, respectively. In the cases presented in this work, α = b.
Note that, in Equation (15a), the x-axis is chosen along the axis of symmetry of the duct.

The SPH numerical solution and the analytical solution are compared in terms of
the x-velocity distribution in Figure 13 and velocity profiles in Figure 14. The agreement
between them is very good.
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Figure 14. Three-dimensional constant cross-section channel. Periodic BCs. SPH velocity profile
u(Z, Y = 0.4925 mm) at x = 1.05 mm and x = 1.383 mm and analytical solution velocity profile
u(z, y = 0), where z = Z− 0.4925× 10−3(m), y = Y− 0.4925× 10−3(m).

The computed volume flowrate (discharge) is close to the analytical value, Equation (15b),
with a relative error of 3%. This level of accuracy is obtained with the computational
parameters listed in Table 3 in the column designated as constant C.S. (A). Increasing the
number of particles in the simulation decreases the relative error as long as associated
parameters are adjusted appropriately.

Poiseuille Number, the Relation f vs. Re

For the design of microdevices, energy loss can be calculated using the relation f vs.
Re. By changing the driving force per unit mass, we simulated the flow at various values of
the Reynolds number. In Figure 15, we present the relation between the friction factor f and
the Reynolds number based on cross-sectional average velocity and hydraulic diameter Dh.
In the case of a square duct, the hydraulic diameter Dh is equal to the square side length.
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Least squares fit of the computed data provides the correlation f = 57.4/Re (see
Figure 15), which is in very good agreement with the exact value for the Poiseuille number
for the square duct, Po = f × Re = 56.9 = const. [30].

3.2.2. Developing Flow in a Square Microduct of Constant Cross-Sectional Area

To assess the SPH performance in simulating 3D developing flow, we replaced the
PBCs with inlet/outlet buffer zones. As the inlet condition, we applied constant-in-time
and uniform-in-space velocity distribution, Vinlet = 3.4× 10−5 m/s.
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The flow reaches steady state conditions after a certain time, and fully developed flow
is established at approximately x = 1 mm. The developing length (Ldev) is very short and
well within the length of the computational domain in the streamwise direction (Figure 16).
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The development of the flow profile in the vertical mid-plane (Y = 0.4925 mm) is
shown in Figure 17 while the 3D plot of the velocity distribution at x = 1.05 mm is depicted
in Figure 18.
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The computed mean velocity at x = 1.05 mm equals Vsph = 3.3 × 10−5 m/s,
showing a relative error of 3% when compared to the analytical solution. Discharge:
QSPH = 3.2× 10−11 m3/s = 3.2× 10−2 µL/s. We note that the use of inlet/outlet BCs
demanded more computational time, mainly due to the longer time that the flow needs to
reach steady state conditions.

3.2.3. Three-Dimensional Microchannel with Sudden Expansion

In a sudden expansion, it is assumed at x = 4 mm (see Figure 19). For x < xexp, the
net cross-section area that the fluid occupies is Ly × Lz = 2.426× 10−7 m2 ≈ 0.24 mm2. For
x > xexp the net cross section that the fluid occupies is Ly×Lz = 9.702× 10−7 m2 ≈ 0.97 mm2.
For this case, there are two additional issues that need to be addressed: the selection of the
inlet velocity value and the number of particle layers that form the solid boundaries (walls).
To hold the fluid particles within the cross-section, we apply five layers of solid particles to
form the walls. The solid particle arrangement has the same interparticle distance as that of
the initial fluid particle configuration.
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In Figure 19, only the fluid particles are presented and seem to qualitatively follow the
expected flow pattern.

The mean velocity values and discharge are computed (Figure 20) and compared at
two longitudinal points: x1 = 2 mm and x2 = 6 mm (Figure 21).
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Figure 20. Three-dimensional sudden expansion. Velocity distribution u (y, z) (a) x1 = 2 mm,
V1 = 1.49 × 10−5 m/s, Q1 = (0.4925)2 × 10−6 × V1 = 3.61 × 10−12 m3/s; and (b) x2 = 6 mm,
V2 = 3.72× 10−6 m/s, Q2 = 3.61× 10−12 m3/s. Relative difference 0%.



Fluids 2023, 8, 137 16 of 20

Fluids 2023, 8, 137 16 of 21 
 

 

Figure 19. Three-dimensional sudden expansion. x-velocity component (steady flow, t = 60 s). 

In Figure 19, only the fluid particles are presented and seem to qualitatively follow 
the expected flow pattern. 

The mean velocity values and discharge are computed (Figure 20) and compared at 
two longitudinal points: x1 = 2 mm and x2 = 6 mm (Figure 21). 

  
(a) (b) 

Figure 20. Three-dimensional sudden expansion. Velocity distribution u (y, z) (a) x1 = 2 mm, 𝑉 =1.49 × 10   m/s, Q1 =  (0.4925) × 10  ×  𝑉 =  3.61 × 10  m /s;  and (b) x2 = 6 mm, 𝑉 =3.72 × 10  m/s, Q =  3.61 × 10  m /s. Relative difference 0%. 

 
Figure 21. Three-dimensional sudden expansion. Velocity profile u (z, y = 0.4925 mm), x1 = 2 mm, 
x2 = 6 mm. 

  

Figure 21. Three-dimensional sudden expansion. Velocity profile u (z, y = 0.4925 mm), x1 = 2 mm,
x2 = 6 mm.

3.2.4. Three-Dimensional Microchannels with Periodic Expansions/Contractions

In the final 3D numerical experiment, we examine the flow in a very long channel
(duct) characterized by periodic expansions and contractions of the cross-sectional area.
Taking advantage of the microchannel’s geometry, we simulate the flow by selecting an
appropriate computational domain (module) where PBCs can be imposed in the streamwise
x-direction (Figure 22). The length of the module is 12 mm while the cross-section areas
occupied by the fluid are (0.4925 mm × 0.4925 mm) and (0.985 mm × 0.985 mm).
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sponse of the flow to an increase in the driving force, gx. The linearity of the response is 

Figure 22. Three-dimensional microchannel with periodic sudden expansions/contractions. The
computational domain is a module of the microchannel selected in such a way that periodic BCs can
be applied in x-direction. Magnitude of x-velocity component (steady state, t = 50 s).

In the simulation, the fluid moves under the action of a body force per unit vol-
ume ρgx, which corresponds to a pressure gradient dp/dx. At time t = 0 the fluid is
considered motionless.

Since there is no analytical solution for comparison, examination of the flow field
reveals qualitatively reasonable results (Figure 22). To the authors’ knowledge, there
is no published numerical solution with conventional CFD methods for the problem
at hand. Consequently, as a further test, we checked the degree that the SPH solution
satisfies the conservation of mass (most importantly to ensure that we do not have leakage
of fluid particles through the solid walls). We observed that the continuity equation
is confirmed (Figure 23).
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locity distribution u (z, y) for selected longitudinal positions. (a) x1 = 2 mm, (b) x2 = 6 mm, and
(c) x3 = 10 mm. V1 = 1.31× 10−5 m/s, V2 = 3.30× 10−6 m/s while V3 = 1.30× 10−5 m/s.

As a further check on the accuracy of the SPH method, we examined the linear
response of the flow to an increase in the driving force, gx. The linearity of the response is
verified as can be seen in Table 4 with the linear behavior of the volume flow rate (and the
velocity, respectively) to be clearly presented in Figure 24.

Table 4. Mean velocity,
−
V, and volume flowrate, Q, at selected longitudinal stations.

x (mm)
gx = 0.001 m/s2 gx = 0.002 m/s2

−
V
(m

s
)
×10−5 Q

(
m3

s

)
×10−11 −

V
(m

s
)
×10−5 Q

(
m3

s

)
×10−11

2 1.31 0.32 2.6 0.63
3 1.31 0.32 2.6 0.63
6 0.33 0.32 0.66 0.64
7 0.33 0.32 0.65 0.63
10 1.30 0.32 2.58 0.63
11 1.30 0.32 2.58 0.63
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4. Discussion

A number of subtleties in the application of SPH method were identified in the context
of the eight types of flow examined.

The approximation of the N–S equations with the SPH method is very effective as
long as the particles (mass points) are distributed evenly and “islands” of empty spaces in
the flow field are avoided during a simulation. This type of difficulty is less pronounced
in the case of the low Reynolds number flows studied in this work, compared to the high
Froude number flows with hydraulic jumps reported in previous studies [33,34]. However,
even for the case of confined microflows, the effective control of the particle distribution
(particle shifting) is important.
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The meshless nature of SPH and the kernel truncation close to boundaries can cause
difficulties in enforcing BCs [35]. Using a number of BCs (DBCs, at solid/fluid interfaces,
inlet/outlet, and PBCs in the streamwise direction), we documented the importance of
using the appropriate types of BCs in the problem formulation as well as the importance of
the choice of parameter values in order to conduct accurate and efficient simulations. Our
2D and 3D cases exhibit good results, and any minor inaccuracies are attributed to some of
the SPH grand challenges such as BC treatment [10].

A similar microchannel flow simulation with SPH was conducted in a previous
study [36], where Poiseuille flow for 1 mm distance between the infinite plates was studied
by applying the artificial flow regime. Results were in good agreement with the analytical
solution. However, in our case, we conducted investigation for both 2D and 3D microchan-
nel flows, we achieved reduced simulation times for a greater number of particles and
slightly better results, regarding the velocity profiles close to the solid walls.

For the 2D cases, both periodic and inlet/outlet BCs yield satisfactory results. Steady
state conditions are reached as long as the initial conditions of the velocity field (not only
the velocity value, which should be selected in agreement with the study case, but also
how the inlet buffer zone interacts with the fluid particles) are accurately selected, and
results do not violate the conservation of mass principle. We also note that this is a required
post-simulation step before the quantitative analysis begins. Our numerical results show
very good agreement with analytical solutions when available. Some inaccuracies occurred
in the cases of the sudden expansion and expansion/contraction, and this is mainly due
to the treatment of the fluid–solid interface, one of the grand challenges facing the SPH
community mentioned above.

For the 3D constant cross-section cases, SPH results are in good agreement with
analytical solutions both with periodic BCs (rel. error 3%) and inlet/outlet BCs (rel. error
3%) in terms of flowrate. This difference may be attributed to the treatment of solid–
fluid boundaries and possibly irregular particle displacement. It should be noted that the
relation f vs. Re is predicted with higher accuracy due to the one-dimensional nature of
the correlation.

Based on our experience with the DualSPHysics simulation of 3D closed channels,
we suggest four to five layers of solid particles to form the channel walls in the geometry
specification. This precludes the possibility of wall permeability and can alleviate potential
errors due to fluid particles escaping the solid boundary. In addition, it helps in the correct
imposition of the boundary condition at fluid/solid interfaces.

With respect to future challenges facing the SPH method, we believe that there are
two major issues: turbulence modelling and adaptivity. There is still considerable need
for an accurate and robust turbulence model, especially for the simulation of fluid trans-
port through confined channels. The model should be accurate very close to solid–fluid
interfaces where boundary layers are formed at high Reynolds numbers [37]. The other
major challenge in SPH research is the development of adaptive methods [10,38] in order
to reduce the overall execution times.

5. Conclusions

Smoothed particle hydrodynamics (SPH) simulations of 2D and 3D flows in closed
microchannels were carried out using the “Laminar + SPS viscosity treatment model” of
the DualSPHysics code. Two different BCs in the streamwise flow direction (periodic, when
applicable, and inlet/outlet BCs with buffer zones) were evaluated. It should be noted that
considerable density variations appear in the fluid at the immediate vicinity of the inlet
buffer zone. However, this only occurs locally between the inlet buffer zone and the fluid
interface and does not “contaminate” the overall flow field. In other words, it does not
extend along the x-axis. In all cases, the flow Reynolds number is small. SPH simulations
captured the main flow characteristics accurately. Minor inaccuracies were observed close
to the solid walls, in agreement with the findings of other SPH researchers.
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Our findings suggest that inlet/outlet BCs with buffer zones work well. More generally,
the careful implementation of BCs in the streamwise direction plays an important role
in formulating SPH models of internal flows. In developing flows, the fully developed
sections are in good agreement with the PBCs simulations.

Regarding the 2D numerical experiments, we reached the following conclusions: For
the constant cross-section channels, the computed velocity profiles and analytical solution
were almost identical. In addition, the computed wall shear stress shows very good
agreement with the analytical N–S solution. The computed relation f vs. Re is in excellent
agreement with exact results found in the fluid mechanics literature. In the case of abrupt
expansion, flow separation is predicted, and vortices are clearly observed at the corners, as
expected. The same holds for the sudden expansion/contraction case. Regardless of the
selection of periodic or inlet/outlet BCs, all simulation models turned out to be accurate.

The 3D numerical experiments produced results that are in good agreement with
analytical solutions or benchmark numerical solutions obtained with conventional CFD
methods. Both test cases for the constant 3D ducts showed very good agreement with
the analytical solution in terms of velocity, volume flowrate, and prediction of Poiseuille
number. In the sudden expansion and expansion/contraction cases, computed volume
flowrates at selected longitudinal stations satisfied the conservation of mass principle.
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