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Abstract: We propose a simple two-step approximation for the radial distribution function of a one-
component two-dimensional Yukawa fluid. This approximation is specified by the key parameters of
the system: coupling parameter and screening parameter. On the basis of this approximation, analytical
expressions are obtained for the same thermodynamic quantities as internal energy, internal pressure,
excess entropy in the two-particle approximation, and also longitudinal sound velocity. The theoretical
results show an agreement with the results obtained in the case of a true radial distribution function.
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1. Introduction

The model system of charged particles with a screened Coulomb (Yukawa) interaction
is widely used for modeling and predicting the physical properties of a wide variety of
real fluids such as simple neutral fluids, liquid metals, colloidal solutions, microemulsions,
etc. [1,2]. This system represents similarly charged particles of the same mass (ions, dusty,
or colloidal particles) surrounded by a background of the opposite sign, which in practice
usually consists of particles of a smaller mass (electrons or ions in the case of dusty plasma
or colloidal solutions) [2]. The interaction potential energy u of a pair of charged particles
on the distance r in this case is written as

u(r) =
(Ze)2 exp(−r/λs)

4πε0r
, (1)

where Z is the charge number, e is the electron charge, ε0 is the vacuum permittivity, and
λs is the Debye screening length associated with the presence of a neutralizing medium,
which depends on the concentration and temperature of the background particles and
determines how the interaction of the main particles will differ from the simple Coulomb
interaction.

In the last decade, researchers have increased their attention on two-dimensional
Yukawa systems [1–9]. Firstly, this is due to the fact that such systems can be easily
implemented in experiments. These include experiments with a monolayer of charged
macroparticles in a low-temperature plasma [5,6] and experiments with colloidal solutions
with microsized particles [9]. Within the framework of these experiments, it is possible to
directly monitor the dynamics of individual particles, as well as to study the features of
phase transitions in two-dimensional systems [5]. Second, the Yukawa interaction potential
is expressed by a simple analytical expression. Thus, a system of particles interacting
through a potential of the form (1) can be considered as a convenient model of a one-
component substance, on the example of which it is convenient to test one or another
microscopic theory describing the structure or dynamics of simple substances. This is
especially important for liquid-like disordered systems, which, unlike gases and crystalline
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bodies, are characterized by the absence of a suitable small parameter for the development
of an appropriate theoretical description [10–13]. The key characteristic of the liquid
structure and its short-range order is the radial distribution function (RDF) g(r). Knowing
the RDF for systems with a known interparticle interaction potential u(r), one can directly
calculate such thermodynamic parameters of many-particle systems as internal energy,
internal pressure, and excess entropy in the pairwise approximation [14–20]. Note that
the RDF is a special case of the radial basis functions, which are widely used in various
problems of fluid mechanics [21,22].

The specificity of the interparticle interaction in the case of the Yukawa system is
determined by two key dimensionless parameters: coupling parameter Γ and screening
parameter κ [1,2,23]. The coupling parameter

Γ =
(Ze)2

4πε0akBT
(2)

is the ratio of the average potential energy of interaction (without screening) to the average
energy of the particle thermal motion. In the expression (2), the quantity a = (πρ)−1/2 is
half the average interparticle distance or the so-called radius of the Wigner–Seitz cell, ρ
is the number particles per unit area of a two-dimensional system, kB is the Boltzmann
constant, and T is the absolute temperature of the system. The screening parameter κ is
defined as the ratio of a to the Debye length λs:

κ =
a

λs
. (3)

The time scale of the charge density fluctuations in the system is determined by the
plasma frequency

ωp =

√
Z2e2ρ

2aε0m
, (4)

where m is the particle mass.

2. RDF Model

In [24], on the bases of the quasi-localized charge approximation (QLCA) [25–27],
simple analytical expressions are obtained that describe the dispersions of longitudinal
and transverse collective excitations in a three-dimensional Yukawa fluid. This goal was
achieved by the authors by using the so-called one-step (1st) approximation for the RDF:

g(1st)(x) = θ(x− xeff), (5)

where θ(x) is the Heaviside function, xeff is the effective radius of the particle, which is
an input parameter in this approximation, and which is determined from the known data
on the internal pressure and internal energy systems. It should be noted that the one-step
approximation (5) actually corresponds to the function g(x) of a highly rarefied gas of
absolutely hard spheres of radius xeff. This approximation ignores the presence of local
short-range order in liquids, which manifests itself in a characteristic maximum in the
function g(x).

In this paper, we propose a two-step approximation for the function g(x) of a two-
dimensional Yukawa system. It should be noted that, initially, this approximation was
proposed for the three-dimensional system [28]. Here, two key parameters of the Yukawa
system are used as input parameters: Γ and κ. Within the framework of this approximation,
the internal energy, internal pressure, excess entropy in the two-particle approximation,
and the longitudinal sound velocity of a two-dimensional Yukawa fluid are calculated. The
(Γ, κ)-states of the Yukawa fluid will be considered, where Γ = 20; 50; and 100 and κ = 1;
1.5; and 2. The theoretical results are compared with the calculation results based on the
true RDF obtained by us using molecular dynamics (MD) simulations. The equilibrium
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molecular dynamics simulations of the Yukawa fluid for Γ = 20, 50, and 100 and κ = 1, 1.5,
and 2 were carried out using the computational package LAMMPS [29]. The simulation
was performed for a system consisting of 2500 particles interacting through a potential (1)
in a square cell, on which periodic boundary conditions were imposed. The calculations
were performed in the NVT ensemble. The particle motion equations were integrated
in accordance with the Verlet algorithm with a time integration step tstep = 0.01/ωp.
Averaging over 10,000 time steps was used to calculate the RDF.

The two-step (2st) approximation for the function g(x) is provided as:

g(2st)(x) = gmθ(x− x1)θ(x2 − x) + θ(x− x2). (6)

Here, the distances x1 and x2 determine the position and width of the first maximum
of the function g(x) on the x axis, and gm is the height of this maximum. The presence of
the maxima corresponding to the second, third, and other co-ordinations are ignored within
the framework of the two-step approximation (6). Following [30], we define the distance x1
as the size of the region of absence of interparticle correlations, which is provided by the
condition g(x1) = 0.5. Further, the distance x1 can be related to the coupling parameter Γ
and the screening parameter κ [30]:

x2
1 =

1
b1

ln
Γ− b2(κ)

b3(κ)
, (7)

where
b1 = 2.434,

b2(κ) = −5.21 + 6.866κ − 2.492κ2 ,

b3(κ) = 0.712− 0.572κ + 0.437κ2 .

The values of the constant coefficients in these polynomials can be determined by
numerically solving a system of seven non-linear Equations (7) written for seven different
states with Γ = 20, 50, and 100; κ = 1, and 2, and also Γ = 50, κ = 1.5. In this case, the
distances x1 for these states were determined from the true g(r) obtained from the results
of our MD simulation. The solution of the system of equations was carried out using
the modified Newton method, the accuracy of the numerical solution of the system of
equations was at least 99.7 % (this is quite sufficient for the purposes of this work). On
the other hand, the distance x2, which determines the size of the first coordination shell
within the framework of the (6) approximation, can be found from the condition of the
charge neutrality of the system under consideration, which in the two-dimensional case is
written as ∫ ∞

0
[1− g(x)]xdx =

1
2

. (8)

From the expression (8) and taking into account the relation (6), we obtain:

x2
2 =

x2
1gm − 1
gm − 1

. (9)

The value of gm can be determined from the relation found in [30],

Γ = a1(κ) + a2(κ)gm + a3(κ)g2
m, (10)

where the κ-dependence of the parameters a1, a2, and a3 are providing by using a second
degree polynomial

aξ(κ) = c(ξ)1 + c(ξ)2 κ + c(ξ)3 κ2, ξ = 1, 2, 3 .

For the case of a two-dimensional Yukawa fluid, the values of the dimensionless pa-
rameters c(ξ)1 , c(ξ)2 , and c(ξ)3 were are found by solving a system of nine cases of Equation (10)
written for states with Γ = 20, 50, and 100, and κ = 1, 1.5, and 2. The solution was also
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carried out using the modified Newton method; the error of the numerical solution of
this system of equations in this case did not exceed 0.03 %. The values for gm were col-
lected from MD simulation data. As a result of solving this system, it was obtained that:
c(1)1 = −248.56, c(1)2 = 369.596, and c(1)3 = −126.792; c(2)1 = 272.541, c(2)2 = −427.101, and

c(2)3 = 137.019; and c(3)1 = −58.808, c(3)2 = 112.002, and c(3)3 = −28.326. The relation (10)
is actually the equation of state for the equilibrium liquid phase of the two-dimensional
Yukawa system, from which we find

gm =
−a2(κ) +

√
a2

2(κ)− 4a1(κ)a3(κ) + 4a3(κ)Γ

2a3(κ)
. (11)

Thus, the value of x2 for a particular (Γ, κ)-state is determined by solving the system
of Equations (7), (9), and (11).

3. Results

The RDF is included in microscopic expressions for many physical characteristics.
Thus, the excess internal energy Uex of a two-dimensional Yukawa fluid (in units of kBT)
is [14–18]

Uex = Γ
∫ ∞

0
exp(−κx)g(x) dx. (12)

Taking into account the approximation (6), from the expression (12) we obtain

U(2st)
ex =

Γgm

κ

[
exp(−κx1)−

gm − 1
gm

exp(−κx2)

]
. (13)

Further, for the excess internal pressure Pex of a two-dimensional Yukawa fluid (in
units of ρkBT), we have: [14–18]

Pex =
Γ
2

∫ ∞

0

(
κx + 1

)
exp(−κx)g(x) dx . (14)

Hence, taking into account the approximation (6), we find

P(2st)
ex =

Γgm

2κ

[
(κx1 + 2) exp(−κx1)−

gm − 1
gm

(κx2 + 2) exp(−κx2)

]
. (15)

The microscopic expression for the excess entropy Sex2 in units of ρkB in the two-
particle approximation does not explicitly contain the interaction potential u(r), and for a
two-dimensional isotropic system has the form [19]:

Sex2 = −
∫ ∞

0
[g(x) ln g(x) + 1− g(x)]x dx. (16)

Then, within the approximation (6), from the expression (16), we obtain

S(2st)
ex2 = − 1

2(gm − 1)

[
x2

1gm ln gm − (gm ln gm + 1− gm)
]
. (17)

Knowing the RDF using the QLCA model, for a two-dimensional Yukawa fluid, one
can calculate the longitudinal sound velocity cL (in units of thermal velocity
vth =

√
kBT/m) [17]:

c2
L =

Γ
8

∫ ∞

0

(
3(κx)2 + 5κx + 5

)
exp(−κx)g(x) dx. (18)
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Within the framework of the approximation (6), from the expression (18), we obtain

c2(2st)
L =

Γgm

8κ

[
3(κx1)

2 + 11κx1 + 16
exp(κx1)

−
(

gm − 1
gm

)
3(κx2)

2 + 11κx2 + 16
exp(κx2)

]
. (19)

As can be seen from the expressions (13), (15), (17), and (19), the values Uex, Pex, Sex2,
and cL can be directly calculated for a given (Γ, κ)-state. On the other hand, if the true
function g(x) is known, then the quantities can be estimated using microscopic expressions
(12), (14), (16), and (18).

The results of the numerical calculations of the reduced excess internal energy Uex, the
reduced excess internal pressure Pex, and the reduced excess entropy Sex2 performed within
the (6) approximation for g(x), as well as using the true g(x) from the MD simulation,
are presented in Table 1. This table also shows the relative correspondences between the
theoretical results and simulation results. For most (Γ, κ)-states, the differences between
the theoretical results and simulation data for Uex and Pex do not exceed 2 %. The largest
discrepancies corresponding to 3.818 % for Uex and 2.912 % for Pex are observed for states
with maximum κ = 2, which can be explained by violation of the charge neutrality
condition (8) in the case of states with this value of the screening parameter κ. Further, the
entropy Sex2 is very structure sensitive. This may explain the weak agreement between the
results of theoretical calculations and the data of the MD simulation.

Table 1. Reduced excess internal energy Uex, reduced excess internal pressure Pex, and reduced excess
entropy Sex2 of a 2D Yukawa fluid found using g(x) from MD simulations. The same quantities

(U(2st)
ex , P(2st)

ex , and S(2st)
ex2 ) are calculated based on the expressions (6), (15), and (17). The relative

correspondences δUex , δPex , and δSex2 of these quantities in % between theoretical results and simula-
tion results.

κ Γ Uex U(2st)
ex δUex Pex P(2st)

ex δPex Sex2 S(2st)
ex2 δSex2

1 20 6.762 6.767 0.072 10.554 10.536 0.165 −0.643 −0.782 21.576
1 50 15.901 15.951 0.319 25.518 25.461 0.225 −1.111 −1.068 3.883
1 100 30.943 30.641 0.977 50.294 49.719 1.142 −1.803 −1.348 25.226

1.5 20 2.732 2.708 0.871 4.958 4.919 0.797 −0.542 −0.679 25.377
1.5 50 5.963 6.068 1.751 11.403 11.470 0.591 −0.897 −0.941 4.927
1.5 100 11.165 11.266 0.910 21.912 21.853 0.267 −1.402 −1.190 15.117

2 20 1.336 1.285 3.818 2.697 2.619 2.912 −0.454 −0.581 27.931
2 50 2.647 2.699 1.982 5.766 5.823 0.986 −0.716 −0.808 12.893
2 100 4.665 4.815 3.225 10.601 10.756 1.468 −1.053 −1.026 2.562

Figure 1 shows the dependence of the reduced excess internal energy Uex and reduced
excess internal pressure Pex on the coupling parameter Γ for the values of the screening
parameter κ outside the range that was used to construct a two-step approximation for
RDF (6). Here, we also show the data from the work [20], in which the energy and pressure
values of the two-dimensional Yukawa fluid were calculated in a wide range of changes in
the value of the Γ and κ. It can be seen that, even at these κ values, the analytical formulas
obtained in this work for the direct calculation of reduced excess internal energy and
pressure of two-dimensional Yukawa fluids are in good agreement with the simulation data.

Table 2 shows the results of the numerical calculations of the reduced longitudinal
sound velocity cL, performed within the approximation (6) for g(x), as well as using the
true g(x) from MD modeling. This table also shows the relative correspondences between
theoretical results and simulation results. The greatest discrepancy is observed for the state
of the two-dimensional Yukawa liquid with Γ = 20 and κ = 2, which is the closest of all
those considered to the gas phase. This feature is related to the fact that the approximation
of a quasi-localized charge better describes the collective properties of a Yukawa liquid
with states close to crystalline, i.e., with large Γ and small κ [25].
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Figure 1. Dependence of the reduced excess internal energy Uex and the reduced excess internal
pressure Pex on the coupled parameter Γ for the values of the screening parameter κ = 0.5 (a) and
κ = 2.4 (b), which are constructed using expressions (13) and (15). Symbols show data from work [20].

Table 2. Longitudinal sound velocity in units of thermal velocity cL of a 2D Yukawa fluid, found

using g(x) from MD simulations. The same value c(2st)
L calculated based on the expression (19).

The relative correspondences δcL of this value in % between theoretical and simulation results are
also provided.

κ Γ cL c(2st)
L

δcL

1 20 5.196 5.189 0.139
1 50 8.145 8.13 0.184
1 100 11.475 11.422 0.465

1.5 20 3.777 3.761 0.434
1.5 50 5.831 5.827 0.077
1.5 100 8.156 8.122 0.422

2 20 2.917 2.881 1.266
2 50 4.391 4.392 0.030
2 100 6.051 6.055 0.063

In order to check the validity of the relation (19) in the case of values of the coupling
and screening parameters outside the range used in this work when constructing the
two-step approximation for the g(x), we calculated the longitudinal sound velocity for the
gamma–kappa states collected from [17]. The results are presented in Table 3. It can be
seen that, even at Γ = 1033 and κ = 3, formula (19) provides a deviation of less than 4%
from the value of s calculated using the true g(x).

Table 3. The same as in Table 2, except for the third column; here are the data from work [17].

κ Γ cL c(2st)
L

δcL

1 163 14.62 14.51 0.75
2 362 11.25 11.02 2.04
3 1033 10.23 9.87 3.52

4. Conclusions

The results of this work indicate the following. The thermodynamic characteristics
and the sound velocity for a two-dimensional Yukawa fluid can be theoretically calcu-
lated from microscopic expressions, where the characteristic parameters of the Yukawa
system (coupling parameter and screening parameter) are used as input parameters. The
two-step approximation proposed in this work for the RDF provides a good agreement
with the simulation results for such quantities as the internal energy, internal pressure,
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and longitudinal sound velocity. If we compare the results for the two-dimensional
Yukawa fluid with the three-dimensional case [28], we can see that the obtained ana-
lytical expressions (13) and (15) are simpler and that, at the same time, they provide the
same accuracy when reproducing the simulations results. In addition, as in the case of
the three-dimensional Yukawa fluid in the two-dimensional case, to correctly calculate the
excess entropy, it is necessary to use a more accurate model for g(r).
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