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Abstract: This paper presents an unsteady coupled heat transfer model in mine air and surrounding
rock mass in the presence of distributed heat sources. The case of distributed heat sources is typical
when analyzing the temperature distribution in mine excavations equipped with conveyor systems.
For this case, the asymptotic value of the air temperature at the end of the mine excavation is
determined not only by the heat exchange between the air and surrounding rock mass but also by
the thermal power of distributed heat sources and the total airflow. This conclusion is confirmed
by the experimental data presented in the paper for a longwall in a potash mine. We formulate the
mathematical model and calculate the distribution of air parameters along the length of an excavation,
considering heat release from the conveyor and surrounding rock mass. The results show that a
distributed heat release is necessary for correctly calculating the air temperature in working areas.
The numerical simulations allow us to recommend a redistribution of air between the haulage and
conveyor roadways in the presence of distributed heat sources.

Keywords: mine ventilation; heat transfer; heat sources; underground conveyor; heat transfer
coefficient; Laplace transform; heat equation; rock mass; microclimate of mine excavations

1. Introduction

The air temperature in mine excavation depends on many factors, which can be
divided into two types—the heat exchange of air with the rock mass and the heat exchange
due to heat sources/sinks. The nature of the problem under study determines how detailed
the factors of the first type should be. The simplest approach is to set boundary conditions
of the first, second, or third kind on the excavation wall without considering the heat
propagation in the rock mass. Boundary conditions of the first kind are also called Dirichlet
conditions, boundary conditions of the second kind are also called Neumann conditions,
and boundary conditions of the third kind can be called mixed or convective conditions. A
more complex approach considers heat transfer in both the air and surrounding rock mass
in a coupled formulation [1,2].

The simplest approach is appropriate and has an insignificant error in limiting cases
for short and long simulation times. In the first case, when thermal contact between air and
the rock mass is short (on the order of several hours), the rock mass at the air boundary does
not have time to change temperature significantly. For this reason, the heat exchange of air
with the rock mass is specified using the convective boundary condition of the third kind,
and the heat transfer in the rock mass is not investigated. With thermal insulation near the
mine excavation, a boundary condition of the second kind is set to a zero value for the heat
flux on the wall. In another limiting case, when—after a long time with a nearly unchanged
air temperature distribution along the length of the mine excavation—temperature changes
propagate deep into the rock mass, the boundary condition of the first kind with the equality
of air and rock mass temperatures is acceptable.

If the specifics of the problem do not correspond to the limiting cases above, then
the problem should be solved in a coupled formulation, considering the variation of the
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temperature field in the rock mass. It is also possible to use a simplified model based on the
“nonstationary heat transfer coefficient”. This coefficient implicitly considers the change in
temperature of the rock mass near the mine excavation with time [3]. At the same time, the
excavation wall’s temperature at the initial time is presented in the boundary condition of
the heat balance between the air and the rock mass.

To predict temperature changes in ventilation air as it moves through the systems of
mine excavations, it is also necessary to know the factors of the second type associated
with heat sources and sinks. After the air is supplied to the mine through the air supply
shaft, the temperature begins to change—both due to heat exchange with the rock mass
and incoming heat of natural and artificial origin. Natural processes include the heating
and cooling of air in the vertical mine shaft due to hydrostatic compression and expansion,
evaporation and condensation of moisture, and heat release during oxidative processes
and combustion. The artificial heat sources include heating and air conditioning units and
mining equipment that generates heat.

Accounting for artificial sources of heat release is especially important if they are
located along the air path near the working areas since, in this case, they can affect the tem-
perature of the air supplied to ventilate the working areas [4]. Most often, this temperature
is determined by the natural temperature of the rock mass, which it approaches due to heat
transfer. Local sources of heat release affect the air parameters only at small distances since
local air heating is quickly leveled by the heat exchange process. However, the situation
changes in the presence of distributed heat sources such as conveyor systems. The results
of the experimental measurements given below show a significant influence of this factor
on air temperature.

The novelty of the study lies in solving the problem of coupled heat transfer in the mine
air and rock mass in the presence of a distributed heat source. Traditionally, the problem of
heat transfer is limited by the influence of point sources [2,4,5]. This usually comes down
to setting the appropriate boundary conditions for the incoming air temperature; then the
air temperature changes due to heat and mass transfer processes. In this study, the final
air temperature at short and long times was of interest under the simultaneous action of
both factors.

2. Experimental Study

The experimental study was carried out in the conditions of the potash mines of
the “Belaruskali” company. The object of study is part of a large mine and includes
several mine excavations (tunnels). The cross-section area of excavations has a constant
value along the length of the excavations. Schematically, the object of study is shown
in Figure 1. A fresh air stream enters through the haulage and conveyor roadways to a
longwall, and the contaminated air leaves the working zone of the longwall through the
ventilation drift. The length of these excavations can reach 5000 m, while the conveyor
roadway is equipped with belt conveyors, along which the mined potash ore is transported.
Throughout the measurements, the total airflow supplied through the excavations, the
wall temperature, and the final air temperature supplied to ventilate the longwall were
measured. Table 1 presents the experimental results and the difference between the final
air and rock temperatures. This value is attributed to the heat released from the conveyors.

The heat distribution from the conveyor was nearly uniform along the length of the
excavations since all the energy consumed by the conveyor’s drive is dissipated along the
length of the drift to overcome friction forces. In addition, we observed that conveyor lines
operate on average for about half of the shift time, so the effective operating time of the
heat source must be considered in the calculations.

Thus, the final air temperature during its movement along two air supply roadways
is formed due to the action of two factors—air heat exchange in the rock mass and dis-
tributed heat sources. Next, a mathematical model was developed to predict the unsteady
temperature distribution considering these factors.
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Figure 1. Schematic representation of the air supply along the haulage and transport roadways to 
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Figure 1. Schematic representation of the air supply along the haulage and transport roadways to a
long stope.

Table 1. Air temperature measurements at the end of the conveyor roadway.

Longwall
Number

Elevation,
m

Total Airflow
Rate (Haulage
and Conveyor

Roadways), m3/s

Temperature
of the Rock

Mass, ◦C

Measured
Temperature at
the End of the
Roadways, ◦C

Heating
Due to the
Conveyor

Operation, ◦C

14 −427 2.0 17.1 20.2 3.1
101 −643 3.1 18.8 23.1 4.3
104 −588 4.6 18.4 22.5 4.1
1s-1 −478 2.9 16.4 19.4 3
2n-1 −518 5.1 17.0 21.8 4.8
2n-2 −507 3.1 16.8 24 7.2
3v-1 −498 7.2 16.7 20.2 3.5
4v-1 −517 7.5 16.9 24.1 7.2
5v-1 −600 7.5 18.0 22.1 4.1
6v-1 −509 2.6 16.8 22.9 6.1
2-3 −581 5.0 19.0 24.8 5.8

9-v-3 −818 2.3 20.8 26.0 5.2
13-n-5 −748 5.5 19.9 25.4 5.5
4-v-5 −729 3.9 19.6 22.8 3.2
4-7 −668 9.1 20.7 24.3 3.6
4-1 −687 8.1 21.0 25.3 4.3
4-2 −721 4.9 21.6 28.0 6.4
4-5 −676 6.1 20.8 23.7 2.9
4-3 −689 5.3 21.0 25.8 4.8

4-9-v −733 3.8 19.7 23.7 4
4-13-v −670 2.0 18.9 24.4 5.5
4-12 −645 2.1 18.6 23.3 4.7
4-11 −733 3.0 19.7 27.1 7.4

4-10-v −771 4.6 20.2 25.1 4.9
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3. Mathematical Model

This section describes a heat transfer model in the atmosphere of the conveyor roadway.
The conveyor belt is considered a uniformly distributed heat source along the excavation
length. The conveyor operating time is assumed to be arbitrary. Therefore, a simplified heat
transfer analysis without considering the heat distribution in the rock mass is not acceptable
since it does not allow an accurate assessment of the change in heat removal intensity in
the rock mass. The approach based on the nonstationary heat transfer coefficient [5] is also
not acceptable in this case because it has a limited time range of applicability and leads to
overestimated results in relation to the heat removal intensity. The dependence of the heat
transfer coefficient between the mine air and rock mass on their geometric parameters and
air velocity is well studied [6]. Therefore, the heat transfer problem can be reduced to the
statement of the boundary conditions of the fourth kind without simulating heat transfer
through the boundary layer [7]. Here, we understand the boundary condition of the fourth
kind as the equality of temperature and heat fluxes at the boundary of two heat-conducting
media (rock mass and air) at each moment of time.

The solution was determined based on the model presented in [8–10] since this
heat transfer model, unlike approximate analytical models [11–16] and numerical mod-
els [17–19], does not have strong assumptions regarding the limitation of the computational
domain or the use of approximate solutions.

The problem of heat exchange between mine air and rock mass with heat sources
distributed along the length of a horizontal conveyor roadway is modeled assuming
cylindrical symmetry of the roadway with two spatial coordinates—radial r (m) and
horizontal x (m) [6]. The values of volumetric heat capacity cm (J/(m3·◦C)) and thermal
diffusivity χm (m2/s) of a rock mass are considered constant. Air with volumetric heat
capacity ca (J/(m3·◦C)) and constant temperature Ta0 (◦C) is supplied to the entry of the
roadway (x = 0) with radius r0 (m). Assuming insignificant changes in air density ρa (kg/m3)
and velocity v (m/s), these values are assumed to be constant and correspond to the average
air density. It is assumed that at the initial moment of time before the heat source is turned
on, the entire rock mass and all the air in the excavation at x > 0 have the temperature of
the “undisturbed” rock mass Tm∞ (◦C). Because the turbulent thermal conductivity of air
is much greater than the molecular thermal conductivity of rock, it can be assumed that
the air temperature along the excavation cross section equalizes instantly. Meanwhile, the
diffusive heat transfer in the air movement direction is insignificant compared to convective
heat transfer; therefore, the longitudinal thermal conductivity in air can be set to zero—i.e.,
heat transfer along the excavation is only convective air movement. A similar simplification
is made since the air velocity is much higher than the intensity of heat propagation in
the rock mass; i.e., temperature differences along the x axis and in the radial direction in
the rock mass will be of different orders: in x, meters, in r, centimeters. This makes it
possible to neglect the propagation of heat in the direction of the x axis in the rock mass.
Thus, only radial thermal conductivity takes place in both the rock mass and air, while
the longitudinal thermal conductivity is considered insignificant and is not considered
in the model. Another important characteristic of the air flow is its relative humidity.
However, in this study, we did not analyze its distribution for two reasons—due to the
absence of significant sources of moisture in the potash mine, and also due to the fact that
the regulatory requirements place restrictions only on the dry bulb temperature.

The computational scheme for the problem is shown in Figure 2.
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Figure 2. Computational scheme.

To simplify the mathematical notation of the problem, dimensionless coordinates
are introduced:

r′ = r
r0

x′ = x
r0

t′ = t·χm
r2

0

Air temperature Ta(z, t) (◦C) and rock mass temperature Tm(r, z, t) (◦C) are counted
from the value Tm∞. These parameters remain dimensional.

Dimensionless variables are written with a prime. The equation of heat conduction in
the rock mass in cylindrical coordinates has the following form:

∂Tm

∂t′
=

1
r′
· ∂

∂r′

(
r′·∂Tr

∂r′

)
(1)

The density of the heat flux from the air to the rock mass ja (J/(m2·s)) should be equal
to the density of the heat flux jm (J/(m2·s)) incoming through the excavation wall r′ = 1
to the rock mass. It is necessary to write an equation for the balance of heat Qa (J) in an
elementary volume of air ∆V (m3) with a cross-section area S (m2) and thickness ∆x (m)
with the heat exchange surface of volume ∆F (m2).

Since the thermal conductivity of air in the radial direction in the model is assumed to
be infinite, the heat balance is reduced to the equality of the total heat flux through ∆F and
the change in heat content in a volume of air ∆V (in dimensional form):

∂Qa
∂t + v· ∂Qa

∂x = jm·∆F + w·∆V
∆F = 2·π·r0·∆x

∆V = S·∆x
S = π·r2

0

(2)

where w is the volume source of heat, J/(m3·s).
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Equation (2) differs from the model presented in [8] by the presence of an additional
term w, which specifies the intensity of heat release from a source (conveyor belt) uniformly
distributed along the length of the excavation. A similar approach to heat transfer modeling
was used in [9] to describe air heating due to its hydrostatic compression while moving
along an air supply shaft.

The problem is solved analytically to obtain a definite integral, for the calculation
of which the numerical method of trapezoids is used; the solution is implemented in a
self-written program in the Pascal language.

This makes it possible to obtain an exact solution of the heat transfer problem without
introducing restrictions on the computational area of the array and to use the most physical
boundary condition at an infinite radius value. In addition, the proposed solution allows
one to quickly calculate the air temperature even at long heat transfer times.

Note that

dQa = ca·∆V·dTa

jm = −χm·cm·b·
[

dTm

dr

]
r=r0

The condition at the boundary of the air with the rock mass in dimensionless form
takes the following form:

a·∂Ta

∂x′
+

∂Ta

∂t′
= b·

[
∂Tm

∂x′

]
r′=1

+ w (3)

a =
v·r0

χm

b =
2·cm

ca

w =
w·r2

0
χm·ca

The second boundary condition contains information about the value of the heat
transfer coefficient and determines the temperature difference between the air and the rock
mass at the boundary (excavation wall):

c
b
·([Tm]r′=1 − Ta) =

[
∂Tm

∂r′

]
r′=1

(4)

c =
2·α·r0

ca·χm

Since condition (3) contains a derivative concerning the coordinate, it must be sup-
plemented with the value Ta0 (◦C) of the air temperature at the beginning of the excava-
tion; thus,

[Ta(x, t)]x′=0 = Ta0 (5)

The whole system of equations is supplemented with the initial condition for tempera-
ture fields:

[Ta(x, t)]t′=0 = 0
[Tm(r, x, t)]t′=0 = 0

(6)

The unsteady cylindrical problem (1)–(6) is solved using the Laplace transforma-
tion [20]. The functions of air and rock mass temperatures are associated with their images.

τ
(
r′, p, x′

)
=
∫ +∞

0
T
(
r′, t′, x′

)
·e−pt′ ·dt′

Here, p is a complex parameter with domain Re(p) > 0.
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The partial differential Equation (1) for the original Tm is reduced to an ordinary
differential equation for the image τm:

∂2τm

∂r′2
+

1
r′
·∂τm

∂r′
− p·τm = 0 (7)

with the following boundary and initial conditions:[
a

∂τa

∂x′
+ p·τa

]
r′=1

=

[
b·∂τm

∂r′

]
r′=1

+
w
p

(8)

[ c
b
·(τm − τa)

]
r′=1

=

[
∂τm

∂r′

]
r′=1

(9)

τa
(
r′ = 1, p, 0

)
=
∫ +∞

0
Ta0·e−pt′ ·dt′ =

Ta0

p
(10)

which are obtained from conditions (3)–(5), respectively.
Equation (7) is the Bessel equation, the solution of which is

τm
(
r′, p, x′

)
= f

(
x′
)
·J0
(
r′·√p

)
+ g
(

x′
)
·N0
(
r′·
√
−p
)

(11)

where J0 and N0 are the zero-order Bessel and Neumann functions, and the coefficients
f (x′) and g(x′) are to be determined [21]. The connection between them sets the condition
at infinity:

[τm]r′→∞ =
∫ +∞

0
Tm
(
r′ → ∞, t′, x′

)
·e−pt′ ·dt′ = 0

The ratio between the coefficients f (x′) and g(x′) should be such that when r → ∞
and τm → 0 ,

g(x′)
f (x′)

= − lim
r′→∞

J0
(
r′·√p

)
N0(r′·

√−p)
= −k (12)

Based on the asymptotic expansions of the functions J0 and N0 as r → ∞ [9], we
can conclude that in (12), k = −i for Im(

√−p) > 0 and k = i for Im(
√−p) < 0. The

function
√

ζ, where ζ is a complex number, is two-valued, and only one of its values should
appear in the calculation. This value can be specified by the condition Re

(√
ζ
)
≥ 0. After

representing ζ in exponential form ζ = |ζ|ei·arg(ζ), it is easy to verify that the condition
Im(
√−p) > 0 corresponds to the condition Im(p) < 0 and vice versa; the condition

Im(
√−p) < 0 corresponds to the condition Im(p) > 0.
Laplace transforms allow one to separate the variables x′ and r′ and reduce the

dimension of the problem. Now, taking r′ = 1, only the dependence on x′ remains and, after
a transition to the original, on t′. Further, the r′ coordinate is omitted, which means r′ = 1.
After substituting (11) into (9), the coefficient f (x′), taking into account (7), is expressed in
terms of τa:

f
(

x′
)
=

τa(
J0
(√

p
)
− k·N0(

√−p)
)
+ b

c ·
√−p·

(
J1
(√

p
)
− k·N1(

√−p)
) (13)

Now, after substituting (13) into (11) and (11) into (8), we obtain a differential equation
with one unknown function, τa:

∂τa

∂x
+

ω

a
·τa =

w
p·a (14)

ω(p) = p +
1

1
ϕ(p) +

1
c
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ϕ(p) = b·
√
−p·

J1
(√

p
)
− k·N1(

√−p)
J0
(√

p
)
− k·N0(

√−p)

Solution (14), taking into account (10), gives the dependence

τa =
w

ϕ(p)
+

(
Ta0 −

w
ϕ(p)

)
e−

ω(p)·x′
a (15)

which coincides with the formula obtained in [8] for heat transfer without heat release
sources. Restoring the original,

Ta
(
x′, t′

)
=

1
2·π·i ·

∫ x′+i·∞

x′−i·∞
ept′ ·τa

(
p, x′

)
·dp (16)

where the integration is carried out along any straight line with a real coordinate x′ greater
than the growth rate of the function T′a.

To determine the heat transfer coefficient, which determines the parameters a and ω,
the dependence [6] can be used:

α = 3.4
v0.8

(2·r0)
0.2

This dependence was obtained for cylindrical channels with airflow at Reynolds
numbers over 104.

The obtained Formulas (15) and (16) make it possible to calculate the air temperature
as a function of time and longitudinal coordinates. The numerical integration of expression
(16) was done using the trapezoidal rule.

4. Results and Discussion

In accordance with the developed mathematical model of heat transfer in an exca-
vation with distributed heat sources, a numerical assessment was made of air heating by
a moving conveyor belt after a long period (after 1 year) of usage. The purpose of the
calculation was also to optimize the distribution of the given airflow in two parallel air
supply excavations (the conveyor and haulage roadways) according to the criteria for mini-
mizing the air temperature of the mixed air streams at the outlet. An additional limitation
was not exceeding the maximum allowable air temperature in the conveyor roadway. The
calculation parameters in dimensional form were as follows. The cross-section area of
two parallel excavations was assumed to be 11 m2, and the length was 3000 m. The total
air flow rate along two excavations was 10 m3/s. The average intensity of heat release
in the conveyor roadway was 100 W/m, taking into account the cyclic operation of the
conveyor and the fact that the conveyor operates only 50% of the total shift time. The
temperature of the rock mass was +21 ◦C, and the initial temperature of the air entering the
excavations was +18 ◦C. The thermal conductivity of the rock mass was 5× 10−6 m2/s, and
the specific heat capacity of the rock mass was 838 J/(kg·◦C). The density of the rock mass
was 2.1 kg/m3. The equivalent diameter of the mine excavation was 3.7 m. In addition,
when solving the problem, there was an additional limitation—the air temperature in the
conveyor roadway should not exceed +40 ◦C. Safety rules restrict people from staying in
the mine at temperatures >26 ◦C but still make it possible to operate the electrical conveyor
equipment. However, at temperatures >+40 ◦C, electrical equipment must be turned off.

Table 2 shows the results of calculating the final air temperature after mixing the
airflows from haulage and conveyor roadways and the temperature at the end of the
conveyor roadway.
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Table 2. Air temperatures at the end of the conveyor roadway and mixed airflow after entering the
longwall working area.

Fraction of Air Flowing through the
Conveyor Roadway, % 10 20 30 40 50 60 70 80 90 100

Conveyor roadway, ◦C 48 38 34.5 32.5 31.2 30.3 29.6 29.0 28.6 28.2

Mixture, ◦C 21 22 23 23.8 24.6 25.4 26.1 26.8 27.5 28.2

The calculated data presented in Table 1 show that the optimal ratio of air distribution
along the roadways under the given conditions is 20% (2 m3/s) in the conveyor roadway
and 80% (8 m3/s) in the haulage roadway. At the same time, the minimum temperature of
the mixed air is +22 ◦C, and the temperature in the conveyor drift does not exceed +40 ◦C
(the limiting temperature of the electrical equipment).

It should be noted that the heat exchange time (1 year) from the beginning of the
conveyor operation is not large in the sense of reaching the maximum possible temperature
Tam (◦C) at the outlet of the conveyor roadway, which, after an infinitely long time, should
correspond to the adiabatic solution:

Tam = Ta0 +
w·L·S
cv·q

(17)

where q is the air flow rate, m3/s.
With the given parameters of the problem, when all the air goes along the conveyor

roadway, its outlet temperature tends to +43 ◦C. This value is much higher than the outlet
air temperature of +28.2 ◦C obtained in the calculation. Thus, the temperature in the
excavation will continue to increase; however, the rate of increase will decrease yearly, as
shown in Figure 3. This is true for various ventilation parameters (q) and thermal conditions
(Tm∞).
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Judging by the calculated data, even after 100 months from the beginning of mining
operations in the longwall and the beginning of heat exchange, the air temperature at
the end of the conveyor belt will not exceed 30 ◦C, which leads to the conclusion that in
real-time intervals the heat exchange process is unsteady, the temperature increases at a
decreasing rate, and the asymptotic solution will never be reached. In the first month from
the beginning of heat exchange, the air temperature at the outlet of the conveyor drift is
27 ◦C; by the end of the year, it increases to 28 ◦C; after 4 years, up to 29 ◦C; after 8 years, it
increases by another 0.5 ◦C, etc.

5. Conclusions

When fresh air is supplied through extended excavations equipped with conveyor
systems, the resulting air temperature is determined by the temperature of the surrounding
rock mass, total distributed heat from the operating conveyors, total airflow, and total
ventilation time.

The generated distribution of air temperatures is sufficiently unsteady. Its asymptotic
value at very long times depends on the total heat release and the total supplied airflow.
However, this asymptote is not achieved under realistic periods of longwall exploitation.

When air is supplied through two or more excavations—only one of which is equipped
with a conveyor—the minimum air temperature of the mixture entering the longwall
working zone is ensured by the minimum possible air supply along the conveyor roadway.
This leads to maximum air temperatures and a maximum temperature difference between
the air and rock mass.
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D.B. and A.S.; formal analysis, A.S.; investigation, A.S. and D.B.; resources, D.B.; data curation, A.Z.;
writing—original draft preparation, A.Z.; writing—review and editing, A.S. and D.B.; visualization,
A.Z.; supervision, A.Z.; project administration, A.Z.; funding acquisition, A.Z., A.S. and D.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, grant number 122030100425-6.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kremnyov, O.A. Non-stationary thermal conductivity of hollow solids bounded by a circular cylindrical surface for a given law

of its heat exchange with a cooling or heating medium. Rep. Acad. Sci. Sov. Union 1952, 85, 1009–1012.
2. Levin, L.Y.; Semin, M.A.; Zaitsev, A.V. Mathematical methods of forecasting microclimate conditions in an arbitrary layout

network of underground excavations. J. Min. Sci. 2014, 50, 371–378. [CrossRef]
3. Kremnyov, O.A. Heat exchange between the ventilation jet and the mountain ranges of old mines and workings. Work. Inst.

Therm. Power Eng. Acad. Sci. Ukr. Sov. Social. Repub. 1954, 10, 12–17. (In Russian)
4. Perestoronin, M.P.; Zaitsev, A.V.; Semin, M.A.; Borodavkin, D.A. Experimental study of transient thermal conditions in longwall

faces. Gorn. Nauk. I Tekhnologii Min. Sci. Technol. 2022, 7, 37–48. [CrossRef]
5. Shherban, A.N.; Kremnyov, O.A. Scientific Basis for Calculating and Regulating the Thermal Regime of Deep Mines, 1st ed.; Publishing

House of the Academy of Sciences of the USSR: Kiev, Russia, 1959; Volume 1.
6. Voropaev, A.F. Theory of Heat Exchange between Mine Air and Rocks in Deep Mines, 1st ed.; Nedra: Moscow, Russia, 1966.
7. Kozdoba, L.A. Computational Thermophysics, 1st ed.; Naukova Dumka: Kiev, Ucraine, 1992.
8. Krasnoshtein, A.E.; Kazakov, B.P.; Shalimov, A.V. Modeling phenomena of non-stationary heat exchange between mine air and a

rock mass. J. Min. Sci. 2007, 43, 522–529. [CrossRef]
9. Kazakov, B.P.; Levin, L.Y.; Shalimov, A.V.; Zaitsev, A.V. Development of energy-saving technologies providing comfortable

microclimate conditions for mining. J. Min. Inst. 2017, 223, 116–124.
10. Shalimov, A.V. Theoretical Foundations of Forecasting, Prevention and Control of Emergency Violations of Mine Ventilation.

Ph.D. Thesis, Aarhus University, Aarhus, Denmark, 2012.
11. Semin, M.; Zaitsev, A. On a possible mechanism for the water build-up formation in mine ventilation shafts. Therm. Sci. Eng.

Prog. 2020, 20, 100760. [CrossRef]
12. McPherson, M.J. Subsurface Ventilation and Environmental Engineering, 2nd ed.; Chapman & Hall: London, UK, 2009.

http://doi.org/10.1134/S1062739114020203
http://doi.org/10.17073/2500-0632-2022-1-37-48
http://doi.org/10.1007/s10913-007-0055-x
http://doi.org/10.1016/j.tsep.2020.100760


Fluids 2023, 8, 67 11 of 11

13. McPherson, M.J. The analysis and simulation of heat flow into underground airways. Int. J. Min. Geol. Eng. 1986, 4, 165–195.
[CrossRef]

14. Roy, T.R.; Singh, B. Computer simulation of transient climatic conditions in underground airways. Min. Sci. Technol. 1991, 13,
395–402. [CrossRef]

15. Bluhm, S.J.; Von Glehn, F.H.; Marx, W.M.; Biffi, M. VUMA mine ventilation software. J. Mine Vent. Soc. S. Afr. 2001, 54, 65–72.
16. Lowndes, I.S.; Crossley, A.J.; Yang, Z.-Y. The ventilation and climate modelling of rapid development tunnel drivages. Tunn.

Undergr. Space Technol. 2004, 19, 139–150. [CrossRef]
17. Zaitsev, A.V.; Semin, M.A.; Parshakov, O.S. Features of the thermal regime formation in the downcast shafts in the cold period of

the year. J. Min. Inst. 2021, 250, 562–568. [CrossRef]
18. Zhu, S.; Cheng, J.; Wang, Z.; Borowski, M. Physical simulation experiment of factors affecting temperature field of heat adjustment

circle in rock surrounding mine roadway. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–18. [CrossRef]
19. Zhang, S.; Lu, P.; Wang, H. Numerical simulation analysis of unsteady temperature in thermal insulation supporting roadway.

Math. Probl. Eng. 2019, 2019, 6279164. [CrossRef]
20. Sobolev, S.L. Equations of Mathematical Physics, 1st ed.; State Publishing House of Technical and Theoretical Literature: Moscow,

Russia, 1950.
21. Dvajt, G.B. Integral Tables and other Mathematical Formulas, 1st ed.; Nauka: Moscow, Russia, 1973.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01560715
http://doi.org/10.1016/0167-9031(91)90803-K
http://doi.org/10.1016/j.tust.2003.09.003
http://doi.org/10.31897/PMI.2021.4.9
http://doi.org/10.1080/15567036.2020.1760969
http://doi.org/10.1155/2019/6279164

	Introduction 
	Experimental Study 
	Mathematical Model 
	Results and Discussion 
	Conclusions 
	References

