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Abstract: We focus on the fully developed turbulent flow in circular pipes and channels. We provide
a comparison of the mean velocity profiles, and we compute the values of the global indicators, such
as the skin friction, the mean velocity, the centerline velocity, the displacement thickness, and the
momentum thickness. The comparison is done at low-to-moderate Reynolds numbers. For channel
flow, we deduced the mean velocity profiles using an indirect turbulent model; for pipe flow, we
extracted the needed information from a direct numerical simulation database available in the open
literature. A one-to-one comparison of these values at identical Reynolds numbers provides a deep
insight into the difference between pipe and channel flows. This line of reasoning allows us to
highlight some deviations among the mean velocity profiles extracted from different pipe databases.
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1. Introduction

In this note, we focus on the fully developed turbulent flow of Newtonian fluids in cir-
cular pipes and very large channels, both with smooth walls, at low-to-moderate Reynolds
numbers. We do not consider the compressible effects [1–9]. We provide a comparison of
the Mean Velocity Profiles (MVP), and we compute the values of the global indicators, such
as the skin friction, the displacement thickness, the momentum thickness, the centerline
velocity, and the mean velocity. The similarities and differences in turbulent pipe and 2D
channel flows (referred to as internal turbulent flows) have generated considerable research
attention. Previous results show that close to the wall, in the inner layer (the viscous sub-
layer plus the buffer layer, see, e.g., [10]), the MVPs are essentially indistinguishable [11–14];
in the outer layer, (the log-law layer plus the wake layer [10]) the MVPs show remarkable
differences [15–17].

Coles [18] provides a comprehensive study on the MVPs in the outer layer. This
classical paper is about investigating and modeling deviation of data from logarithmic
law. The log-wake law proposed by Coles is extended in [19,20]. Moreover, Monty [21]
proposed two different formulations for the wake law for pipe and channel flows.

The key feature of turbulence is instantaneous chaotic motion. The interaction of inner
and outer regions is an intrinsically nonlinear process [22]. The turbulent flow is subjected
to inertial and viscous forces acting with different intensities at different wall-normal
positions. The internal turbulent flows are composed of recurrent and quantifiable coherent
structures, having different length scales (the Reynolds number can be viewed as a measure
of separation between the largest inertial and the smallest viscous scales). The need for
adequate scale separation when considering coherent structures in pipe/channel turbulent
flow is given in [22]. Interactions between these coherent structures are different in pipe
and channel flows [23–25]. The turbulence, which is generated at the wall, is transported
outward; the different available space in the pipe/channel core region causes different
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turbulence behavior. In a channel, the space for turbulence to be transported and to be
developed is constant along the wall-normal coordinate; in a pipe, this space is successively
reduced to zero toward the center. In a pipe, this leads to more intense interactions between
turbulent structures.

DNS data [21,26] and experiment [27–29] databases allow us to elucidate the statistics
on the velocity fluctuations in pipe and channel flows. The streamwise turbulence intensi-
ties in the pipe and channel flows show no significant differences in the inner and outer
layers; the wall-normal and spanwise turbulence intensities in pipe flow are larger than
those of channel flow in the outer layer.

In this note, we provide a comparison over a range of Reτ from 180 to 2000, where
Reτ = Θuτ/υ is the friction Reynolds number, υ the kinematic viscosity, Θ the pipe radius
or the channel half-height, uτ =

√
τw/ρ the friction velocity, τw the wall shear stress, and ρ

the fluid density. For channel flows, we deduce the MVP by using the Indirect Turbulence
Model (ITM) proposed in [30]; for pipe flows, we extract the needed information from the
Direct Numerical Simulation (DNS) database available in the open literature [26,31,32].
A one-to-one comparison of turbulent pipe and channel flows at the identical friction
Reynolds numbers allows us to define the global indicators and to investigate the Reynolds
number effects. This line of reasoning allows us to observe some deviations among the
MVPs extracted from the two different pipe DNS databases. After some remarks on the
ITM (Section 2), in Section 3 we illustrate and discuss the results of the comparison, and we
highlight the discrepancies in global parameters for pipe flows. In Section 4 we summarize
the findings quantitatively, and we give the concluding comments.

2. Indirect Turbulence Model (ITM)

In this section, we re-examine the ITM as proposed in [30], which allows us to derive
the MPV for 2D turbulent channel flows in smooth walls. By assuming a hyperbolic
trend of the turbulent shear stress, the mean velocity u+ in the streamwise direction is
expressed as a function of the wall-normal coordinate y+ and of the friction Reynolds
number Reτ = y+max, where the superscript + stands for normalization with the inner
variable, the friction velocity uτ , and the fluid kinematic viscosity υ. According to the ITM,
the relationship u+ = u+(y+, Reτ) is given as:

u+ = (ϕ1 + ψ1/2)y+/y+max + ϕ2
(
y+/y+max

)2
+ ϕ3ψ3 + ϕ3 ln ψ2 (1)

where:
ψ1 =

√
P1(y+/y+max)

2 + P2y+/y+max + P3 (2)

ψ2 =
(

P2/
√

P1 + 2
√

P3

)
/
((

2P1y+/y+max + P2
)
/
√

P1 + 2ψ1

)
(3)

ψ3 = ψ1 −
√

P3 (4)

ϕ1 = Reτ + D (5)

ϕ2 =
(

B − y+max
)
/2 (6)

ϕ3 =
(√

P1P2

)
/
(

4P1
3/2
)

(7)

ϕ4 =
(

P2
2 − 4P1P3

)
/
(

8P1
3/2
)

(8)

P1 = B2 − C (9)

P2 = 2(BD − E) (10)

P3 = D2 + C + 2E (11)

B = Reτ(1 − f1) (12)

C =
(

y+max
2 − By+max

)
/ f2 − y+max

2 + 2By+max (13)
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D = −1/y+max

((
y+max

2 − By+max

)
/ f3 + y+max

2
)

(14)

E =
(

y+max
2 − By+max

)
/ f4 + y+max

2 − By+max + Dy+max (15)

f1 =
(

3.655y+max
2 + 25, 704.994y+max − 55, 013.808

)
·10−6 (16)

f2 =
(

6.991y+max
2 + 39, 476.172y+max − 2, 873, 405.419

)
·10−6 (17)

f3 =
(
−7.409y+max

2 − 49, 231.626y+max + 556, 178.423
)
·10−6 (18)

f4 =
(
−23.766y+max

2 − 82, 908.798y+max + 4, 325, 049.776
)
·10−6 (19)

We underline that the ITM appears as a generalization of the log-law in wall-bounded
turbulent flows (in both models, the turbulent shear stress exhibits a hyperbolic trend).
In comparison to the very simple structure of the log-law, the ITM provides a complex
relationship u+ = u+(y+, Reτ); on the other hand, this relationship satisfies both the
boundary condition at y+ = 0, u+(y+ = 0) = 0, and the centerline condition at y+ = Reτ ,

d
dy+ u+(y+ = Reτ) = 0 [30].

In Figure 1, we show the comparison of the MPV given by Equation (1) versus the
channel DNS data [33–38] (the corresponding information is given in Table 1).
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Figure 1. MVP; # DNS data; and – ITM. The plots are shifted vertically by 10 units.

Table 1. Reτ , y+max, and Hellinger distance He.

Reτ y+
max HD

110 109.43 1.21·10−1

150 150.00 3.20·10−1

180 178.12 1.39·10−1

300 298.00 3.66·10−1

393 392.00 2.84·10−1

587 587.00 2.61·10−1

650 642.54 2.72·10−1

934 933.96 2.83·10−1

1020 1016.36 3.93·10−1

2003 2004.30 2.37·10−1
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This comparison shows a very good performance of the ITM. As a metric to measure
the match between the DNS data and the ITM data, we use the Hellinger distance HD,
given as [39]:

HD
(
u+

DNS
∣∣∣∣u+

ITM
)
=

√√√√√2

 Reτ

∑
y+=0

(
(u+

DNS(y+))
0.5 − (u+ ITM(y+))0.5

)2
 (20)

For all cases, HD is very close to zero (see Table 1).
In Figures 2–6, we compare the global indicators extracted from the DNS database

and from the ITM (details are given in Table 2).
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Figure 6. Trend of the first shape factor H = δ/ϑ and of the second shape factor G = Uc
+((H − 1)/H);

• DNS data; and – ITM.

Table 2. Mean flow properties extracted from DNS databases and from ITM. The parameters are
defined as: Ub

+ is the mean velocity; Uc
+ the centerline velocity; C f

(
Ub

+
)

the skin friction based

on the mean velocity C f
(
Ub

+
)
= 2/Ub

+2; C f
(
Uc

+
)

the skin friction based on the centerline velocity

C f
(
Uc

+
)
= 2/Uc

+2; δ the displacement thickness δ =
∫ 1

0

(
1 − u+

Uc+

)
dζ, where ζ = y+/y+max; ϑ the

momentum thickness ϑ =
∫ 1

0
u+

Uc+

(
1 − u+

Uc+

)
dζ; H the first shape factor H = δ/ϑ; and G the second

shape factor G = Uc
+((H − 1)/H).

Database/
Error Reτ y+

max Ub
+ Uc

+ Uc
+/Ub

+ Cf(Ub
+) Cf(Uc

+) δ ϑ H G

DNS

110 109.43 15.25 17.99 1.18 8.60·10−3 6.18·10−3 1.52·10−1 8.41·10−2 1.81 8.06
150 150.00 15.30 17.90 1.17 8.55·10−3 6.24·10−3 1.45·10−1 8.76·10−2 1.66 7.12
180 178.12 15.77 18.30 1.16 8.04·10−3 5.97·10−3 1.38·10−1 8.65·10−1 1.60 6.85
300 298.00 16.88 19.40 1.15 7.02·10−3 5.31·10−3 1.30·10−1 8.73·10−2 1.49 6.38
393 392.00 17.59 20.13 1.14 6.47·10−3 4.94·10−3 1.26·10−1 8.77·10−2 1.44 6.16
587 587.00 18.70 21.30 1.14 5.72·10−3 4.41·10−3 1.22·10−1 8.81·10−2 1.39 5.93
650 642.54 18.91 21.50 1.14 5.59·10−3 4.33·10−3 1.20·10−1 8.69·10−2 1.38 5.98
934 933.96 19.85 22.40 1.13 5.07·10−3 3.99·10−3 1.14·10−1 8.41·10−2 1.35 5.83

1020 1016.36 20.33 23.06 1.13 4.84·10−3 3.76·10−3 1.18·10−1 8.76·10−2 1.35 5.98
2003 2004.30 21.77 24.29 1.12 4.22·10−3 3.39·10−3 1.04·10−1 7.99·10−2 1.30 5.59

ITM

110 109.43 15.16 17.85 1.18 8.71·10−3 6.28·10−3 1.51·10−1 8.33·10−2 1.81 7.99
150 150.00 15.46 17.97 1.16 8.37·10−3 6.19·10−3 1.40·10−1 8.32·10−2 1.68 7.27
180 178.12 15.75 18.17 1.15 8.07·10−3 6.06·10−3 1.33·10−1 8.28·10−2 1.61 6.89
300 298.00 16.75 19.17 1.14 7.13·10−3 5.44·10−3 1.26·10−1 8.44·10−2 1.50 6.36
393 392.00 17.46 19.87 1.14 6.56·10−3 5.06·10−3 1.21·10−1 8.40·10−2 1.45 6.13
587 587.00 18.59 21.03 1.13 5.79·10−3 4.52·10−3 1.16·10−1 8.31·10−2 1.40 5.95
650 642.54 18.84 21.30 1.13 5.63·10−3 4.41·10−3 1.15·10−1 8.31·10−2 1.39 5.96
934 933.96 19.94 22.41 1.12 5.03·10−3 3.98·10−3 1.10·10−1 8.13·10−2 1.35 5.87

1020 1016.36 20.18 22.66 1.12 4.91·10−3 3.90·10−3 1.09·10−1 8.09·10−2 1.35 5.87
2003 2004.30 21.76 24.17 1.11 4.22·10−3 3.42·10−3 9.94·10−2 7.63·10−2 1.30 5.63
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Table 2. Cont.

Database/
Error Reτ y+

max Ub
+ Uc

+ Uc
+/Ub

+ Cf(Ub
+) Cf(Uc

+) δ ϑ H G

relative error

0.62% 0.80% 0.18% 1.26% 1.63% 1.01% 0.95% 0.06% 0.88%
1.04% 0.38% 0.66% 2.06% 0.75% 3.90% 4.99% 1.15% 2.11%
0.16% 0.73% 0.57% 0.32% 1.47% 3.56% 4.32% 0.79% 0.57%
0.76% 1.19% 0.43% 1.54% 2.42% 2.90% 3.37% 0.49% 0.21%
0.73% 1.28% 0.55% 1.48% 2.61% 3.83% 4.18% 0.36% 0.47%
0.58% 1.28% 0.70% 1.16% 2.60% 5.09% 5.72% 0.67% 0.43%
0.37% 0.94% 0.57% 0.74% 1.90% 4.21% 4.46% 0.27% 0.25%
0.46% 0.06% 0.40% 0.92% 0.12% 3.14% 3.34% 0.21% 0.67%
0.72% 1.74% 1.03% 1.45% 3.56% 7.73% 7.72% 0.01% 1.77%
0.02% 0.51% 0.49% 0.04% 1.03% 4.26% 4.56% 0.32% 0.56%

medium relative error 0.55% 0.89% 0.56% 1.10% 1.81% 3.96% 4.36% 0.43% 0.79%

maximum relative error 1.04% 1.74% 1.03% 2.06% 3.56% 7.73% 7.72% 1.15% 2.11%

Figure 2 shows that the ITM provides a good fit for the mean velocity Ub
+ (the

percentual error is almost always less than 1%), while it underestimates the centerline
velocity Uc

+ (although the maximum error is less than 2%).
Figure 3 shows that the underestimation of Uc

+ in the ITM is reflected in an underesti-
mation of the ratio Uc

+/Ub
+ (although the percentual error is almost always less than 1%),

while Figure 4 shows an acceptable fit in both C f (Ub
+) and C f (Uc

+).
Figure 5 shows that the underestimation of Uc

+ in the ITM is reflected in an under-
estimation in both parameters δ and ϑ, while Figure 5 shows an acceptable fit in both
parameters G and H.

The ITM provides an accurate estimation for Ub
+, while the Uc

+ is almost always
underestimated. As a consequence, some parameters, such as δ and ϑ, suffer from underes-
timation. From a general point of view, the obtained results show the reliability of the ITM
to reproduce the global indicators of the turbulent channel flow.

3. Channel VS Pipe

In this section, we provide a comparison between the mean flow properties extracted
from the pipe DNS database [26,31,32] and those deduced by the ITM. In Figure 7, we show
the comparison of the MPVs. In Table 3, we give the corresponding information.

Table 3. Reτ and y+max.

Database Reτ y+
max

[26]

180 172.30
500 500.25

1000 1001.92
2000 2003.26

[31,32]

180 181.89
500 495.26

1000 1136.59
2000 1977.24

In reference to the pipe DNS database [26] (Figure 7), the comparison confirms previous
results which display that in the inner layer, the MVPs are essentially indistinguishable; in
the outer layer, there are remarkable differences, principally in the wake layer. As stated in
Section 2, the different available spaces in the pipe/channel core region causes different
turbulent behavior: the space limitations in a pipe lead to more intense interactions between
turbulent structures, with an increment of the streamwise mean velocity u+. In reference to
the pipe DNS database [31,32] (Figure 8), the MPVs present differences in both the inner
and outer layers, and in the wake layer, these differences become important (as expected).
We find other discordant results that can be attributed to a dissimilar performance of the
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numerical schemes used in [26,31,32] when we compare the global indicators for pipe flow.
Details are given in Table 4 and in Figures 9–17.
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Table 4. Mean flow properties extracted from pipe DNS database [26,31,32] and from channel ITM.
The parameters are defined as: Ub

+ is the mean velocity; Uc
+ the centerline velocity; C f

(
Ub

+
)

the skin friction based on the mean velocity C f
(
Ub

+
)
= 2/Ub

+2; C f
(
Uc

+
)

the skin friction based

on the centerline velocity C f
(
Uc

+
)
= 2/Uc

+2; δ the displacement thickness, which for pipe is

defined as δ(2 − δ) = 2
∫ 1

0

(
1 − u+

Uc+

)
(1 − ζ)dζ, where ζ = y+/y+max; ϑ the momentum thickness

ϑ(2 − ϑ) = 2
∫ 1

0
u+

Uc+

(
1 − u+

Uc+

)
(1 − ζ)dζ; H the first shape factor H = δ/ϑ; and G the second shape

factor G = Uc
+((H − 1)/H).

Database Reτ y+
max Ub

+ Uc
+ Uc

+/Ub
+ Cf(Ub

+) Cf(Uc
+) δ ϑ H G

[26]

180 172.30 13.96 18.75 1.34 1.03·10−2 5.69·10−3 2.42·10−1 1.05·10−1 2.31 10.63
500 500.25 16.87 21.50 1.27 7.03·10−3 4.33·10−3 2.05·10−1 1.05·10−1 1.95 10.50

1000 1001.92 18.78 23.57 1.26 5.67·10−3 3.60·10−3 1.97·10−1 1.06·10−2 1.86 10.87
2000 2003.26 20.61 24.96 1.21 4.71·10−3 3.21·10−3 1.71·10−1 9.78·10−2 1.74 10.65

[31,32]

180 181.89 14.27 19.14 1.34 9.82·10−3 5.46·10−3 2.37·10−1 1.02·10−1 2.33 10.91
500 495.26 17.01 21.81 1.28 6.91·10−3 4.20·10−3 2.12·10−1 1.04·10−1 2.04 11.14

1000 1136.59 19.27 24.07 1.25 5.39·10−3 3.45·10−3 1.95·10−1 1.06·10−1 1.85 11.05
2000 1977.24 20.80 25.55 1.23 4.62·10−3 3.06·10−3 1.83·10−1 1.03·10−1 1.78 11.22

ITM

180 172.30 15.67 18.12 1.16 8.15·10−3 6.09·10−3 1.36·10−1 8.32·10−2 1.63 7.00
180 181.89 15.79 18.20 1.15 8.03·10−3 6.04·10−3 1.33·10−1 8.30·10−2 1.60 6.81
500 495.26 18.10 20.53 1.13 6.10·10−3 4.75·10−3 1.18·10−1 8.38·10−2 1.41 5.97
500 500.25 18.13 20.56 1.13 6.08·10−3 4.73·10−3 1.18·10−1 8.35·10−2 1.41 6.01

1000 1001.92 20.15 22.62 1.12 4.93·10−3 3.91·10−3 1.09·10−1 8.09·10−2 1.35 5.85
1000 1136.59 20.50 22.97 1.12 4.76·10−3 3.79·10−3 1.08·10−1 8.04·10−2 1.34 5.80
2000 1977.24 21.74 24.15 1.11 4.23·10−3 3.43·10−3 9.97·10−2 7.65·10−2 1.30 5.63
2000 2003.26 21.76 24.17 1.11 4.22·10−3 3.42·10−3 9.95·10−2 7.63·10−2 1.30 5.64
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Figure 9. Trend of the mean velocity Ub
+; • pipe DNS data [26]; � pipe DNS data [31,32]; and +

channel ITM.
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Figure 10. Trend of the centerline velocity Uc
+; • pipe DNS data [26]; � pipe DNS data [31,32]; and +

channel ITM.
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Figure 11. Trend of the ratio Uc
+/Ub

+; • pipe DNS data [26]; � pipe DNS data [31,32]; and +
channel ITM.
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Figure 12. C f
(
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+
)
; • pipe DNS data [26]; � pipe DNS data [31,32]; and + channel ITM.
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Figure 13. Trend of the skin friction C f
(
Uc

+
)
; • pipe DNS data [26]; � pipe DNS data [31,32]; and +

channel ITM.
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Figure 14. Trend of the displacement thickness δ; • pipe DNS data [26]; � pipe DNS data [31,32]; and
+ channel ITM.
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Figure 15. Trend of the momentum thickness ϑ; • pipe DNS data [26]; � pipe DNS data [31,32]; and +
channel ITM.
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Figure 17. Trend of the second shape factor G; • pipe DNS data [26]; � pipe DNS data [31,32]; and +
channel ITM.

As stated earlier, the space limitation in a pipe produces an increment in the centerline
velocity Uc

+; on the other hand, due to the decrease in the cross-section area with increasing
y+, the mean velocity Ub

+ of the pipe flow is smaller than that of the channel flow.
The mean velocities Ub

+ obtained from the two different pipe DNS databases are in
good agreement with each other (Figure 9); at the opposite, the centerline velocities Uc

+

extracted from the pipe DNS data [26] appear smaller than those extracted from the other
pipe DNS data [31,32] (Figure 10). The other global parameters are, more or less severely,
affected by these differences (Figures 11–17).
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The obtained results confirm that the global indicators of pipe and channel flows
are different. The mean velocity Ub

+ is larger in channel flow than in pipe flow, which
determines C f (Ub

+) to be smaller; on the other hand, the centerline velocity Uc
+ is smaller

in channel flow than in pipe flow, which causes C f (Uc
+) to be larger. The ratio Uc

+/Ub
+

for pipe flow exceeds the values in the channel flow; similar trends can be observed for the
mean flow properties δ, ϑ, H, and G.

On the other hand, our results allow us to observe deviations in MVP obtained from
the pipe DNS database [26,31,32]. These differences are reflected in global parameters:
the mean velocity Ub

+ and the centerline velocity Uc
+ in [26] are smaller than in [31,32];

as a consequence, the respective skin frictions in [26] are larger than in [31,32]. Different
trends also concern the parameters δ, ϑ, H, and G. For an accurate comparison, ideally, the
datasets should consist of very similar Reynolds numbers and numerical parameters (i.e.,
temporal/spatial resolutions).

Finally, we notice that the data/curves in Figures 3–6, 9–14 and 16 seem to present
an asymptotic behavior for Reτ > 2000 which could be related to the asymptotic behavior
shown for the two coefficients of the eddy viscosity analytical model [40]. For large values
of Reτ > 2000, the two coefficients of the analytical model reach asymptotic values equal,
respectively, to Cα = 0.477 and C1 = 2.17. This will require further investigations in our
future work.

4. Findings and Conclusions

In this brief note, we investigated the mean velocity properties of turbulent pipe
and channel flows at low-to-moderate Reynolds numbers. We provided a one-to-one
comparison at identical Reynolds numbers: for pipe flows, we extracted the needed
information from DNS databases available in the open literature [26,31,32]; for channel
flows, we used the ITM proposed in [30]. After some remarks on the ITM and on the
reliability of this model to reproduce the global indicator, we examined the differences
between fully developed flows in pipes and channels.

Preliminarily, we observed some deviations between the MVPs obtained from the pipe
DNS databases [26,31,32]. These differences are reflected on global parameters: the mean
velocity Ub

+ in [26] is about 1.5% smaller than in [31,32]; the centerline velocity Uc
+ in [26]

is about 2% smaller than in [31,32]; the skin friction based on the mean velocity in [26] is
about 3% larger than in [31,32]; and the skin friction based on the centerline velocity in [26]
is about 4% larger than in [31,32]. These discrepancies, which can be due to a dissimilar
performance of the numerical schemes used in [26,31,32], should lead to a reconsideration
of the fidelity of the DNS data.

The comparison between pipe and channel flows can be summarized as follows: the
mean velocity Ub

+ in channel flow is between 5% and 12% greater than in pipe flow
(the larger the difference, the lower Reτ), whereas the centerline velocity Uc

+ is about 4%
smaller. The ratio Uc

+/Ub
+ in pipe flow is between 8% and 14% greater than in channel

flow (the larger the difference, the lower Reτ). The skin friction based on the mean velocity
in pipe flow is between 8% and 21% larger than in channel flow (the larger the difference,
the lower Reτ), whereas the skin friction based on the centerline velocity is about 10%
smaller. The displacement thickness in pipe flow is about 45% larger than in channel flow;
the momentum thickness is between 18% and 26% larger (the larger the difference, the
higher Reτ).
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