
Supplementary Material 
 
S1 Effect of the fluid model assumption on a single-node asymmetric bifurcation 
 
Expanding on section 2.3 of the main text, we conducted a sensitivity analysis on a simple asymmetric 
parent-daughter bifurcation with a single vascular node (Figure S1). For that, we used the Hagen-
Poiseuille model with hematocrit, without and with backflow (sections S1.1, S1.2, respectively), a power 
law fluid model (section S1.3) and the Carreau model (section S1.4) which accounts for the non-
Newtonian shear thinning behaviour of blood. In each case, we apply the conservation of flux, which 
is simply an extension of mass conservation, as well as the continuity of pressure at the bifurcation 
node, denoted in Figure S1 by P∗ to solve a system of equations. The individual impedances and 
compliances calculated for each blood vessel are provided in Table S2 [1, 2]. 
 
S1.1 Hagen-Poiseuille model without backflow 
Node-to-node pressure gradient calculation: For a steady laminar axisymmetric fully developed flow, 
the Navier-Stokes equations in cylindrical coordinates (r, θ, x) can be reduced, with the assumption 
that ur = uθ = 0, to an axial momentum equation with velocity u(x) = ux as a function only of the spatial 
coordinate x for the length of the cylindrical blood vessel, which can be wriSen as 
 

1
r
∂
∂r %r

∂u
∂r' =

1
µ %
dP
dx' , (s1) 

 
where P denotes the pressure along the cylindrical vessel, dependent only on the axial coordinate x, 
and r represents the radial coordinate. The continuity equation and the angular equation of motion 
are identically satisfied. The viscosity of the blood, µ, was assumed to be a function of the hematocrit, 
based on the Saito model [3] 
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where µ0 denotes the viscosity of the solvent fluid and ϕ represents the red blood cell population 
density. Typically, for humans, ϕ is of the order of 40 – 45% [3]. The resulting velocity profile from 
equation (s1) is parabolic in nature. Using the definition for the flux, Q [4] 
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the pressure gradient ∆P driving the flow is 
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where R is the radius of the cylindrical blood vessel and L denotes its length.  
Flux calculation: The conservation of flux for the parent-daughter bifurcation of Figure S1A without 
backflow can be wriSen as  

Q$%$ = Q&' + Q"'.			(s5) 
Furthermore, the continuity of pressure at the bifurcation node can be expressed as 
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where LL1, LR1 and RL1, RR1 are the respective lengths and radii of the daughter vessels. The daughter 
fluxes QL1 and QR1 are unknown but can be determined algebraically in terms of a known input flux, 
QTOT. To determine QL1 and QR1 we need to rewrite equation (s6) in terms of the respective daughter 
vessel’s total impedance via Ohm’s law. This results in 
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where ZL1 and ZR1 represent the total impedance of the respective daughter blood vessels of Figure S1A 
and are given mathematically by equation (10) in the manuscript. Using equations (10), (s5) and (s7), 
we can algebraically determine the daughter fluxes QL1 and QR1 in terms of the parent flux QTOT for the 
given physical parameters shown in Table S1. The fluxes for the Hagen-Poiseuille model without 
backflow case were QL1 = 300.275ml/min and QR1 =299.725ml/min as shown in Table S3. 

 

Figure S1. A single-node parent-daughter bifurcation (A) without backflow and (B) with backflow. P* 
denotes the pressure at the bifurcation node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. Physical parameters for the various fluid models examined in the single-node bifurcation of 
Figure S1. 

Physical parameter Physical parameter notation Value Reference 
Parent vessel  

radius 
R 2.7x10-3m Cury et al. [5] 

Left daughter vessel radius RL1 2.5x10-3m 
Right daughter  
vessel radius 

RR1 2x10-3m 

Parent vessel length L 4x10-2m 
Left daughter vessel length LL1 4x10-2m 

Right daughter  
vessel length 

LR1 2x10-2m 

Viscosity term in Saito formula,  
equation (s2)  

µ0 4 × 10−3 Pas Stark and Shuster 
[3] 

Hematocrit ϕ 0.40 
Frequency f 10 Hz Abu-Naser et al. 

[1], Hsu et al. [2] Left daughter  
vessel’s total impedance 

ZL1 3.316 × 
109kgm−4s−1 

Right daughter  
vessel’s total impedance 

ZR1 3.316 × 
109kgm−4s−1 

Parent vessel’s total impedance ZT 1.649 × 
109kgm−4s−1 

Blood flux rate to a healthy human 
kidney 

QTOT 600mlmin−1 

 (10-5m3s-1) 
Lok et al. [6] 

Viscosity for the Power law model m  16.24 × 10−3 Pas Bessonov et al. [7] 
Index for the Power law model n  0.7163 

Shear rate γ̇ 600s−1 
Relaxation time λ 3.313s 

Carreau model – viscosity at zero 
shear rate 

µ0  0.056Pas 

Carreau model- viscosity at infinite 
shear rate 

µ! 0.00345Pas 

Index for the Carreau model n  0.3568 
 

 
Table S2. Individual impedances and compliances for the three element Windkessel model for the 
single-node bifurcation cases of Figure S1. 

Branch Z1(kgm−4s−1) Z2(kgm−4s−1) C(kg−1m4s2) |Z|(kgm−4s−1) 
Parent vessel 1.180 × 109 4.830 × 108 1.840 × 10−12 1.649 × 109 
Left daughter branch L1 6.136 × 109 2.512 × 109 9.568 × 10−12 3.316 × 109 
Right daughter branch R1 6.136 × 109 2.512 × 109 9.568 × 10−12 3.316 × 109 

 
Table S3. Daughter fluxes for the sensitivity analysis for the various asymmetric single-node parent-
daughter bifurcation models. 

 
 
 

Fluid model Branch QL1 (ml/min) Branch QR1 (ml/min) 
Hagen-Poiseuille without backflow 300.275 299.725 
Hagen-Poiseuille with backflow 296.245 295.702 
Power law without backflow 300.004 299.996 
Carreau without backflow 299.749 300.251 



S1.2 Hagen-Poiseuille model with backflow 
Using Figure S1B, we apply the conservation of flux and the continuity of pressure at the bifurcation 
node which results in the following sets of equations, 
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where the pressures are related to the total impedance of each vessel via Ohm’s law. Let 
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thus equation (s9) can be rewriSen as 
 

P∗ = [Z$%$ − α$%$]Q$%$ + [Z$%$ + α$%$]Q)*+,*-.*/ = [Z&' + α&']Q&' = [Z"' + α"']Q"'			(s10). 
 
Equation (s10) is rearranged resulting in 
 

Q)*+,*-.*/ = Q$%$
[(Z"' + α"')(Z&' + α&') − (Z$%$ − α)(Z&' + α&') − (Z$%$ − α)(Z"' + α"')]
[(Z"' + α"')(Z&' + α&') + (Z$%$ + α)(Z&' + α&') + (Z$%$ + α)(Z"' + α"')]

	(s11) 

 
Using the appropriate physical data given in Table S1, we can determine the various fluxes for the 
Hagen-Poiseuille backflow model shown in Figure S1B. The fluxes for this case were QL1 = 
296.245ml/min and QR1 = 295.702ml/min (see Table S3) which is approximately 1.4% lower in 
magnitude than the fluxes for the Hagen-Poiseuille without backflow. 
 
S1.3 The power law fluid model 
Using the Navier-Stokes equation in cylindrical coordinates, we can show that the Cauchy stress, σ, 
leads to [7,8] 
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where c1 denotes a constant of integration. Since we require a physical model c1 → 0 as r → 0. This 
results in 
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The pressure gradient can be wriSen as 
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Using equations (s13) and (s14), we get 
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The viscosity of the fluid is given by                   σ =
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/)
O
5
,				(s16) 

 
where du/dr = γ̇, and γ̇ is defined as the shear strain rate [7,8]. Combining equations (s15) and (s16), 
we can show that 
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Integrating equation (s17) between the radial position r, to the vessel radius R, we can describe the 
velocity profile u as 

u =
1

(1 + 1/n) %
ΔP
2mL'

'
5
UR'/('85) − r'/('85)V.			(s18) 

 
Calculating the flux, Q, where the flux is defined as (s3) 
 
results in 
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Defining the material parameter α as 
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allows us to write the pressure difference ∆P as 
 
                                                                                  ΔP = βQ5, (s21)  
 
where β = 1/αn. We can relate the pressure difference ∆P to the pressure at the bifurcation node denoted 
by P∗, and the pressure within the individual blood vessel which is represented by P, via ∆P = P∗ − P. 
Using Ohm’s law gives 

P⋆ = βQ5 + ZQ.				(s22) 
Considering the simple parent-daughter bifurcation described in Figure S1A and using equation (s22) 
along with the conservation of flux leads to the following system of equations 
 

Q$%$ = Q&' + Q"', (s23) 
 

P⋆ = Z&'Q&' + β&'Q&'5 = Z"'Q"' + β"'Q"'5 .				(s24) 
 
Using equation (s24) and substituting in the conservation of flux for QR1 from equation (s23) results 
in 

β&'Q&'5 − β"'(Q$%$ − Q&')5 + (Z&' + Z"')Q&' − Z"'Q$%$ = 0.			(s25) 
 
Equation (s25) reduces to a root finding problem which we can solve numerically using Mathematica© 
[9] and the appropriate material parameters given in Table S1. The fluxes for the fluid Power law were 
QL1 = 300.004ml/min and QR1 = 299.996ml/min (see Table S3) which is very close in magnitude to the 
fluxes associated with the Hagen-Poiseuille model without backflow. 
 
S1.4   The Carreau fluid model for an asymmetric parent-daughter bifurcation 
A key physical feature of blood is its shear thinning characteristics which we can model using the non-
linear Carreau model [7,8]. The Carreau model has less physical limitations than the power law model, 



with the power law model predicting an unbounded viscosity at zero shear rate and zero viscosity 
when γ̇ → ∞, which is essentially unphysical in nature. The Carreau model is given by the equation                                     

µ = µ> + (µ! − µ>)U1 + λ0γ0̇V
"#!
$ ,				(s26)	 

 
where µ0 and µ∞ represent the viscosities at the respective physical boundaries and n is a non-
dimensional number obtained empirically. The terms λ and γ̇ represent the relaxation term and the 
shear strain rate respectively. The shear strain rate for a typical unblocked artery is γ̇= 600s−1, the 
relaxation time is λ = 3.313s, µ0 = 0.056Pas, µ∞ = 0.00345Pas and n = 0.3568 [7]. The viscosity µ is related 
to the Cauchy stress σ via 
 

σ = µγ̇.			(s27) 
 
Using equations (s15), (s26) and (s27), and rearranging we get 
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where ∆P = P* − P. Using Ohm’s law and rearranging equation (s28) leads to 
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Applying the conservation of flux and the continuity of pressure at the bifurcation point for Figure 
S1A, results in the following system of equations 
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Using equations (s30) and (s31) and rearranging, yields 
 

Z&'Q&' − Z"'(Q$%$ − Q&') + 2γ̇ %
L&'
R&'

−
L"'
R"'

' Yµ> + (µ! − µ>)U1 + λ0γ0̇V
5?'
0 Z = 0.		(s32) 

 
We solved equation (s32) using Mathematica© [9] alongside the physical data given in Table S1. The 
fluxes for the Carreau model were QL1 = 299.749ml/min and QR1 = 300.251ml/min (see Table S3) which 
was very close in magnitude to the fluxes associated with the Hagen-Poiseuille model without 
backflow and the power law fluid model. However, the left branch L1 in the Carreau model had a 
slightly lower blood flux compared to the right branch, whereas both the Hagen-Poiseuille model 
without backflow and the power law fluid model exhibited slightly larger blood fluxes in the right 
branch compared to the left branch. 
 
The data from this sensitivity analysis illustrate that the effects of backflow (Qreflection) were so small as 
to be negligible, being approximately 1.4% of the total flux QTOT. There was liSle difference between 
the flow rates for the Hagen-Poiseuille fluid model with a constant viscosity, the power law, and the 
Carreau model. It is worth noting that the Carreau model is dependent on the shear strain rate which 
influences the viscosity of blood, with higher shear strain rates resulting in a lower blood viscosity. 
We therefore primarily focused on the Carreau model without backflow when calculating the blood 
fluxes and blood losses that arise from the kidney vasculature of Figure 1A. Focusing on the Carreau 



model rather than the Newtonian model offers more flexibility since it allows to account for shear 
thinning effects and varying shear rates.  
 
 
S2 Sensitivity analysis for the parameter space of a simple Y bifurcation 
 
Tables discussed in the main text in Section 2.4 
 
Table S4. Sensitivity analysis for the radius rL1 using the data from Tables S1 & S2. 

rL1 (m) QL1 (ml/min) QR1 (ml/min) 

2.5 x10-3 299.749 300.251 
2.0 x10-3 299.582 300.418 

1.5 x10-3 299.304 300.696 
1.0 x10-3 298.747 301.253 

 
 
Table S5. Sensitivity analysis for the length LL1 using the data from Tables S1 & S2. 

LL1 (m) QL1 (ml/min) QR1 (ml/min) 

4 x10-2 299.749 300.251 
3 x10-2 299.917 300.083 
2 x10-2 300.083 299.917 
1 x10-2 300.251 299.749 
5 x10-3 300.334 299.666 

 
 
Table S6. Sensitivity analysis for the shear rate, γ̇, using the data from Tables S1 & S2. 

�̇� (s-1) QL1 (ml/min) QR1 (ml/min) 
100 299.949 300.051 
600 299.749 300.25 
1000 299.594 300.406 
2000 299.211 300.789 
5000 298.072 301.928 
10000 296.184 303.816 

 
 
Table S7. Sensitivity analysis for the hematocrit ϕ,	using the data from Tables S1 & S2. 

𝛟 QL1 (ml/min) QR1 (ml/min) 
0.35 300.242 299.758 
0.40 300.275 299.725 
0.45 300.314 299.686 
0.50 300.36 299.64 
0.55 300.416 299.584 

 
 
 
 
 



Table S8 Sensitivity analysis for the impedance ZL1 using the data from Tables S1 & S2  
 

ZL1 (kgm-4s-1) QL1 (ml/min) QR1 (ml/min) 
3.3 x 109 300.473 299.527 
3.4 x 109 295.999 304.001 
3.5 x 109 291.656 308.344 
3.6 x 109 287.440 312.560 
3.7 x 109 283.342 316.658 
3.8 x 109 279.361 320.639 
3.9 x 109 275.489 324.511 
4.0 x 109 271.724 328.276 

 
References 
1. Abu-Naser M, Williamson GA, Bidani AK, Griffin KA. Vascular resistance estimation in real 

hemodynamics using a time-varying Windkessel model. IEEE- ICASSPl. 2005;5:641-4. 
2. Hsu TL, Hsiu H, Chao PT, Li SP, Wang WK, Wang YYL. Three-block electrical model of renal 

impedance. IOP: Physiological measurement. 2005;26(4):387-99. 
3. Stark H, Schuster S. Comparison of various approaches to calculating the hematocrit in 

vertebrates. Journal of applied physiology. 2012;113(3):355-67. 
4. Grinberg L, Karniadakis GE. Outflow boundary conditions for arterial networks with multiple 

outlets. Annals of biomechanical engineering. 2008;36(9):1496-514. 
5. Cury LFM, Talou GM, Younes-Ibrahim M, Blanco PJ. Parallel generation  of extensive vascular 

networks with application to an archetypal human kidney model. Royal Society Open Science. 
2021;8(12):1-22. 

6. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, et al. Kdoqi clinical practice guideline 
for vascular access: 2019 update. American journal of kidney diseases. 2020;75(4):1-164. 

7. Bessonov N, Sequeira A, Simakov S, Vassilevskii Y, Volpert V. Methods of blood flow modelling. 
Mathematical Modelling of Natural Phenomena. 2016;11(1):1-25. 

8. Sochi T. Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin 
slits. Rheologica Acta. 2015;54:745-56. 

9. Wolfram Research Inc.  Mathematica. Version 130. 2022. 
 
 


