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Abstract: Helically coiled pipes are widely used in many industrial and engineering applications
because of their compactness, larger heat transfer area per unit volume and higher efficiency in
heat and mass transfer compared to other pipe geometries. They are commonly encountered in
heat exchangers, steam generators in power plants and chemical reactors. The most notable feature
of flow in helical pipes is the secondary flow (i.e., the cross-sectional circulatory motion) caused
by centrifugal forces due to the curvature. Other important features are the stabilization effects of
turbulent flow and the higher Reynolds number at which the transition from a laminar to a turbulent
state occurs compared to straight pipes. A survey of the open literature on helical pipe flows shows
that a good deal of experimental and theoretical work has been conducted to derive appropriate
correlations to predict frictional pressure losses under laminar and turbulent conditions as well as
to study the dependence of the flow characteristics and heat transfer capabilities on the Reynolds
number, the Nusselt number and the geometrical parameters of the helical pipe. Despite the progress
made so far in understanding the flow and heat transfer characteristics of helical pipe flow, there is
still much work to be completed to address the more complex problem of multiphase flows and the
impact of pipe deformation and corrugation on single- and multiphase flow. The aim of this paper is
to provide a review on the state-of-the-art experimental and theoretical research concerning the flow
in helically coiled pipes.

Keywords: laminar flow; turbulent flow; helical coil; secondary flow; heat transfer; pressure loss;
friction factor; flow characteristics

1. Introduction

Although pipes and ducts have been used to transport water since the construction of
the first aqueducts by the Romans during the fourth century BC, the first scientific studies
began much later, from the year 1839, when Hagen [1] and then Poiseuille [2] carried
out the first experiments on water flow in straight tubes of various sizes to determine
pressure losses. Later on, Darcy [3] studied the effects of pipe roughness on pressure drop,
and Reynolds [4] observed that the transition from laminar to turbulent flow in straight
pipes occurs at a critical dimensionless parameter, known as the critical Reynolds number.
In particular, the Reynolds number, defined as Re = vD/ν, where v is the mean flow
velocity, D is the pipe diameter and ν is the kinematic viscosity, is commonly used to
measure the relationship between inertial and viscous forces in the fluid and serves to
indicate whether the flow is laminar or turbulent.

In many engineering applications and industrial processes, the transportation of
liquids and gases through pipeline systems may require redirection of the flow by means
of bends of various angles and sharpnesses. Studies of flow through curved tubes with
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different cross-sections date back to Boussinesq [5], who showed that, for laminar flow in a
channel with a rectangular cross-section, secondary flow develops across a bend in the form
of two symmetrical vortices. An explanation of this behavior was provided by Thomson
in 1876 [6,7], who claimed that the curvature balance between pressure and centrifugal
forces in a river bend induces an imbalance in fluid motion near the bottom, leading to
an inward secondary flow there. However, it was not until the beginning of the twentieth
century when the experiments of Williams et al. [8] showed that, across a curved pipe
section, the maximum flow velocity always occurs towards the outer wall at the outlet of
the bend, while, a bit later, Eustice [9,10] and White [11] demonstrated experimentally that
the pressure drop is greater in curved pipes than in straight ones and that the curvature
stabilizes the flow because the transitional Re number increases substantially compared to
straight pipes. As suggested by Kalpakli Vester et al. [12], in their comprehensive review
on turbulent flow in curved pipes, the most notable and well-known figure in curved-pipe-
flow research is William R. Dean, who studied by analytical means the laminar flow in
curved pipes with circular cross-sections and small curvature ratios, γ = R/Rc [13,14],
where R is the pipe radius and Rc is the curvature radius. In particular, he found that an
important parameter was the square of the Dean number, De =

√
γRe, and that, when

projected on the cross-stream plane, the cross-flow velocity-field pattern can be identified
as two counter-rotating vortex cells, which are today called Dean vortices in honor of
his work (Dean vortices refer to small-amplitude laminar flow patterns. However, similar
vortices are also encountered in turbulent flows, which are also called Dean vortices).

A type of curved pipes that have caught the attention of many researchers due to
their particular geometry and its countless applications in many industrial situations are
the helically coiled pipes. Due to their compact size, ease of manufacturing and high
efficiency in heat and mass transfer, these pipes are widely used as heat exchangers and
steam generators in nuclear power plants [15–18]. Helical pipes are also used in refriger-
ation systems [19], anaerobic digesters [20], fouling and clogging reduction in filtration
membranes [21], mass transfer enhancement in catalytic reactors [22], mixing efficiency and
homogenization [23] as well as in many other devices and applications. Motivated by their
various industrial applications and the complex cross-sectional motion that takes place due
to their curvature and centrifugal forces induced on the flow, experimental and theoretical
research on helical coil pipes has flourished in the last few decades. A survey of work on
helical tubes in the open literature shows that there are several experimental and theoretical
publications on flow and heat transfer characteristics under laminar and turbulent flow
conditions. With the exception of a few existing reviews examining heat transfer in heli-
cally coiled tubes [24,25], most overviews on helical pipe research have been included in
reviews devoted to flow in curved pipes in general [12,26–29]. It is frequently mentioned
that, while the literature on laminar and heat transfer in curved pipes, and, in particular,
in helically coiled pipes, is quite extensive, studies of turbulent flow in such streamline
curvatures are much less abundant. However, Kalpakli Vester et al. [12] mentioned that
there is a great deal of work on turbulence in curve ducts that is not being covered by the
available literature.

The experimental literature on helical pipe flow is quite varied. The transition from
laminar to turbulent flow was first studied experimentally by White [11], who observed that
the transition to turbulent flow occurs at much higher critical Reynolds numbers compared to
flow in straight tubes, while stabilization effects of turbulent flow in helically coiled pipes was
first recognized by Taylor [30] and then later on by several other authors [31–33]. In particular,
one of the most important experimental studies on flow stabilization through helical pipes
was reported by Sreenivasan and Strykowski [33], who found that the turbulent flow
that conveys from a straight pipe and becomes laminar when passing through the coiled
section can persist in a straight pipe for long when leaving the coiled section. Other
later experimental works have dealt with studies regarding the geometrical coil effects
on pressure drop and heat transfer [34–36]. More recently, the effects of coil geometry on
incompressible laminar flow were studied by De Amicis et al. [37], while investigations on
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the turbulent forced convection flow and the laminar flow friction factor in helical pipes
were reported by Rakhsha et al. [38] and Abushammala et al. [39], respectively.

In comparison to experimental research, numerical papers on helically coiled flow appear
to be much more numerous. Most of this work has been oriented to study the prediction
of laminar flow and heat transfer [40–44], turbulent flow [17,45,46], entropy generation [47],
pulsating flow [48] and flow characteristics [49–51]. Investigations on multiphase flow in
helical pipes are by far much more scarce (see, for instance, Colombo et al. [52] and references
therein). On the other hand, analytical and semi-analytical works based on perturbation
methods [53,54], asymptotic analysis [55], entropy generation analysis [56] as well as physical
bounds on the flow rate and friction factor in pressure-driven flows through helical pipes
using a background method formulation [57] have also been reported in the open literature.

In this paper, we perform an overview of the experimental, semi-analytical and
numerical work on flow and heat transfer through helically coiled pipes. The review is
organized as follows. The basic parameters and definitions that characterize helical pipes
are briefly described in Section 2. Section 3 deals with an overview of experimental results
on helical pipe flows in general, and Section 4 contains a review of theoretically derived
results, which has been divided into analytical and semi-analytical studies and numerical
simulations of laminar flow, turbulent flow and heat transfer. The section ends with an
overview of flow and heat transfer in corrugated and twisted helical pipes. Section 5 deals
with results regarding visualization and entropy generation analysis of helical pipe flows,
while Section 6 provides a brief account on two-phase flows in helically coiled pipes. The
review ends with a brief survey about helical coils in magnetohydrodynamics in Section 7
and the concluding remarks in Section 8.

2. Geometrical Parameters of a Helically Coiled Pipe

A schematic view of a typical helical pipe is shown in Figure 1. The main parameters
characterizing the geometry of helical pipes are the inner radius R, the coil radius (also known
as the pitch circle radius) Rc, measured between the center of the pipe and the axis of the coil,
the coil pitch h, defined as the distance between two adjacent turns, the helix angle α, which is
the angle between a coil turn, and the plane perpendicular to the axis of the coil. While these
parameters are often used to define the geometry of typical helical pipes, in many other places,
the curvature ratio is defined as the ratio of pipe radius to coil radius, γ = R/Rc, and the
ratio of pitch to developed length of one turn, β = h/2πRc, which is customarily called the
dimensionless pitch; these are often used to characterize the geometry of helical coils.

Figure 1. Schematic representation of a helically coiled pipe and its parametric definitions. Figure
adapted from Rakhsha et al. [38].
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Similar to other types of curved pipes and ducts, the most important dimensionless
number that is used to characterize the flow in helical pipes is the Dean number [13,14]
provided by

De =
√

γRe, (1)

which is based on the curvature ratio and the Reynolds number

Re =
vD
ν

, (2)

where v is the mean flow (or bulk) velocity, D = 2R is the inner pipe diameter and ν is the
kinematic viscosity. A further relevant dimensionless parameter is the so-called Fanning
friction factor F, defined as

F = − R
ρv2

dp
ds

, (3)

where ρ is the fluid density and dp/ds is the applied pressure gradient along the pipe.
In relation (3), the bulk velocity is often defined as

v =
〈Q〉
πR2 , (4)

where 〈Q〉 is the long-time average of the dimensional volumetric flow rate and Q? is a
dimensionless volumetric flow rate [57], provided by

Q? =
1

R2

[
− ρ

(dp/ds)R

]1/2
〈Q〉. (5)

It is well-known that, when a fluid flows through a pipe, the interaction of the fluid with the
pipe wall causes friction, which slows down the fluid motion and decreases the pressure
along the pipe. This way, the Fanning friction factor is used to quantify the pressure losses
in a pipe, and its dependence on the Reynolds number has been used as an indicator of
whether the flow is laminar, transitional or turbulent [12]. Another quantity of interest is
the Darcy–Weisbach factor, defined as FD = 4F, i.e., four times the Fanning friction factor.
Similar to the Fanning factor, the Darcy–Weisbach friction factor is also used to describe
friction losses in pipe flow as well as in open-channel flows.

3. Overview of Experimental Work
3.1. Earlier Observations

The earliest experimental work documented on curved pipes dates back to 1855 [58].
This work, authored by the German mathematician and engineer J. L. Weisbach, provides
the first experimental determinations of pressure losses through a sharp-bent pipe. Later
on, in 1876, Thomson [6,7] was the first to report experimental observations of the onset of
secondary flow in a channel bend using a small laboratory model to mimic the windings of
rivers. He observed the formation of vortices near the bottom of the bend and explained
such inward motion as the result of the curvature balance between the pressure and
centrifugal forces acting on the bulk flow. However, the onset of secondary flows in
curved pipes occurs in a different manner, as described by Thomson from his laboratory
experiments in a channel, where the fluid flows under the presence of an upper free surface.
In fact, it was not until Williams et al.’s [8] experimental work of water flow in bends in
1902 that it was recognized that the maximum mean velocity in a pipe bend of circular
cross-section always occurs towards the outer pipe wall close to the bend exit. Further
experiments on water flow in curved streamlines were performed by Eustice [9,10], who
found that the pressure losses are greater than in straight pipes and that, compared with
the latter, the pipe curvature plays a role in flow stabilization against the transition to
turbulence. This was confirmed almost twenty years later by White’s experiments [11],
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who showed that the critical Reynolds number at which transition to turbulence occurs is
much higher in curved than in straight pipes and ducts.

Contemporarily to White [11], Taylor [30] performed one of the first experiments on
flow through a helical glass tube. In particular, he studied the criterion for turbulence by
introducing a colored fluid through a small hole in the glass helix. By varying the mean
flow velocity through the pipe, he confirmed White’s findings that turbulence in curved
pipes can be maintained with a higher flow velocity compared to straight pipes. For a
helical pipe of coil diameter 18 times that of the pipe, Taylor observed that laminar motion
was maintained up to Re = 5830, even in those cases when the flow was highly turbulent at
the entrance of the helix. This transitional Reynolds number was reported by Taylor to be
about 2.8 times that required in a straight pipe of the same circular cross-sectional diameter.
Further earlier experimental measurements of mean velocity and pressure by Adler [59]
and Wattendorf [60] were inspired by Dean’s two seminal papers [13,14] on laminar flow
through curved conduits of small curvature. For laminar and turbulent water flow in
curved pipes of small curvature ratios (0.005 ≤ γ ≤ 0.02), Adler [59] investigated the
structure of the cross-flow pattern, which was found to consist of two symmetric counter-
rotating vortices similar to the vortex cells described analytically by Dean [14]. On the other
hand, Wattendorf [60] performed experiments on fully developed turbulent flow through
a curved channel of constant curvature and cross-section. He found that instability and
increased mixing occur towards the outer walls of the curved channel, while a more stable
flow and decreased mixing were both observed at the inner wall. Although most of these
earlier experiments have actually dealt with flow through curved streamlines in pipe bends
and elbows, many of the flow features observed and discoveries made from these previous
measurements also apply to helically coiled pipes.

3.2. Flow Stabilization in Helical Pipes

After Taylor’s [30] work, experimental studies on flow in helically coiled pipes were
resumed with the works of Viswanath et al. [31] and Narasimha and Sreenivasan [32] in
the late 1970s. An interesting and spectacular phenomenon that occurs in helically coiled
pipes is the laminarization of turbulent flow. As was outlined by Viswanath et al. [31],
the reversion from turbulent to a laminar state was many times greeted with incredulity
since this would imply moving from a state of disorder to one of order, contradicting the
principles of thermodynamics. However, Viswanath et al. [31] argued that such disbeliefs
were of course not valid because the turbulent flows claimed to be reverting into laminar
were by no means closed systems. Therefore, laminarization of the turbulent flow across the
helical coil does not violate the second law of thermodynamics. After conveying a turbulent
flow from an initial straight section of about 20 cm long into a helical pipe curled around a
cylinder of 11 cm diameter, they observed laminarization of the flow when the fluid was
passing across the fourth coil. The laminar state was maintained further downstream until
the flow left the helical tube and entered a straight section, where it became turbulent again.

Further experiments on turbulent flow through a helically coiled pipe by Narasimha
and Sreenivasan [32] confirmed the observations of Viswanath et al. [31]. They argued that
turbulent fluctuations of negligible effect can still survive in the laminar flow as inherited
from its previous history, thereby suggesting that such flow might be better called quasi-
laminar. Despite these detailed experimental observations, little was known until then
about the phenomenon. It was not until the pioneering work reported by Sreenivasan
and Strykowski [33] that some light was shed on the mechanisms responsible for flow
laminarization. They faced the problem by asking the following questions, which we
copy literally here: (a) For a given turbulent pipe, can one always set up a suitable helical coil
which inevitably leads to laminarization? (b) Alternatively, for a given helical coil, what is the
maximum flow Reynolds number for which laminarization is possible? (c) What is exactly the role
of the tightness of the coil, the number of turns in the coil, etc.? and (d) How precisely does the
laminarized flow returns to a turbulent state when downstream of the coil the flow is allowed to
develop in another long straight section?
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To try to answer the above questions, Sreenivasan and Strykowski [33] performed a
similar experiment to Narasimha and Sreenivasan [32] in which the set-up consisted of an
upstream straight long pipe of standard inlet, followed by a helically coiled section connected
to a downstream straight long pipe, as shown schematically in Figure 2. They considered
two set-ups differing in the coil radius (Rc = 16.51 cm their set-up I, Rc = 5.47 their set-
up II), the number of turns (3 their set-up I, 20.5 their set-up II), the inner pipe diameter
(2R = 1.905 cm, their set-up I, 2R = 0.635 cm, their set-up II) and the lengths of the upstream
(L1) and downstream (L2) straight pipe sections (L1/2R = 144 and L2/2R = 162, their
set-up I; L1/2R = 173 and L2/2R = 937, their set-up II). In the upstream straight section,
they inferred maximum values of Re for which the flow remains laminar to be 2050 for
set-up I and 2400 for set-up II, and the lowest values of Re for which the flow becomes fully
turbulent to be 2800 for set-up I and 3300 for set-up II. In both cases, they observed the
reversion process from turbulent to laminar in the coil section to be much more complex,
with clear differences between transition near the inner and outer walls of the coil being
evident until about 3 turns. The authors also observed that all critical Reynolds numbers
increase as the flow moves through the first 3 turns. This behavior is shown in the left
frame of Figure 3, where the upper critical value of Re near the outer wall, the so-called
liberal estimate of the lower critical Reynolds number, corresponding to the first appearance
of turbulence everywhere at the specified cross-section, and a conservative estimate of the
lower critical Reynolds number, corresponding to the first burst near the outer wall, are
depicted as functions of the number of turns for the set-up II experiment. The conservative
lower critical Reynolds number corresponds to the maximum value of Re for which complete
laminarization in the coil is possible. The right frame of Figure 3 shows the dependence of the
asymptotic critical Reynolds numbers, as measured at the end of the twentieth coil for the
set-up II experiment, on the radius ratio (i.e., the ratio of the inner pipe radius (2R = 0.635 cm)
to the coil radius, R/Rc). Both lower critical Re curves grow for small radius ratios, reach
a maximum value and then decay for larger radius ratios, while the upper critical Re curve
increases monotonically. Therefore, complete laminarization is possible for lower Re values
of ≈5200, corresponding to a radius ratio of about 0.04. Downstream of the coil, all critical
Reynolds numbers were found to drop within a distance from the coil exit of about 100 pipe
diameters, reaching asymptotically critical Re values of≈5200 at larger distances much greater
than those appropriate to the straight section upstream of the helical coil.

Figure 2. Schematic representation of the set-up used by Sreenivasan and Strykowski in their
experimental work on flow stabilization. Figure adapted from Sreenivasan and Strykowski [33].

Similar results about the laminarization of turbulent flow in curved and helical pipes
were also obtained experimentally by Kurokawa et al. [61] for low-Reynolds turbulent flow
using smoke visualization and velocity measurements by means of hot-film anemometry.
They also confirmed that the laminar flow in the downstream straight section is at a higher
Re value compared to that in the upstream section. Further experiments on flow in helical
pipes were carried out by Webster and Humphrey [62,63], who found that periodic low-
frequency instabilities appeared at Re = 5000 for a helical coil with a curvature ratio of
0.054. In Ref. [63], these authors report flow visualizations for Re values between 3800
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and 8650 (corresponding to Dean numbers in the interval 890 < De < 2030). By means
of computer simulations of the experimental set-up at Re = 5480 (De = 1280), a rather
complex interaction was found between the centrifugal force due to the curvature and the
cross-stream velocity, thereby explaining the mechanism of the traveling wave instability
observed in their experiments.

Figure 3. (Left) Variation in the critical Reynolds number, Recr, normalized to the lower critical value,
Re0, just before entering the coil helix for a radius ratio of 0.058 (circles: their set-up I; squares: their
set-up II). (Right) Asymptotic dependence of Recr in the coil section as measured at the end of the
20th coil on the radius ratio for their set-up II. Figures taken from Sreenivasan and Strykowski [33].

3.3. Pressure Drop

A characteristic feature that is always present in helical tubes is the effect of centrifugal
forces on the flow, as was first noticed by Thomson [6]. Almost 60 years later, using a
boundary layer approximation, Adler [59] found that the pressure drop in a curved pipe
is proportional to the square root of the Dean number. This relation was further verified
numerically by Dennis and Ng [64]. For a helical pipe with a radius ratio γ = 0.0157,
the experimental measurements of the product between the Fanning friction factor and the
Reynolds number, FRe, as a function of the Dean number performed by Ramshankar and
Sreenivasan [65], resulted in a variation between De1/4 and De1/2, while their FRe data
for γ = 0.056 confirmed the square root relation. Most studies reported in the literature
on pressure losses in helical pipes usually refer to flow in the limiting case of a zero pitch
(h = 0) corresponding to toroidal pipes. However, such studies will not be reviewed here
since only helical pipes of finite pitch are of actual practical industrial and technological
significance (however, most experimental work of flow through helically coiled pipes
focused on helical coils having a small pitch).

Pressure losses of incompressible laminar flow in helically coiled pipes of finite pitch
were studied theoretically by many authors (see, for instance, Refs. [53,66–71]). In particular,
Liu and Masliyah [71] demonstrated numerically that the flow in helical pipes is governed
by three parameters: the generalized curvature ratio, defined as

γ′ =
γ

1 + (γh/2πR)2 , (6)

the Dean number, De =
√

γ′Re, and the Germano number, Gn = ηRe, where η is the
torsion of the helix provided by

η =
γ2h/2πR

1 + (γh/2πR)2 . (7)

Note that, for a toroidal pipe with h = 0, γ′ = γ = R/Rc and the torsion vanishes (i.e.,
η = 0). At high values of De, the flow parameter
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λ =
Gn

De3/2 =
η

(γ′De)1/2 (8)

was derived for the transition from two- to one-vortex flow [71]. Therefore, helical flow
is governed by γ′, De and Gn, and it is precisely through Gn that the torsion effects come
into play. For γ′ � 1, the important parameters will be only De and Gn, and, when η → 0
(i.e., Gn→ 0), the only relevant parameter will be De. It is important to mention that, for
low Dean flows (i.e., De < 20), the parameter governing the flow pattern transition from
two- to one-vortex flow is [71]

λ′ =
Gn
De2 =

η

γ′Re
. (9)

There is fairly good agreement that the transition to turbulence in helical pipes occurs
at high values of Re. As was observed by White [11] and then confirmed by Taylor [30],
the sudden increase in FRe, defined as [36]

FRe =
RRe
ρv2

∆p
∆s

, (10)

where ∆s is a length section along which ∆p is measured, when plotted against De, es-
tablishes a criterion for the onset of turbulence in helically coiled pipes. According to
Taylor [30], the flow becomes unsteady when De is only about 20% of the critical value,
Decr, required for the flow to become fully turbulent. The transition from laminar to tur-
bulent flow corresponds to the point where FRe suddenly increases. Several correlations
for predicting the critical Re value in helical pipes have been reported in the literature.
The best-known correlations are those provided by Kubair and Varrier [72],

Recr = 20,000γ′0.32, (11)

valid for 0.0005 < γ′ < 0.1, Ito [73],

Recr = 12,730γ′0.2, (12)

valid for 0.001165 < γ′ < 0.0667, Srinivasan et al. [74],

Recr = 2100(1 + 12
√

γ′), (13)

valid for γ′ < 0.1 and Ward-Smith [75],

Recr = 2300(1 + 10
√

γ′), (14)

valid for γ′ < 0.1. Among them, the most widely used are Ito’s and Srinivasan et al.’s
correlations. While Ito’s correlation fails in the limit when γ′ → 0, Srinivasan et al.’s
correlation states that an increase in the flow velocity for which the flow remains laminar is
proportional to the strength of the secondary flow [36].

On the other hand, correlations for the pressure loss in terms of De were also reported
in the literature for helical pipes with small pitch. In particular, Dean [13,14] provided
a solution for fully developed laminar flow along a torus (for γ → 0) by perturbing the
solution for Poiseuille flow in a straight pipe, which in terms of the friction factor ratio can
be written as

16
FRe

= 1− 0.03058

(
De2

288

)2

+ 0.00725

(
De2

288

)4

. (15)
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However, the first of these correlations for laminar flow was developed experimentally by
White [11], which reads as follows

16
FRe

= 1−
[

1−
(

11.6
De

)0.45
]1/0.45

. (16)

This correlation is valid for 11.6 < De < 2000 and γ ≤ 0.066. Later on, White [76]
developed a further correlation for turbulent flow in helical pipes of the form

FRe = 0.08Re−1/4 + 0.012
√

γ, (17)

which is valid for Reynolds numbers between 15,000 and 100,000. However, none of these
correlations incorporate the torsional effects so that γ = γ′ = R/Rc. For large De values,
Adler [59] provided the relation (in this and in some other correlations that follow below,
the friction factor F is normalized with the calibrated friction factor for laminar flow in
smooth straight pipes [77]), namely Fs = 16/Re. In comparison, for turbulent flow in
straight pipes, the following definition is used:

Fs = 0.0014 +
0.125
Re0.32 , (18)

for the interval 3000 < Re < 3× 106.),

FRe
16

= 0.1064
√

De, (19)

while Prandtl [78] ended up with the correlation

FRe
16

= 0.37(0.5De)0.36 (20)

for laminar flows with 40 < De < 2000. Later on, Hasson [79], based on White’s correlation
(15), reported the form

FRe
16

= 0.556 + 0.0969
√

De (21)

for 22 < De < 2000 and γ ≤ 0.066, while Topakoǧlu [80] extended the validity of
Equation (15) to finite values of the curvature ratio, obtaining the relation

16
FRe

= 1− 0.03058

(
De2

288

)2

− 0.1833γ

(
De2

288

)
+

γ2

48
. (22)

On the other hand, Ito [73] improved Adler’s [59] correlation provided by Equation (19)
to obtain

FRe
16

= 0.1033
√

De

[(
1 +

1.729
De

)1/2
−
(

1.729
De

)1/2
]−3

. (23)

For low De numbers, Van Dyke [81] developed the further correlation

FRe
16

= 0.47136De1/4, (24)

which is valid only for the interval 20 < De < 200. Other correlations that have often been
used in comparison with experimental measurements have been proposed by Barua [82],

FRe
16

= 0.509 + 0.0918
√

De, (25)
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for large De, and by Mori and Nakayama [83],

FRe
16

=
0.1080De√
De− 3.253

, (26)

which was experimentally verified for 13.5 < De < 2000.
A more accurate correlation valid for De ≤ 5000 that works equally well for small and

finite pitch (i.e., for 0 < γ′ < 1) and incorporates the effects of torsion with 0 ≤ η < 0.1
√

γ′De
was derived by Liu [84] and Liu and Masliyah [71] by means of numerical solutions of the
Navier–Stokes equations to be

FRe =

[
16 +

(
0.378

√
Re +

12.1√
γ′De

)
η2

]

×
[

1 +
(0.0908 + 0.0233

√
γ′)
√

De− 0.132
√

γ′ + 0.37γ′ − 0.2
1 + 49/De

]
. (27)

This equation was found to agree with Hasson’s correlation (19) for small pitch and torsion.
The pressure drop of fully developed incompressible laminar water flow in helical

pipes of both small and large pitch was investigated experimentally by Liu et al. [36]. The
left frame of Figure 4 shows the normalized pressure drop measurements for coiled pipes
with negligible torsion (η < 0.0021), small pitch (h = 3R) and γ = 0.0213 (up-pointing
triangles), γ = 0.0475 (down-pointing triangles) and γ = 0.0664 (squares) as compared
with Liu and Masliyah’s [71] (Equation (27)) correlation for γ = 0.0213 (dotted line),
γ = 0.0475 (solid line) and γ = 0.0664 (dashed line). The curves (a) and (b) correspond to
Hasson’s [79] (Equation (21)) and Van Dyke’s [81] (Equation (24)) correlations, respectively.
The measured Decr values indicating the onset of turbulence were found to agree fairly
well with Ito’s [73] (Equation (12)) and Srinivasan et al.’s [74] (Equation (13)) correlations
for prediction of the critical Re values. It is clear from the left plot of Figure 4 that, with
the exception of Van Dyke’s correlation (24), the pressure drop predictions based on
correlations (21) and (27) are in very good agreement with Liu et al.’s [36] experimental data
for small helical pitch. Moreover, the right frame of Figure 4 shows the experimental FRe
measurements for various helical pipes of finite pitch and γ = R/Rc = 0.719, i.e., h = 359R,
γ′ = 0.000403, η = 0.017 (squares); h = 179R, γ′ = 0.00171, η = 0.035 (diamonds);
h = 89.2R, γ′ = 0.00683, η = 0.0698 (up-pointing triangles) and h = 44R, γ′ = 0.00273,
η = 0.1374 (down-pointing triangles), as compared with Liu and Masliyah’s [71] correlation:
solid line for square data, double-dotted dashed for diamond data, dashed line for up-
pointing triangle data and dotted-dashed for down-pointing triangle data. The curves (a)
and (b) correspond to Hasson’s [79] and Van Dyke’s [81] correlations, respectively. The
scatter of experimental data from the mainstream are indicative of the onset of turbulence.

A complete and exhaustive list of pressure-drop correlations can be found in Ali [85]
and Gupta et al. [86]. In particular, the former author derived by means of experimental
measurements generalized pressure-drop correlations of the form

Eu

[
(2R)0.85Deq

Lc

]
= α′Re−β′ , (28)

where Eu is the Euler number provided by

Eu =
∆p

2ρv2 , (29)

where ∆p is the pressure drop, ρ is the fluid density, v is the average velocity, Deq is the
equivalent coil diameter defined as

Deq =
1
π

√
h2 + 4π2R2 (30)
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and Lc is the length of the coil portion of the pipe. In Equation (28), α′ and β′ are constants
that depend on whether the flow regime is low laminar, laminar, mixed or turbulent.
For instance, Ali [85] obtained values of α′ and β′ from straight-line fits to his experimental
data provided by (α′, β′) =(38, 1) for the low-laminar regime, (5.25, 2/3) for the laminar
regime, (0.31, 1/3) for the mixed regime and (0.045, 1/8) for the turbulent state (see his
Figure 5). He also showed that Equation (28) fits the experimental data very well for a
different set of (α′, β′) values for the Re intervals: Re < 500 (low laminar), 500 < Re < 6300
(laminar), 6300 < Re < 10,000 (mixed) and Re > 10,000 (fully turbulent). In a more recent
work, Gupta et al. [86] reported experimental observations on pressure drop measurements
for fully developed laminar flow in helical pipes of varying coil pitch (8.3 ≤ h/2R ≤ 66.7)
and coil radius (11.7 ≤ Rc/R ≤ 105.48). Their parametric study demonstrated that the coil
friction factor, F, depends on these geometrical parameters and that it can be predicted by
the following correlation in terms of the Germano number

FRe
16

=

{
1 + 0.803Gn0.227 for Gn ≤ 70,
1 + 0.525Gn0.525 for Gn > 70,

which performs better under laminar flow conditions than other correlations in terms of the
Dean number and predicts the friction factor data on coils available in the open literature
to within ±15%.

Figure 4. (Left) Experimental pressure drop measurements for flow in helical pipes of negligi-
ble torsion (η < 0.0021), small pitch (h = 3R) and varying curvature ratios as compared with
correlations (21), (24) and (27). (Right) Same as before but for helical pipes of finite pitch and varying
torsion and curvature ratios. For details of the symbols, see the text above. Figure taken from
Liu et al. [36].

Figure 5. Pressure drop (left) and friction factor (right) as a function of the Reynolds number for flow
across helical pipes with and without wrinkles. Figure taken from Periasamy et al. [87].
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Most experimental work on pressure losses in helical pipes is based on smooth pipe
flows. However, it is well-known that pipe roughness has important effects on the flow
behavior under turbulent conditions. Experiments on water flow in rough pipes were
performed by Das [35], who developed by means of multivariable linear regression analysis
the following correlation

F− Fs = 17.5782Re−0.3137±0.0364γ0.3621±0.0454
( e

2R

)0.6885±0.0758
, (31)

where Fs refers to Mishra and Gupta’s [88] correlation for turbulent flow in smooth pipes
and e is the roughness height. When plotted against the experimental data, Equation (31)
complies with a coefficient correlation of 0.9715 (see Das’ [35] Figure 3). On the other
hand, when helical coils are constructed by means of a rolling process, they may result
in geometrical irregularities and imperfections, such as wrinkles and ovality. The effects
of these flaws on the flow hydrodynamics were recently studied by Periasamy et al. [87].
The presence of wrinkles in the helical coil has the effect of increasing the equivalent surface
roughness. In fact, in their experiments, the effects of wrinkles were assessed by measuring
the friction factor and comparing it for coils without wrinkles. The pressure drop as a
function of Re based on their experimental data is shown in the left frame of Figure 5, while
the right plot depicts the friction factor for coils with and without wrinkles. In particular,
at higher Re values, the wrinkles contribute significantly to the pressure drop across the
coil, and therefore the presence of wrinkles increases the friction factor compared to the
case of smooth coils.

3.4. Heat Transfer

Helically coiled pipes are also used in a wide variety of industrial and technological
applications because of their very good heat transfer performance. In fact, many industries,
including the nuclear, chemical and food industries, use helical heat exchanger tubes for
heating of evaporating flows and refrigeration of condensing flows [34,37,89]. In particular,
Austen and Soliman [34] experimentally studied the influence of pitch on pressure drop
and heat transfer characteristics for a uniform input heat flux. They compared their experi-
mentally fully developed friction factor for isothermal flow with Mishra and Gupta’s [88]
correlation, finding a 90% agreement. For variations in the tube-wall temperature, they also
observed a rapid development of the temperature field within a short distance from the coil
inlet, followed by oscillations of decreasing amplitude until the temperature field becomes
fully developed. The amplitude of the oscillations was observed to increase in flows with
increasing Re values and was attributed to the strength of the secondary flow arising from
the action of centrifugal forces. They also concluded that, owing to free convection, pitch
effects are more important at low Re values and that they gradually disappear as long as
Re increases. By calculating the local average Nusselt number, provided by

〈Nu〉 = 2Rq
k(T̄w − Tb)

, (32)

at each temperature-measuring station along the coil, where q is the heat flux at the inner
tube surface, k is the thermal conductivity of distilled water, which was used as the working
fluid, T̄w is the inner wall temperature and Tb is the bulk temperature; they observed a
significant enhancement in 〈Nu〉 due to increasing pitch up to a certain Re value, beyond
which the pitch has no effect. For fully developed Nu, their experimental measurements
were found to fit, within±20% error, the correlation of Nu versus De proposed by Manlapaz
and Churchill [90], namely

Nu =

{[
48
11

+
51/11

[1− 1342/(PrDe2)]2

]3
+ 1.816

(
De

1 + 1.15/Pr

)3/2
}1/3

. (33)
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Other earlier known Nusselt-number correlations for laminar convection in helically
coiled pipes are those developed by Seban and McLaughlin [91], provided by the expression

Nu = 0.0325(FRe)2Pr1/3, (34)

which is valid for 12 < Re < 5600, 100 < Pr < 657 and 0.010 < γ < 0.059; Dravid et al. [92],
provided by

Nu =
(

0.76 + 0.65
√

De
)

Pr0.175, (35)

which is valid for 50 < De < 2000, 5 < Pr < 175 and γ = 0.055 and Xin and Ebadian [93],
which reads as

Nu =
(

2.153 + 0.318De0.643
)

Pr0.177, (36)

valid for 20 < De < 2000, 0.70 < Pr < 175 and 0.027 < γ < 0.080.
More recent experimental measurements of the friction factor for laminar flow in heli-

cal pipes were reported by De Amicis et al. [37], who also compared their experimental data
with numerical simulations using different CFD tools. The experimental measurements
correspond to a test facility built at the SIET laboratories in Piacenza, Italy, which repro-
duces the helically coiled Steam Generator of the IRIS nuclear reactor [16]. The left frame of
Figure 6 shows their measured Darcy friction factors for varying Re in the laminar regime,
i.e., for Re . 3200, where they are compared with Ito’s [73] correlation. The predicted
value of Re ≈ 3200 marks a first discontinuity and initiates a regime with lower friction
factor up to Re ≈ 5000. This trend agrees very well with the predictions by Cioncolini
and Santini [94] for medium-curvature coils in the range 3200 . Re . 5000. A second
discontinuity occurs at about Re = 5000, which marks the onset of turbulence. The right
plot of Figure 6 shows the dependence of the Darcy friction factor on Re in the range
1750 < Re < 5250 for the SIET duct as compared with several correlations and numerical
results from different CFD tools. The errors between the numerical predictions and the
experimental data were all reported to be within 5%.

Figure 6. (Left) Darcy friction factor as a function of the Reynolds number for the experimental
helical coil operated at SIET laboratories. (Right) Comparison of the experimental Darcy friction
factor with Ito’s [73], White’s [11], Prandtl’s [78], Mori and Nakayama’s [83], Srinivasan et al.’s [74],
Hasson’s [79] and Barua’s [82] correlations. The experimental data are also compared with model
simulations performed with different CFD tools. Figures taken from De Amicis et al. [37].

The pressure drop and convective heat transfer of a CuO nanofluid flow in a helical
pipe at constant wall temperature was further investigated by Rakhsha et al. [38]. In partic-
ular, they obtained by experimental means the friction factor and the Nusselt number for
both water and the CuO nanofluid flow. Based on their experimental results, the following
correlations were proposed:

F = 0.38Re−0.216γ0.1(1 + φ)0.19, (37)
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and
Nu = 0.061Re0.77Pr0.4(1 + φ)0.22, (38)

where φ is the concentration of nanofluid. These correlations were found to be accurate
enough for any single-phase flow and the CuO nanofluid for 10,000 < Re < 90,000,
4 < Pr < 5, 0.04 < γ < 0.142 and 0 < φ < 1. Experimental observations of the
uneven circumferential heat transfer induced by the secondary flow as well as pressure
drop and heat transfer characteristics of helical pipes were very recently reported by
Zheng et al. [95]. Their results indicate that the coil diameter is responsible for the pressure
drop and nonuniform circumferential heat transfer, while the lift angle plays a minor
role. Based on the experimental pressure data, Zheng et al. [95] proposed the following
correlation for single-phase flow:

F =
0.0791
Re0.25 +

81858
Re1.54

(
R
Rc

)0.48
, (39)

where Rc = Ri(1 + tan α), Ri is the coil radius and α is the lift angle. As shown in their
Figure 11, the empirical correlations proposed by Ito [96] and Srinivasan et al. [74] were
found to underestimate the experimental data for F > 0.01, with maximum errors of
about 80%. However, a better agreement was found when comparing the experimental
pressure drops for two-phase flow with the values predicated on the empirical correlations
proposed by Ju et al. [97], Hardik and Prabhu [98] and Xiao et al. [99] (see Zheng et al.’s [95]
Figure 12).

It is well-known that helically coiled tubes have received much attention because
of their application in refrigeration, air-conditioning systems, heat recovery processes
and, in particular, as efficient heat exchangers. They are used as passive heat transfer
augmentation techniques in a wide range of industrial applications [24]. Experimental
investigations of helical heat exchangers have mainly focused on forced convection flows
under turbulent conditions [100–103]. In particular, Ghorbani et al. [102] experimentally
investigated the mixed convection in helical coiled heat exchangers for various Reynolds
numbers, Rayleigh numbers, tube-to-coil diameter ratios and coil pitches for both laminar
and turbulent flow. Their results demonstrated that, for mass flow rates of tube side to shell
side greater than unity, quadratic temperature profiles were obtained from bottom to top of
the heat exchanger. Pawar and Sunnapwar [103] investigated steady state convection in
vertical helical tubes for laminar flow. They developed an innovative approach to correlate
the Nu number with the dimensionless M number for Newtonian fluids and proposed the
following correlation for laminar convection:

Nu = 0.02198Re0.9314Pr0.4γ0.391, (40)

which is valid for 3166 < Re < 9658, 3.80 < Pr < 4.80 and 0.055 < γ < 0.0757. Other
correlations for laminar convection in helical tubes were developed experimentally by
Pimenta and Campos [104] and more recently by Hardik et al. [105] to be

Nu =
(

0.5De0.481 − 0.465
)

Pr0.367, (41)

valid for 91 < Re < 6293, 10 < Pr < 353 and γ = 0.026 and

Nu = 0.0456Re0.8Pr0.4γ0.16, (42)

valid for 1700 < Re < 14,000, 3 < Pr < 6 and 0.015 < γ < 0.076, respectively. A more
complete list of Nusselt correlations for laminar convective flows in helical coils can be
found in Refs. [106–108]. In particular, Zhao et al. [107] obtained by regression analysis of
experimental data in the literature the correlation

Nu = 0.0254FRe1.197Pr0.159, (43)
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for 200 < Re < 8000, 3 < Pr < 175 and 0.015 < γ < 0.077. Figure 7 compares
this expression with Austen and Soliman’s [34], Manlapaz and Churchill’s [90] (Equa-
tion (33)), Dravid et al.’s [92] (Equation (35)), Xin and Ebadian’s [93] (Equation (36)), Hardik
et al.’s [105] (Equation (42)) and Aly et al.’s [109] correlations for varied Pr values and
curvature ratios. The predictions from Equation (36) are closer to those from Equation (43)
than all other correlations.

Figure 7. Nusselt number as a function of Reynolds number for laminar convection in helically coiled
pipes. Equation (43) is compared with Austen and Soliman’s [34], Manlapaz and Churchill’s [90],
Dravid et al.’s [92], Xin and Ebadian [93], Hardik et al.’s [105] and Aly et al.’s [109] experimental
correlations. Figure taken from Zhao et al. [107].

An experimental analysis of heat transfer enhancement in shell and coiled heat ex-
changers of 10 turns and equipped with copper tubes was performed by Jamshidi et al. [110],
while Hashemi and Behabadi [111] performed experimental observations of the pressure
drop and heat transfer characteristics of CuO-based oil nanofluid flow for Re ∼ 10–150 in
a horizontal helical copper tube. Recently, Ayuob et al. [108] developed further Nusselt-
number correlations for helical-coil-based energy storage integrated with solar water
heating systems. They developed a number of Nu correlations in terms of Re, De and M
from 54 simulations, which were conducted for a 50% water/glycol mixture flow in helical
coils of varying inner pipe diameter, coil diameter and coil pitch. Using the MatLAB 2018
curve fitting tool, they derived the following correlations:

Nu = 0.43296Re0.44564Pr0.4, (44)

for 56.045 ≤ Re ≤ 382.63, 74.135 ≤ Pr ≤ 122.09 and 0.09 ≤ γ ≤ 0.184;

Nu = 0.7396De0.4282Pr0.4, (45)

for 19.005 ≤ De ≤ 128.45, 74.135 ≤ Pr ≤ 122.09 and 0.09 ≤ γ ≤ 0.184 and

Nu = 0.175M0.6364Pr0.4, (46)

for 68.615 ≤ M ≤ 266.834 and 74.135 ≤ Pr ≤ 122.09. However, as was claimed by
Ayuob et al. [108], these correlations produce good results when the flow rate is variable
for a constant value of the curvature ratio. In order to allow for constant and variable
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flow rates and for constant and variable values of the coil curvature, they introduced a
dependence on the curvature ratio, ending up with the correlation

Nu = 0.1868M0.6958γ0.1703Pr0.4, (47)

which is valid for the same intervals of M and Pr as for Equation (46) and 0.09 ≤ γ ≤ 0.184.
Further experimental investigations on helically coiled heat exchangers were performed by
Xin and Ebadian [93], Pawar and Sunnapwar [112], Kumbhare et al. [113] and Pimenta and
Campos [104], among others. In particular, the latter authors derived a global correlation
for the Nu number in terms of Péclet, Dean and Weissenberg numbers, which works well
for both Newtonian and non-Newtonian fluids.

Nusselt-number correlations for turbulent convection in helically coiled pipes have
also been reported in the literature. Under turbulent conditions, the use of constant
wall temperature or constant heat flux in the experiments produces similar heat transfer
coefficients. Most of these experiments were conducted using either air or water as the
working fluid and varied Re-, Pr- and γ values. One of the first experimentally developed
correlations, if not the first, for turbulent convective flows in helical coils was reported in
1925 by Jeschke [114]. This correlation has the form

Nu = (0.039 + 0138γ)(RePr)0.76 (48)

and is valid for Re < 1.5× 105, 0.050 < γ < 0.15 and Pr of air. The exponent of the
Prandtl number in most modern correlations for turbulent convection in helical tubes is 0.4,
which is also appropriate for straight pipes. In contrast to many correlations for laminar
convection, as is the case in Equations (38), (40), (42) and (44) to (47), some correlations for
turbulent convection do not include the curvature ratio. An exception to this rule are the
correlations developed by Rogers and Mayhew [115] provided by

Nu = 0.023Re0.85Pr0.4γ0.1, (49)

valid for 104 < Re < 105, 0.05 < γ < 0.10 and Pr for water; those derived by Mori and
Nakayama [116] provided by the expressions

Nu =
1
41

Re5/6γ1/12Pr0.4
[

1 +
0.061

(Reγ2.5)1/6

]
, (50)

valid for Pr > 1 and Reγ2.5 > 0.4 and

Nu =
Re4/5γ0.1Pr

26.2(Pr2/3 − 0.074)

[
1 +

0.098
(Reγ2)1/3

]
(51)

for Pr = 0.7 and Reγ2 > 0.1; the one by Gnielinski [117] provided by

Nu =
(F/8)RePr

1 + 12.7
√

F/8(Pr2/3 − 1)

(
Pr

Prw

)0.14
(52)

for Re > 2.2× 104 and 0.714 < Pr < 6.0, where the friction factor is defined by the expression

F =

[
0.3164
Re0.25 + 0.03γ1/2

](
µw

µb

)0.27
, (53)

and the correlation by Xin and Ebadian [93], which obeys the form

Nu = 0.0062Re0.92Pr0.4(1 + 3455γ) (54)

and is valid for 5× 103 < Re < 105, 0.70 < Pr < 5.0 and 0.027 < γ < 0.080.
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Nusselt correlations for turbulent convection in helical coils that do not include the
curvature ratio are the one developed by Bai et al. [118] provided by

Nu = 0.328Re0.58Pr0.4
(

µw

µb

)0.11
, (55)

valid for 4.5× 104 < Re < 105, Pr of water and γ = 0.043, and that derived by Mandal and
Nigam [101], which has the form

Nu = 0.55De0.637Pr0.4, (56)

valid for 1.4× 104 < Re < 8.6× 104, Pr = 0.70 and γ = 0.033. Using regression analysis of
the conventional correlations provided by Equations (48)–(56), Zhao et al. [107] derived the
further correlation

Nu = 0.040FRe1.13γ0.077Pr0.4, (57)

where F is replaced by Ito’s [96] friction factor for turbulent flow. Equation (57) works
well in the intervals 9.7× 103 < Re < 1.4× 105, 0.7 < Pr < 6 and 0.012 < γ < 0.177.
Figure 8 compares Zhao et al.’s [107] correlation provided by Equation (57) with Rogers
and Mayhew’s [115] (Equation (49)), Schmidt’s [119], Gnielinski’s [117] (Equation (52)), Xin
and Ebadian’s [93] (Equation (54)), Aly et al.’s [109] and Hardik et al.’s [105] correlations.
The curvature ratios are set as 0.012 and 0.177, which are the minimum and maximum of
the experimental data. Equation (57) predicts the experimental data satisfactorily well with
a wide range of curvature ratios.

Figure 8. Nusselt number as a function of Reynolds number for turbulent convection in helically
coiled pipes. Equation (57) is compared with Rogers and Mayhew’s [115], Schmidt’s [119], Gnielin-
ski’s [117], Xin and Ebadian’s [93], Aly et al.’s [109] and Hardik et al.’s [105] experimental correlations.
Figure taken from Zhao et al. [107].

3.5. Non-Newtonian Fluid Flow

Although most of the fluid flows encountered in processing applications are actually
non-Newtonian, there are relatively fewer experimental studies of non-Newtonian fluid
flows through curved and helically coiled pipes compared to the Newtonian case. (Non-
Newtonian fluids are distinguished from Newtonian ones in that the former do not obey
Newton’s law of viscosity. Under shear effects, the viscosity of a non-Newtonian fluid
can either increase or decrease depending on the fluid properties. Those fluids for which
the viscosity increases under shear are called dilatant. Typical examples are quicksand
and silly putty. In contrast, if the viscosity decreases under shear, the fluid behaves as a
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pseudoplastic. This is the case of the well-known ketchup. When the viscosity increases
under shear in a time-dependent fashion, the fluid is called rheopectic, as is the case of
many creams. Finally, if under shear the viscosity decreases in a time-dependent fashion,
the fluid is called thixotropic. Examples of these fluids are paints, glues and asphalt.).
Typical examples of non-Newtonian fluids encountered in the industry are elastoviscous
liquids, plastics, polymeric melts, pharmaceuticals and multiphase mixtures in general,
such as emulsions, foams and other compositional fluids. Earlier attempts to investigate
such flows in curved pipes and helical coils can be found in Refs. [120–123]. In particular,
Mashelkar and Devarajan [122] studied the effects of the curvature ratio on pressure drop
and proposed the following correlation for laminar flow:

FRe = 1 + 0.026De′0.675, (58)

where De′ is the generalized Dean number (the generalized Reynolds number, Re′, was
introduced by Madlener et al. [124] to describe the flow of non-Newtonian fluids in ducts
and pipes. It is defined as

Re′ =
ρDnv2−n

8n−1K[(3n + 1)/(4n)]n
, (59)

where D is the duct diameter, n is the global exponential factor (or consistency index)
and K is the prefactor of power-law (or the behavior index) of the fluid. The generalized
Dean number, De′, is defined in terms of Re′ as De′ =

√
γRe′). Correlation (58) is valid

for 10 ≤ De′ ≤ 2300. In more recent times, Krishna [125] experimentally studied the
pressure drop in single-phase non-Newtonian fluids in helical coils with five different helix
angles using carboxy methyl cellulose (CMC) as the working fluid. It was found that the
effects of helix angle on pressure drop are not significant in low-generalized-Dean-number
flows and in flows under turbulent conditions. However, the helix angle was found to
become significant under laminar flow conditions for moderate and high generalized Dean
numbers. Also, the same author proposed the following correlation for laminar flow with
helix angle

FRe = 0.015De′0.75
+ sin0.25 α, (60)

and for turbulent flow with no helix angle as

FRe = 6.2De′−0.2. (61)

These predicted values were found to be in fairly good agreement with the experimental
measurements with root-mean-square errors of ∼24% for laminar flow and ∼16% for
turbulent flow.

Recent experimental pressure drop investigations of yield power law (YPL) fluids were
reported by Gul et al. [126]. In particular, they tested a total number of 20 polymer-based
fluids across two helical pipe sections differing in their size (see their Table 1). Figure 9
shows the experimentally obtained friction factor, FRe, as a function of the Dean number
for small and large helical pipe data and YPL fluids as compared with literature correlations
for non-Newtonian fluids and Gul et al.’s [126] correlation, provided by

FRe =

(
1 +

aDeb

70 + De

)
, (62)

with a = 0.008 and b = 1.78. This correlation has the same mathematical form of that
derived by Hart et al. [127] for Newtonian fluids, where a = 0.09 and b = 1.5. It is clear
from the above figure that existing literature correlations for non-Newtonian fluids are
overestimating the experimental predictions for YPL fluids, while Equation (62) performs
much better in reproducing the experimental measurements. Therefore, previous corre-
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lations derived for non-Newtonian fluids cannot be used to predict the friction factor of
YPL fluids.

Figure 9. Experimental measurements of the friction factor for yield power-law (YPL) fluids as
functions of the Dean number. The experimental data are compared with Mishra and Gupta’s [88],
Pimenta and Campos’ [128] and Mashelkar and Devarajan’s [122] correlations for non-Newtonian
fluids and relation (62) for the developed model for YPL fluids. Figure taken from Gul et al. [126].

4. Overview of Theoretical Work

The theoretical work on flow through helically coiled pipes can be divided into two
main groups, namely the group dealing with analytical and semi-analytical methods for
solving the Navier–Stokes equations under certain assumptions and simplifications, and the
group of numerical simulations, where the Navier–Stokes equations are solved with the
aid of numerical methods for prescribed initial and boundary conditions.

4.1. Analytical and Semi-Analytical Approaches

The first theoretical analysis describing the fully developed laminar flow of an incom-
pressible Newtonian flow in a helical pipe was reported by Murata et al. [53]. They wrote
the steady-state Navier–Stokes equations in curvilinear coordinates appropriate for a circu-
lar helix and considered the limiting case when γ = R/Rc � 1. Under this assumption,
the equations of motion and continuity were reduced to a simpler form by neglecting terms
of higher order in γ. These equations were finally solved by means of two distinct methods:
a perturbation analysis applied to the case when the characteristic number

D =
1

ρν

(
−∂p

∂s

)
R3
(

2R
Rc

cos2 α

)1/2
, (63)

where ν is the kinematic viscosity, ρ is the fluid density and α is the helix angle, and which
plays the role of the Dean number in a toroidally curved pipe, is assumed to vanish (i.e.,
D � 1). In the second place, the equations were solved numerically for the case when
D remains finite. When D is sufficiently large, the fluid in the coil is subjected to two
forces, a Coriolis force due to torsion of the centerline and a centrifugal force due to the
coil curvature. Under these conditions, their solution was able to predict the structure
of the secondary flow and the distribution of the cross-sectional velocity component for
D = 500 and α = 60◦. Figure 10 displays a schematic drawing of cross-sectional streamlines
showing the secondary flow pattern that arises in curved pipes. The pattern consists of two
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counter-rotating vortex cells whose nature depends on the Dean number. McConalogue
and Srivastava [129] numerically solved the governing differential flow equations by means
of a Fourier-series expansion with respect to the polar angle in the cross-sectional plane of
a tube for fully developed flow of an incompressible fluid along a curved tube and Dean
numbers between 16.97 and 106.07. They found that the secondary flow becomes evident
at De ≈ 106.07.

Figure 10. Schematic drawing of the secondary flow that circulates cross-sectionally in a helically
coiled pipe.

A few more studies on perturbation methods applied to helical circular pipes with
finite pitch can be found in the literature. For example, Wang [66] provided first-order
solutions for the flow using helical coordinates and found that torsion has a first-order
effect on the flow. Germano [67] investigated the effects of torsion on the flow and, using
an orthogonal system, obtained first-order solutions for the secondary flow and, in contrast
to Wang [66], predicted that torsion indeed has a second-order effect on the flow. The effect
of torsion was further studied by Kao [68] and Chen and Jan [130], both finding that torsion
induces a rotation of the secondary vortices and the maximum axial velocity. In an attempt
to provide more accurate solutions, Xie [131] solved the Navier–Stokes equations without
simplifications in a helical system and obtained second-order flow solutions. He predicted
a turning of the secondary flow as an effect of torsion. Later on, Bolinder [132] employed
a series expansion method to determine the first-order terms in curvature γ and torsion
η for laminar flow in helical conduits of square and rectangular cross-sectional area. He
concluded that flow in a helical pipe with finite pitch or torsion to the first order can be
obtained as a superposition of flow in a toroidal tube and a straight twisted duct. He also
found that, for small Re, the secondary flow in helical ducts of square and rectangular
sections is dominated by torsional effects, while, for higher Re, it is dominated by the
effects of coil curvature. A third perturbation solution for flow in helical circular pipes
was obtained by Jinsuo and Banzhao [54]. They discussed in detail the first-, second- and
third-order effects of curvature and torsion on the secondary flow and axial velocity, finding
that the first-order effect of curvature is to induce a secondary flow in the form of two
counter-rotating vortices and to drive the maximum axial velocity towards the outer wall
of the bend, while a second-order effect of curvature is to push the two vortices to the outer
bend. Moreover, they found that the combined second- and third-order effects of curvature
and torsion were those of enlarging the lower vortex cell at the expense of the upper one.
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Marušić-Paloka and Pažanin [55] developed an asymptotic expansion of the solution of
the Navier–Stokes equations in terms of the pipe thickness for the case when the curvature
is of order one and the helix torsion is of the same order of the pipe thickness. In contrast,
previous analyses by Wang [66] and Germano [67] have considered the case when the tor-
sion and curvature are small and of the same order. A rigorous treatment of flow in helical
pipes when both the curvature and torsion are of order one has been previously provided by
Marušić-Paloka [133]. The asymptotic analysis was shown to provide convergence results
and the error estimate for the approximation was proved as the pipe thickness tends to zero.
On the other hand, it has long been argued that a crucial point in the study of turbulent
flows through curved pipes is to determine as accurately as possible the dependence of
the flow rate and friction factor on the pressure difference between the ends of the pipe
and on the geometrical parameters, such as helix torsion and coil curvature. For instance,
Tuttle [70] demonstrated that a small torsion produces a second-order decrease in the flow
rate. However, for finite curvature or torsion, no analytical solution to this question exists
for steady flow in helical pipes. In fact, the dependence of flow rate and friction factor on
model parameters for flow in helical pipes appears to be a very hard task. A step forward
in clearing up this problem was recently provided by Kumar [57], who derived a rigorous
lower bound on the volume flow rate in a helical pipe as driven by a pressure difference in
the limit of Re� 1 using the background method. He also derived an upper bound for the
friction factor. In particular, using Kumar’s notation a = 1/γ = Rc/R and b = h/(2πR),
the dimensionless curvature, κ, and helix torsion, τ, are defined according to

κ =
a

a2 + b2 , τ =
b

a2 + b2 , (64)

so that for τ � 1, the lower bound for the flow rate, Q, is provided by√
32π2

27

(
1 + 3κ2 +

3
8

κ4
)−1/2[

1− 3(2 + κ2)τ2

8 + 24κ2 + 3κ4

]
, (65)

while the upper bound on the friction factor obeys the form

27
8

(
1 + 3κ2 +

3
8

κ4
)[

1 +
6(2 + κ2)τ2

8 + 24κ2 + 3κ4

]
. (66)

As was stated by Kumar [57] himself, the above bounds are also valid for toroidal and
straight pipes as limiting cases.

4.2. Numerical Simulations: Laminar Flow

Numerical simulations based on solutions of the Navier–Stokes equations to pre-
dict the flow in helical pipes began to appear in the early 1970s. One of the first efforts
to predict the velocity and temperature fields in helical pipes was reported in 1974 by
Patankar et al. [40]. They solved the Navier–Stokes equations in cylindrical coordinates
using finite-difference methods. Their numerical results for the axial velocity profiles
effectively reproduced the experimental data from Adler [59] (for De = 372, γ = 0.01)
and Mori and Nakayama [83] (for De = 442.7 and 632.4, γ = 0.025). Figure 11 shows
the axial velocity profiles for various De values as compared with a straight pipe in the
θ = 0 (left plot) and θ = 90◦ planes (right plot). The numerically obtained friction factor
for fully developed flow was also found to match Ito’s [73] experimental measurements
reasonably well. However, their numerical temperature profile along the θ = 0 plane did
not reproduce the experimental profile that was reported by Mori and Nakayama [83] in
the inside region (see their Figure 11).
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Figure 11. Axial velocity profiles of fully developed laminar flow in a helically coiled pipe for different
Dean numbers along (left) a horizontal (θ = 0) and (right) a vertical plane (θ = 90◦). The profiles
for (b) De = 60, (c) De = 500 and (d) De = 1200 are compared with (a) the Poiseuille flow along a
straight pipe. Figure taken from Patankar et al. [40].

In 1980, Manlapaz and Churchill [41] reported for the first time simulations of steady,
fully developed laminar flow in helical coils of finite pitch. They solved the hydrodymanic
equations for flow through a helical pipe of circular cross-section by expressing them in
terms of the stream function and vorticity and using a finite-difference discretization. They
simulated upward flow motion along the coil and found that a finite pitch has the effect
of increasing the fluid movement in the upper half of the tube at the expense of fluid
motion in the lower half. They also found that the mainstream (axial) and cross-sectional
(secondary) flow velocity increases, with the upper vortex cell occupying more than half of
the pipe cross-sectional area. However, these results were inferred to change only slightly
for varying ratios of the pitch to coil radius, h/Rc, even when h/Rc → 1. By trial and error,
these authors developed a new correlation for the friction factor, namely

FRe
16

=

[(
1− 0.18√

1 + (35/De)2

)m

+
De

88.33

]1/3

, (67)

where, in general, the experimental data are fairly well represented for m = 1, while
better representations of the experimental data for De < 20 are obtained with m = 2,
for 20 < De < 40 with m = 1 and for De > 40 with m = 0. If the effects of large curvature
ratios are added, Manlapaz and Churchill [41] suggested the following modified form

FRe
16

=

[(
1− 0.18√

1 + (35/De)2

)m

+

(
1 +

R
3Rc

)2 De
88.33

]1/3

, (68)

from fitting to the experimental data of Schmidt [119] and the calculated correlations of
Austin and Seader [134] and Tarbell and Samuels [135]. The generalization of the above
correlations for finite pitch can be obtained from Equation (68) by replacing the Dean
number with the helical number, defined as

He =
√

γDe, (69)

after fitting to the experimental data of Mishra and Gupta [88]. Further numerical simu-
lations of time-dependent laminar flow in helical pipes of rectangular cross-section were
performed by Wang and Andrews [42] by solving the Navier–Stokes equations written
in the helical coordinate system described by Huang and Gu [136], which, apart from
being slightly non-orthogonal, are more appropriate for helical ducts. In particular, Wang
and Andrews [42] investigated the dependence of the fully developed laminar flow on
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pressure gradient and the dimensionless curvature, Dh/Rc, and torsion, h/Rc, where
Dh = 4bc/(b + c) is the hydraulic diameter and b and c are the half-width and half-height
of the rectangular cross-section. They found that the relative friction factor increases with
the pitch ratio and the pressure gradient. When h/Rc = 10, the secondary flow causes the
transition from a two-vortex system to a single vortex. However, the pressure gradient
appears to have a greater influence on both the secondary flow pattern and the flow resis-
tance. For example, as displayed in Figure 12, four vortices formed in the cross-sectional
plane when the pressure gradient, defined as ∂(p/ρ)/∂θ (where p is pressure, ρ is density
and θ the coordinate of the helix), was set to 2300. Other authors, such as, for instance,
Choi and Park [137], performed numerical calculations of the steady laminar flow in a
helical pipe to explore the evolution of the secondary flow and the dependence of the flow
characteristics with the radius ratio, finding that the complex interactions between the
viscous and centrifugal forces may impede the full development of the laminar flow at the
entrance of the coil when the radius ratio is larger than a certain value.

Figure 12. Contour lines showing the structure of the secondary flow consisting of four vortices
occupying the cross-sectional plane for flow along a helical duct of square cross-section, pitch h = Rc

and pressure gradient equal to 2300. Figure taken from Wang and Andrews [42].

More recent numerical simulations of laminar flow in helical pipes were reported by
De Amicis et al. [37] and Ahmadloo et al. [44]. The former authors employed different fuid-
dynamic codes based on commercial software, such as FLUENT, OpenFOAM and COMSOL
Multiphysics, to predict the numerically obtained Darcy friction factor with experimental
measurements and existing correlations in the literature (see Figure 6). Variations in the coil
geometry were found to affect the friction factor as well as the emergence of the secondary
flow and the deformation of the axial flow. On the other hand, Ahmadloo et al. [44]
simulated the flow of water through a hollow helical duct for Reynolds numbers between
703.2 and 1687.7, using the SIMPLEC algorithm for solving the Navier–Stokes equations.
A major finding from this study was that the friction factor decreases as the tendency to
turbulence increases. CFD simulations with the aid of ANSYS FLUENT 16.0 were further
reported by Abushammala et al. [39] to evaluate the laminar flow friction factor in highly
curved helical pipes, i.e., in helical pipes of low pitches and relatively low helical radii. As
these authors mentioned in their paper, the difficulty to manufacture highly curved helical
pipes has led to a complete lack of data on the friction factor in such geometries. Almost
all correlation studies for predicting the friction factor of fully developed laminar flows
in helical pipes have relied on the use of the Dean number as provided by Equation (1)
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to account for both flow and geometry effects, except perhaps the solution provided by
Mishra and Gupta [88], defined as

FRe
16

= 1 + 0.033
(
log10 De?

)
, (70)

where the Dean number, De?, is provided by the alternative form

De? = Re
√

γ

1 + β2 , (71)

which, unlike Equation (1), now accounts for the effects of the helix pitch through the
parameter β = h/(2πRc). In the limit of straight pipe flows, the Dean number provided
by Equation (71) vanishes identically since in such flows there are no Dean vortices and
centrifugal forces. Moreover, it tends to infinity as Rc → 0, which is consistent with the
idealization of Dean vortices of infinite intensity. Therefore, as Rc and h become increasingly
small, the flow in such helical pipes will be characterized by more intense Dean vortices
and higher pressure drops. Abushammala et al. [39] performed more than 150 simulations
for 1.25 ≤ h/(2R) ≤ 15, 0.05 ≤ 1/(2γ) ≤ 10 and 10 ≤ Re ≤ 2000 to develop an accurate
prediction of the local friction factor for highly curved helical pipes. Using a regression
model for FRe, they obtained the following expression as the best fit of the CFD data

FRe =
64
Re

+ p1B
(
B
Re

)p2
(

2γ +
1

2γ

)p3

exp

[
−p4B

(
h

2R

)(
1

2γ

)−p5
]

, (72)

where

B =

[(
1

2γ

)−p6(
1 + β2

)]−p7

. (73)

The quantities pi, with i = 1, 2, 3, 4, 5, 6 and 7 are regression parameters, which are deter-
mined using an optimization procedure that minimizes the deviations of the correlation
outputs from the CFD data. Optimized values are listed in Table 3 of Abushammala et al. [39]
along with the Re values ranges for which they are valid. Figure 13 shows a parity diagram
that compares the correlation predictions against the CFD and experimental data. The graph
shows that Equations (72) and (73) fit the FRe data within an error margin of 10%.

Figure 13. Parity diagram showing the comparison of Mishra and Gupta’s [88] and De Ami-
cis et al.’s [37] experimental correlations with Abushammala et al’s [39] experimental and CFD
data. Figure taken from Abushammala et al. [39].
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4.3. Numerical Simulations: Turbulent Flow and Heat Transfer

One main feature of flow in helically coiled pipes is that the transition from a laminar
to a turbulent state occurs at critical Reynolds numbers higher than in straight pipes.
The dependence of the critical Reynolds number on the curvature ratio, γ = R/Rc, can be
estimated using the correlations for turbulent flows provided by Ito [96], Schmidt [119],
Srinivasan et al. [138] and Janssen and Hoogendoorn [139]. These correlations are plotted
in Figure 14 for 0 < γ ≤ 0.25. Although all these correlations approximately converge
for γ . 0.06, only the correlations developed by Ito and Schmidt predict approximately
the same value of Recr. The other two correlations predict values of Recr that are higher at
comparable values of γ & 0.06.

Figure 14. Estimated critical Reynolds number as a function of the curvature ratio according to the
correlations for turbulent flow developed by Ito [96], Schmidt [119], Srinivasan et al. [138] and Janssen
and Hoogendoorn [139]. Figure taken from Jayakumar et al. [43].

Heat transfer in turbulent flows along helical coils has been studied numerically by a
number of authors since the late 1960s. For instance, Mori and Nakayama [140] performed
calculations of forced convective heat transfer in helical turbulent flows under constant
wall heat flux boundary conditions. In a separate paper, they theoretically investigated
heat transfer under uniform temperature wall boundary conditions [116]. However, true
numerical simulations of turbulent flow and convective heat transfer in helical pipes began
to appear in the open literature in the late 1990s. Turbulent forced convection in a helical
pipe of circular cross-section with finite coil pitch was simulated by Yang and Ebadian [141].
They solved the time-averaged momentum and energy equations using a control-volume
finite element method coupled to the κ − ε standard two-equation turbulence model with
the aid of the FLUENT/UNS code. They found that, as the coil pitch increases, the cross-
sectional temperature distribution becomes asymmetric and the torsional effects on heat
transfer are reduced for increased Prandtl numbers. Using the same numerical model, Lin
and Ebadian [142] studied three-dimensional turbulent developing convective heat transfer
in helical pipes for 2.5× 104 . Re . 1.0× 105, coil pitches in the interval between 0 and
0.6 and curvature ratios of 0.025–0.050. They examined the development of the thermal
conductivity, temperature fields as well as the local and average Nusselt numbers, finding
that these parameters exert rather complex effects on the developing thermal fields and
heat transfer in helical pipes. Using the same numerical strategy of Lin and Ebadian [142],
this time coupled with the renormalization group κ − ε turbulence model, Li et al. [143]
investigated the three-dimensional turbulent flow and heat transfer at the entrance of a
curved pipe. They found that, at high Grashof numbers, up to three vortices formed the
structure of the developing secondary flow.
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On the other hand, chaotic heat transfer in heat exchanger designs at Reynolds num-
bers from 30 to 30,000 and varied Prandtl numbers was studied by Chagny et al. [144],
while simulations of turbulent flow and heat transfer to study pressure drop in tube-in-tube
heat exchangers were performed by Kumar et al. [145] using the FLUENT 6.0 code. CFD
simulations were also employed by Jayakumar et al. [146] to perform estimations of heat
transfer in helically coiled heat exchangers. A CFD analysis of the detailed characteristics
of fluid flow and heat transfer in helical tubes was reported by Jayakumar et al. [43]. They
carried out simulations for vertically oriented helical pipes with varied geometrical param-
eters. Among the most relevant results, these authors found that (a) fluctuations in the
heat transfer rates are caused by flow oscillations inside the tube, (b) the use of either a
constant wall temperature or a constant wall heat flux does not affect the velocity profiles,
while different temperature profiles will result and (c) the effects of torsion induced by a
finite pitch cause oscillations in the Nusselt number, while the average Nusselt number
is not affected. Figure 15 shows velocity, turbulent kinetic energy and turbulent intensity
contours at various cross-sectional planes along the helical pipe for one of their model
simulations using constant wall temperature boundary conditions. A correlation based on
their CFD data was also derived for estimation of the Nusselt number, namely

Nu = 0.116Re0.71Pr0.4γ0.11, (74)

valid for 14,000 < Re < 70,000, 3000 < De < 22,000, 3 < Pr < 5 and 0.05 < γ < 0.2.
As shown in Figure 16, this correlation closely follows the predictions of Mori and
Nakayama [116] and Rogers and Mayhew [115] for a uniform wall temperature boundary
condition. A similar plot was also obtained for a constant wall heat flux boundary condition
(see Jayakumar et al.’s [43] Figure 21).

Figure 15. (a,b) Velocity, (c) turbulent kinetic energy and (d) turbulent intensity contour plots at
various cross-sectional planes along the length of a helically coiled pipe of inner radius R = 10 mm,
coil pitch h = 30 mm and pitch circle diameter of 200 mm. The CFD results correspond to hot water at
330 K and velocity of 0.8 m s−1 entering the helical coil at the top for uniform pipe wall temperature
boundary conditions. Figure taken from Jayakumar et al. [43].



Fluids 2023, 8, 308 27 of 48

Figure 16. Diagram showing the Nusselt number as a function of the Reynolds number as pre-
dicted by Equation (74) compared with the correlations of Rogers and Mayhew [115] and Mori and
Nakayama [116]. Figure taken from Jayakumar et al. [43].

Further predictions of turbulent flow and heat transfer in helical pipes were reported
by Di Piazza and Ciofalo [17]. They solved the governing equations using the general
purpose code ANSYS CFX 11 coupled with three different turbulence models, namely the
κ − ε, the Shear Stress Transport (SST) κ − ω and the Reynolds Stress (RSM−ω) models.
Simulation results with these models were compared with Direct Numerical Simulations
(DNS) and experimental pressure loss and heat transfer data. In particular, they found that
the κ− ε turbulence model provided unsatisfactory results, while results from the RSM−ω
model were in good agreement with Ito’s [96] and the experimental data of Cioncolini and
Santini [94] for pressure losses in fully developed turbulent flows (with Re > 14,000) and
pipes of different curvature ratios γ = R/Rc. Di Piazza and Ciofalo [17] compared the
experimental and computational results for the Darcy–Weisbach friction factor versus Re
for the case when γ = 9.64× 10−3 and 0.143 (their Figures 7 and 8), finding that Ito’s corre-
lations are in excellent agreement with the experimental data in the laminar and turbulent
regime. With the aid of the CFD package FLUENT, Colombo et al. [45] performed further
simulations to assess the capability of different turbulence models to predict available ex-
perimental data on pressure drop and wall shear stress for fully developed turbulent flow
in helical pipes. They tested five different turbulence models and used two different meshes
depending on whether the wall function approach or the enhanced wall treatment was
implemented. Grid sizes provided by 605× 280 and 1125× 240 elements were employed
with the wall function approach, while meshes consisting of 3125× 280 and 4500× 240
were used with the wall-enhanced treatment in order to obtain grid-independent solutions.
They concluded that the Realizable κ − ε model provided the lowest deviations from the
experimental measurements.

The effects of curvature and torsion on turbulent flow and heat transfer in heli-
cally coiled pipes were studied next by Ciofalo et al. [147] by means of DNS using
highly resolved finite-volume methods. The computational grid was hexahedral and
multi-block-structured, with 7.86 million nodes covering the entire pipe for γ = 0.3 and
23.6 million nodes for γ = 0.1. Geometric refinement was introduced close to the pipe
wall to increase the convergence rate, with a consecutive cell-size ratio of ∼1.025 in the
radial direction. For 23.6 million nodes, the overall CPU time required was close to
5× 108 core-seconds. They introduced a Reynolds number, defined in terms of the fric-
tion velocity vτ =

√
〈τ̄w〉/ρ and based on the time- and circumferentially averaged wall

shear stress 〈τ̄w〉 as Reτ = vτ R/ν. For Reτ = 400, γ = 0.1 and 0.3 and torsion ratios
h/Rc = 2πβ = 0 and 0.3, they found that the effects of curvature on the flow cannot be
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neglected; i.e., as γ is increased from 0.1 to 0.3, both the friction coefficient and the Nusselt
number increase, causing the secondary flow to become more intense. Also, with increasing
curvature, the fluctuations in the axial velocity decrease and Reτ increases. In contrast,
torsional effects were found to have only a minor effect, at least when h/Rc is increased
from 0 (torus) to 0.3. Turbulent flow characteristics through helical pipes were also studied
by Tang et al. [49] for different turbulence models using the FLUENT code. They generated
the computational grid using the ICEM CFD tool and obtained mesh-independent solutions
for the mainstream axial velocity using ≈0.992 million nodes by setting the convergence
criterion to 10−5. It was found that the maximum velocity along the coil increases gradually
and causes unsteady flow behavior because of large cross-sectional gradient fields. As the
pressure decreases along the coil, the large pressure differences generated squeeze the flow
and give rise to centrifugal forces.

Numerical investigations of turbulent forced convective flow of a CuO nanofluid
in helical tubes were performed by Rakhsha et al. [38] using the OpenFOAM software
with uniform wall temperature boundary conditions. Their simulations predicted a 6–7%
increase in the convective heat transfer and a 9–10% increase in the pressure drop compared
to the experimental results of a 16–17% increase in the coefficient of heat transfer and a
14–16% increase in the pressure losses for different pipe geometries and Re values. The top
two rows of Figure 17 depict flow velocity intensity plots at different cross-sectional planes
along the helix, while the bottom two rows show temperature intensity plots at the same
pipe stations. It is clear from these plots that fully developed hydrodynamical and thermal
conditions are achieved by the flow at the outlet of the coil after two turns. In a more recent
study, Faraj et al. [46] simulated, using the ANSYS FLUENT solver, the effects of varying
the coil pitch in the turbulent flow regime. They obtained grid-independent solutions with
minimum computer resources using a five-domain O-H grid method “butterfly topology”
with 313,823 and 597,600 cells. In particular, these authors considered helical pipes of the
same inner diameter (D = 0.005 m) and coil diameter (Dc = 2Rc = 0.04 m) and varying
coil pitches (i.e., h = 0.01, 0.05 and 0.25 m). When the pitch size is increased, the turbulent
fluctuations are damped out and the emergence of the secondary flow is delayed. However,
based on their CFD simulations, they concluded that more accurate results are obtained
when using the STD (κ −ω) turbulence model than when using the STD (κ − ε) model and
that reduction in the coil friction factor is largely due to the effects of the Dean number
and, to a much minor extent, to the increment of the pitch size. In passing, it is worth
mentioning the work by Demagh et al. [50], who performed a comparative numerical study
on pressure drop in helically coiled and longitudinally C-shaped pipes. However, the latter
pipes have been much less studied mainly due to their limited use in the industry.

4.4. Flow and Heat Transfer in Corrugated and Twisted Helical Pipes

Enhancement regarding heat transfer rates in helically coiled pipes is of great interest
in the industry and in many engineering applications. As was commented by Li et al. [148],
there are two different methods to enhance the rate of heat transfer in helical coils, namely
the active and the passive methods. While the active method requires the application of
external forces, the passive concept relies on the addition of fluid additives or particular
surface geometries, as may be the case regarding corrugations in the pipe surface. However,
helical pipes with surface wall corrugations have received comparatively less attention com-
pared to smooth helical pipes owing to the relatively high cost and difficulty in fabrication.
In relation to corrugated pipes, Yildiz et al. [149] studied the heat transfer characteristics in
a helical pipe constructed with spring-shaped wires of varying pitch inside the pipe. On the
other hand, Zachár [150] performed numerical simulations of flow through a helical pipe
with a spiral corrugation on the outer wall, which produced a helical rib on the inner wall.
This gives rise to a swirling motion of the fluid. Zachár found that, due to this additional
swirling motion, the heat transfer rate in the inner wall of the pipe exhibited an 80–100%
increase compared to smooth heat exchangers, while the pressure drop was from 10 to
600% larger.
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Figure 17. Cross-sectional velocity (first two rows) and temperature (last two rows) intensity plots
along the helical pipe length for Re = 13,000 and curvature ratio γ = R/Rc = 0.032. Figure taken
from Rakhsha et al. [38].

Li et al. [148] performed further numerical simulations to investigate the turbulent
flow and heat transfer in helical pipes, this time with spiral corrugations in the inner wall,
as a further heat transfer enhancement method. Figure 18 shows the spirally corrugated
helical pipe model employed in Li et al.’s [148] simulations. They considered three pipe
models, all with Rc = 30 mm, inner diameter 2R = 10 mm, coil pitch h = 20 mm, differing
only in the pitch of the spiral corrugation, which was h′ = 18.95 mm (their Tube I), 7.59 mm
(their Tube II) and 5.41 mm (their Tube III). Figure 19 shows axial velocity intensity plots
(left) and secondary flow patterns (right) generated for the three corrugated models as
compared with a smooth helical pipe for turbulent flow at Re = 22,000. The saddle-shaped
axial velocity formed in the smooth pipe is destroyed by the spiral corrugation, while the
two counter-rotating vortices are present in all models. However, their centers change with
different position of corrugation on the cross-sectional plane.

Figure 18. Drawing of a helically coiled pipe with a spiral corrugation of semicircular cross-section.
The pitch of the spiral corrugation is h′ and e is its depth. The angle Φ corresponds to the rotation
angle of an equivalent smooth helical pipe along the helical line. Figure taken from Li et al. [148].
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Figure 19. Comparison of cross-sectional velocity contour plots (left) and secondary flow patterns
(right) for the smooth and spirally corrugated (Tubes I, II and III) helical pipe flow simulations of
Li et al. [148]. Figure taken from Li et al. [148].

In a more recent work, Wang et al. [51] studied by means of numerical simulations the
flow and heat transfer characteristics of a twisted helical pipe of elliptical cross-section for
500 ≤ Re ≤ 3000. The physical details of their twisted helical pipe are provided in Figure 20.
They considered the flow of water and oil through twisted helical pipes of helix diameter
D = 90 mm, screw pitch h = 30 mm, twist pitches in the interval 35 ≤ p′ ≤ 65 mm and
lengths of the semi-major axis a′ between 4.4 and 5.6 mm. Lower values of p′ and a′ were
found to favor higher fluid mixing accompanied by larger temperature gradients near the
pipe wall, with the consequent effect of inducing large friction resistance and enhanced
heat transfer. However, compared to a reference model consisting of a smooth helical pipe
of circular cross-section, they reported improvements in the heat transfer performance,
which varied from factors of 1.04 to 1.21 when changing the semi-major axis, while the
thermal performance improved by factors of 1.02–1.25 for different twist pitch lengths
when Re = 1000 and by factors of 1.16–1.29 when Re = 3000.

Figure 20. Physical model of the twisted helically coiled pipes of elliptical cross-section used in the
CFD simulations of Wang et al. [51]. The various geometrical parameters are defined in the text above.
Figure taken from Wang et al. [51].

Figure 21 is illustrative of a comparison of the streamlines, velocity vectors and
temperature distributions between the smooth and the twisted pipes. In particular, this
figure corresponds to p′ = 45 mm, a′ = 5.2 mm and Re = 1500. The streamlines in
the corrugated pipe appear highly disordered compared to the smooth pipe, while the
secondary flow pattern generated consists of two enhanced vortices, which increases the
mixing within the pipe with a consequent increase in the thermal performance. Figure 22
provides details of the temperature field along the smooth and twisted pipes for Re = 1500.
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As was outlined by Wang et al. [51], the overall temperature of the twisted pipe is higher
than that of the smooth pipe for a comparable cross-sectional perimeter. These authors
derived by means of multiple linear regression analysis correlations for the Nusselt number
and the friction factor as functions of the Reynolds number, which obey the expressions

F = 10.93348Re−0.56554Pr−0.00255
(

a′

b′

)−0.24335( p′

d

)−0.25628

, (75)

Nu = 0.66275Re0.50508Pr0.32743
(

a′

b′

)−0.19620( p′

d

)−0.28430

, (76)

where b′ is the semi-minor axis of the elliptical cross-section and d is the diameter of a
circle having the same perimeter of the elliptical cross-section. In their Figure 16, they
compare the Nusselt number and the friction factor as obtained from the simulated data
with literature correlations for the Nusselt number developed by Xin and Ebadian [93] and
Salimpour [151] and for the friction factor developed by Ito [96] and Yanase et al. [152],
finding deviations between the predicted and calculated values within 10%.

Figure 21. Comparison of the streamlines, cross-sectional velocity vectors and temperature distribu-
tions between a smooth helical pipe of circular cross-section and a twisted helical tube of elliptical
cross-section for Re = 1500. Figure taken from Wang et al. [51].

Figure 22. Comparison of the temperature field between (a) the smooth and (b) the twisted helical
pipes for the same flow of Figure 21. Figure taken from Wang et al. [51].

The research regarding cost-effective, reliable and efficient novel devices to manage
the heat flux problem is growing exponentially. The wider range of applications of such
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management systems imposes a strong demand that is attracting many scientists and
engineers. In this line, the recent work by Adhikari and Maharjan [48] represents one such
effort towards the improvement in design and capabilities of heat pipes. In particular, they
performed CFD simulations of helically coiled closed-loop pulsating heat pipes on the basis
of the experiments conducted by Pachghare and Mahalle [153]. They found that thermal
resistance in such systems is less than in more conventional helical exchangers. However,
since this area of research is relatively new, more work has to be developed before the
implementation of this technology in heat exchangers and thermal management systems.
Also, CFD analyses of helically coiled tube-in-tube heat exchangers have recently been
carried out by Vijaya Kumar Reddy et al. [154].

5. Other Investigation Aspects of Helical Coiled Flows
5.1. Visualization of Helical Pipe Flow

The structure of internal fluid flows in curved pipes with a secondary flow induced
by centrifugal, buoyancy and Coriolis forces forms a class of technological problems of
relevance to many industrial and engineering applications. In spite of this, relatively
little experimental work exists in the literature on the visualization of such flows. In fact,
currently, most visualization work on secondary flow in helical tubes and ducts relies on
the analysis of CFD data with the aid of specialized graphing software. Recently, “virtual
reality” is being used as a power tool for the visualization of CFD flow simulations [155].

Visualization of secondary flow structure in helical pipes was investigated by Liou
et al. [156] using a narrow laser light sheet for smoke illumination and laser Doppler ve-
locimetry (LDV) techniques for measurement of the velocity field. Their flow visualization
results showed good agreement with the CFD simulations of Wang [66] and Chen and
Fan [157] for varying Re values between 35 and 330 and torsion-to-curvature ratios from
0.06 to 5.55. The flow visualization photographs allowed for detailed documentation of the
secondary flow structure and revealed that the deformation of the symmetric two-vortex
structure into a single circulating vortex increases as the torsion-to-curvature ratio also
increases. Further visualization studies of the relaminarization phenomena in bends and
helically coiled pipes were carried out by Kurokawa et al. [61] using a hot-film anemometer.
They measured the stabilization effect in helical coils for fully developed air turbulent flow
at the entrance of the coil and the re-transition of the flow from a laminar to a turbulent
state in the downstream straight section after the exit from the coil. Photographs of the
time-mean streamwise velocity and axial turbulence intensity field were taken for flow
through helical pipes of 1, 2 and 5 turns, inner pipe diameter of 37.5 mm, curvature ratio
γ = 0.049 and downstream straight pipe length equal to 30 times the inner pipe diameter.
The relaminarization phenomenon was interpreted in terms of the turbulence intensity
together with the behavior of the velocity fluctuations, suggesting that the redistribution of
the turbulence level in the downstream straight section is caused by transport processes of
the turbulent kinetic energy.

An analysis of the fluid particle trajectories and experimental visualization of the
secondary flow in helical pipes was reported by Yamamoto et al. [158]. Calculation of the
trajectory of fluid particles was performed by expressing the position vector of particles
in a cross-sectional plane using Germano’s [67] coordinate system and by transforming
the velocity components to Cartesian coordinates (e.g., see their Equations (13) to (21)).
Successive repetition of the method yields the fluid particle trajectories. Their visualization
results confirmed those previously found by Liou [156] that a two-vortex pattern formed at
low torsional effects becomes a single-vortex pattern at high torsional effects. Figure 23
shows a sequence of photographs of the secondary flow at increasing Reynolds number
when the torsion parameter β0 = 0.48, where

β0 =
λ√
2κ

, (77)
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and λ ∝ τ/κ is the torsion to curvature ratio. Here, κ and τ are provided by relations (64).
At Re = 42, the secondary flow consists of a single circulatory vortex with an approximate
center in the centerline of the helical pipe. As Re increases to 142, the centrifugal force due
to the helicoidal curvature also increases, leading to the formation of a second vortex near
the right-hand corner. At even higher Re values, the two-vortex pattern becomes clear,
appearing to rotate in the clockwise direction relative to the pipe centerline. The last two
pictures in the right-hand column depict the fluid particle trajectories in the cross-sectional
plane at comparable Re values of the photographs at Re = 327 and 861, respectively. As β0
is increased to 1.60 (see their Figure 11), only a single vortex is visible at all Reynolds
numbers between 400 and 1468, confirming that, at increased torsion, the secondary flow
pattern undergoes a transition from two vortices to one vortex.

Figure 23. Photographic visualization of the cross-sectional secondary flow pattern through a helically
coiled pipe for the torsion parameter β0 = 0.48. The number next to each photograph indicates the
Reynolds number. The last two pictures in the right column depict the cross-sectional trajectories of
fluid particles after 10-pitch from the initial position. Figure taken from Yamamoto et al. [158].
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5.2. Entropy Generation of Helical Pipe Flow

Irreversible processes associated with fluid flow in pipes are mainly due to fluid
friction and heat transfer. For example, the temperature differences between the flowing
fluid and the pipe wall are sources of thermal irreversibilities, while the viscous friction
between fluid elements causes, on the other hand, friction losses. A study of entropy
generation in straight pipe flows under uniform wall temperature conditions was first
reported by Şahin [159]. Further studies on curved pipes and injunctions were reported
by Ko [160] and Sanchez et al. [161], respectively. Entropy generation in helical pipe
flows has instead been analyzed by Shokouhmand and Salimpour [162], Satapathy [163],
Bahiraei et al. [164], Ahadi and Abbassi [165], Dizaji et al. [166], Kurnia et al. [47], Huminic
and Huminic [167] and more recently by Pendyala et al. [168] and Prattipati et al. [56].
Evidently, in the last 10 or more years, there has been an ever-increasing interest to evaluate
the thermal performance of helically coiled pipes (and other systems) using the second
law of thermodynamics [169]. For example, Ahadi and Abbasi [165] estimated the entropy
generation of laminar flow of water with temperature-dependent properties in helical pipes
by analytical means, finding that the rates of entropy generation depend on the combined
effects of length and heat flux of the coil. On the other hand, the dependence of exergy
losses on the flow, thermodynamic and geometrical characteristics of helical coils was
studied experimentally by Dizaji et al. [166], concluding that the Reynolds number and the
temperature are likely to affect the exergy losses.

In particular, Kurnia et al. [47] evaluated the thermal performance and the entropy
generation for laminar air flow in helical pipes of circular, elliptical and square cross-
sections. For the sake of comparison, they also considered straight pipes with the same
cross-sections as helical tubes. In general, the rate of entropy generation per unit volume,
Sg, is the sum of the contributions of viscous dissipation, heat transfer, mass transfer and
chemical reactions. However, in studies of pipe flow, only the viscous dissipation and heat
transfer contributions, Sµ and Sh, respectively, are of relevance in most cases. Hence,

Sg = Sµ + Sh = ∇ · f, (78)

where f is the entropy flux and

Sµ = − 1
T
T : ∇v, (79)

Sh =
1

T2∇ · (k∇T). (80)

Here, T is the temperature, T is the viscous stress tensor, k is the thermal conductivity, v is
the fluid velocity vector and the symbol “:” means double dot product.

Equation (78) is the formulation of the second law of thermodynamics within the
framework of continuum theory and complies with the entropy balance in an open system,
as is indeed required to evaluate the entropy generation in a tube. Kurnia et al. [47] studied
the thermal performance of helical tubes in terms of a mixed mean temperature along the
tube, Tmean, the Nusselt number, defined as

Nu =
2Rqw

k(Tw − Tmean)
, (81)

where qw is the wall heat flux, Tw is the wall temperature and the figure of merit (FoM)
provided by

FoM =
Q̇T

Ppump
, (82)

where Q̇T is the total heat transferred from the pipe wall to the working fluid and Ppump
is the pumping power. The interested reader is referred to Kurnia et al.’s [47] study for
more details about the expressions used for Q̇T and Ppump. The entropy generation rate
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per unit volume, Ṡg, is then calculated as the integral of Sg over the entire fluid volume.
Figures 24 and 25 compare the axial velocity and temperature contours between helical
coiled and straight pipes of different cross-sections. Secondary flow near the outer wall
is always present in all helical pipes due to curvature effects compared to the straight
pipes, where, in all cases, the peak velocity is shifted below the middle of the pipe due
to gravitational effects. Because of its elongated shape, the helical coil of an elliptical
cross-section favors the formation of a two-vortex structure compared to the other two
cases where only a single vortex is formed. Figure 26 shows the contours of total entropy
generation for the same models of Figures 24 and 25. Compared to the straight pipes, heat
transfer is more efficient in the helical tubes, as is reflected by their lower entropy generation.
An important result form these calculations is that entropy generation from heat transfer is
about two orders of magnitude higher than from viscous dissipation.

Figure 24. Cross-sectional axial velocity contours and velocity vectors for airflow along a helical
pipe of (a) circular, (b) elliptical and (c) square cross-section. The figures in (d–f) correspond to the
same flow along a straight pipe of circular, elliptical and square cross-section. In all cases, the pipe
wall temperature is Tw = 423.15 K, Re = 1000 and the pipe length is 25 cm. Figure taken from
Kurnia et al. [47].

In a more recent work, Prattipati et al. [56] analytically investigated the entropy
generation for fully developed laminar flow of a highly viscous fluid in a helically coiled
pipe under uniform wall-temperature boundary conditions. They found that, for glycerol
as the working fluid, frictional effects produce large irreversibilities compared to lighter
fluids, as is the case in water. Also, for highly viscous fluids, the exponential temperature
dependence of the viscosity, namely

µ(T) = µref(T/Tref)
A exp

[
B

Tref

(
T

Tref
− 1
)]

, (83)

where Tref is a reference temperature and A and B are fluid-dependent constant parameters,
provides a more accurate model. In fact, the thermodynamic potential of improvement
analysis reveals that, for heating, up to 35% of total exergy destruction can be avoided
based on Equation (83) against 20–25% based on the constant viscosity model. The amount
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of avoidable exergy destruction is an important parameter together with the avoidable
investment cost analysis for the design of cost-effective energy systems.

Figure 25. Temperature distribution for the same pipe models and parameters of Figure 24. The
figures in (a–c) shows the temperature maps in helical pipes of different cross-sections, while the
figures in (d–f) show the temperature maps for the same flow along straight pipes. The numbers
indicate the temperature in kelvin. Figure taken from Kurnia et al. [47].

Figure 26. Contours of total entropy generation for the same models and parameters of
Figures 24 and 25. The figures in (a–c) shows the total entropy generation maps in helical pipes
of different cross-sections, while the figures in (d–f) show the total entropy generation maps for the
same flow along straight pipes. Figure taken from Kurnia et al. [47].
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6. Two-Phase Flow in Helically Coiled Pipes

One of the first experimental studies of two-phase flow in helical pipes dates back to
1965 [170]. In general, the liquid–gas flow in helical pipes is characterized by the increase
in pressure drop when the liquid is introduced into the gas flow and the volume fraction
occupied by the liquid in the pipe. In particular, Rippel et al. [170] experimentally studied
the pressure drop, the liquid holdup and the axial liquid mixing in a coiled tube. They
found that the pressure drop in a downward helical tube can be predicted by Lockhart and
Martinelli’s [171] correlation, as was derived from horizontal flow data. They also obtained
two-phase frictional pressure-drop correlations for annular, bubble, slug and stratified
flow patterns. Over the years, two-phase flows in helically coiled pipes have been studied
experimentally by a number of authors [172–180].

In spite of the more or less extensive experimental investigations of two-phase flows in
helically coiled pipes, only a limited number of CFD simulation studies are indeed available
in the open literature. In particular, the description of multiphase flows is generally a
complex subject because the flow pattern as well as the volume fractions occupied by the
phases are continuously changing during the flow. The numerical treatment requires to
track the interfaces in a stable manner and describe the exchanges of mass, momentum
and energy between adjacent phases. In addition, different phases may flow with different
velocities and not be in thermal equilibrium. Numerical simulations of gas–liquid flows
in helically coiled pipes were conducted by Colombo et al. [52] and more recently by
Zhou et al. [181] and Sun et al. [182]. The former authors carried out CFD simulations of
air–water flow in a helical pipe with the aid of the finite-volume ANSYS FLUENT 14.0 code.
Centrifugal forces were observed to push the water, which is the heavier phase, towards
the outer pipe wall, while air, which is the lighter phase, concentrated towards the inner
wall and flowed faster than water. Therefore, the mainstream peak velocity of the air–water
flow was shifted near the inner pipe wall. On the other hand, cross-sectional recirculation
flow in the form of vortices is also observed much in the same way as in single-phase flows.
The results for the frictional pressure drop and void fraction were found to reproduce the
experimental data provided by Akagawa et al. [173], with mean absolute percentage errors
of 4.5% and 12.3%, respectively. As these authors argued, part of the discrepancy with
the experimental data can be attributed to limitations in the CFD model. For instance,
a drawback of many numerical simulations with commercial codes is the difficulty in
correctly describing the phase separation and stratification of multiphase flows in helically
coiled pipes due to the simultaneous effects of gravitational and centrifugal forces.

More recently, Zhou et al. [181] performed CFD simulations of two-phase flows in
a helical gas–liquid separator of a square cross-section. They investigated the effects of
mass flux, curvature and helix angle on pressure drop at different inlet velocities. They
found that varying the helix angle has only very little effect on the pressure drop (see their
Figure 5), while the effect of curvature appears to be more prominent. As depicted in their
Figure 6, for values of the curvature ratio in the interval 0.10 ≤ γ ≤ 0.42, the pressure
losses were always observed to increase with increasing mass flux and curvature ratio (see
their Figure 6). As a consequence of increasing the curvature, the separation of the liquid
phase from the gas phase is accelerated due to the stronger centrifugal forces.

Further numerical simulations of air–water flow in coiled tubing were recently re-
ported by Sun et al. [182] using the commercial CFD Fluent 19.0 tool coupled to a standard
κ-ε turbulence model. They studied the dependence of frictional pressure loss on the void
fraction, curvature ratio and fluid inlet velocity for an air–water mixture flowing along a
coiled tube wound on a spool, as shown schematically in Figure 27 for curvature ratios
in the range 0.010 ≤ γ ≤ 0.076, coil diameters between 0.5 and 82 in and pitches of 0.435,
0.810 and 1.532 in. The simulations were validated for flows with Reynolds numbers
between 5000 and 230,000 against Srinivasan et al.’s [138] friction factor correlation for
turbulent flow. The maximum average error and standard deviation between simulation
and experiments were 2.14% and 0.006, respectively. They found that the functional de-
pendence of the frictional pressure gradient on the void fraction defines a parabolic curve,
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with the highest pressure losses occurring for the case when h = 1.532 in and 2Rc = 82
in. Independently of the coil geometry, the friction factor peaks at a void fraction of 0.8.
This value is, however, slightly larger than those predicted by the empirical correlations
for steam–water flow developed by Hardik and Prabhu [98] and Guo et al. [183] and that
calculated by Zhao et al. [184] for turbulent flow in a rough helical pipe. On the other hand,
the pressure losses were found to increase with the curvature and void fraction, a result
that is consistent with previous simulations [52,181].

Figure 27. Schematic drawing showing a helically coiled tube wound on a spool. Figure taken from
Sun et al. [182].

Sun et al. [182] also studied the influence of secondary flow intensity on the friction
factor using the Dean number for two-phase flow defined as

Detp =
√

γRetp, (84)

where Retp is the Reynolds number for two-phase flow defined by

Retp = Rel + Reg

(
µg

µl

)(
ρl
ρg

)1/2
. (85)

In the above expression, µl, µg, ρl and ρg are, respectively, the liquid viscosity, the gas
viscosity, the liquid density and the gas density. As for single-phase flow, the frictional
pressure gradient increases with increasing Dean number, Detp. These authors were also
able to develop a frictional pressure-drop correlation for gas–liquid two-phase flow, which
reads as follows

∆p f tp

∆pl
= 1 + φ

[(
ρl
ρg

)1.25(µg

µl

)0.25
]

, (86)

where
φ = 2.35γ0.75

( v
100

)0.33
(1− α)0−3 + α2.5, (87)

with

∆pl = fl
L
h

v2
l

2
(88)

being the frictional pressure drop of single-phase flow (gas or liquid), L the pipe length, vl
the mean axial velocity of single-phase flow,

fl =
1
4
√

γ

[
0.029 + 0.304

(
γ2Re

)−0.25
]

, (89)

the friction factor of single-phase fluid flowing in a spiral pipe and Re, the Reynolds
number of single-phase flow. In Equation (87), v is the inlet velocity and α is the gas void
fraction. The parity plot in Figure 28 shows the simulated pressure gradient as a function
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of the calculated pressure gradient, ∆p f tp, provided by Equation (86). The simulated data
follow the trend of the calculated data within a margin of error of 20%. Sun et al. [182]
suggested that a possible cause for the observed error is that there are no models available
to accurately predict two-phase flow parameters.

Figure 28. Parity plot showing the simulated frictional pressure loss as a function of the calculated
data provided by Equation (86) for air–water two-phase flow in a helical tube, as shown schematically
in Figure 27. Figure taken from Sun et al. [182].

7. Helical Flows in Magnetohydrodynamics (MHD)

As was pointed out by Pouquet and Yokoi [185] in their recent review on helical
fluid and MHD turbulence, the first discussions about helical structures in turbulent flows
occurred in the context of magnetic fields, which are ubiquitous in the universe. Helicity
is a topological property of the flows and fields, through links, knots, twists and writhes
and their entanglement [186,187]. Early studies on helical flows in MHD have mainly
focused on the issue of stability. For instance, the stability of the steady non-dissipative
helical flow of an electrically conducting fluid in the presence of an axial magnetic field and
current was studied by Howard and Gupta [188]. They found that such a flow, consisting
of an azimuthal and an axial velocity component, would be stable against axisymmetric
perturbations if the Richardson number, Ri, based on the azimuthal velocity, the circular
magnetic field and the shear in the axial flow was greater than 1/4 everywhere in the
flow. Later on, Agrawal [189] derived a sufficient condition for the stability of this type
of flow. On the other hand, the hydromagnetic stability of a steady non-dissipative MHD
helical flow of a fluid permeated by a helical magnetic field against non-axisymmetric
disturbances was further studied by Ganguly and Gupta [190]. The stability of MHD
helical flows with respect to non-axisymmetric perturbations is important in problems
of controlled thermonuclear reactions. Moreover, equilibrium helical flows also have an
impact on the stability properties of low-shear tokamak plasmas [191].

It is well-known that, like vorticity, magnetic induction is an axial vector, and, there-
fore, it is not surprising that kinetic helicity could be responsible for the growth in
large-scale magnetic fields. This problem has been studied in terms of the so-called α-
dynamos [192,193]. In particular, dynamo theory deals with the generation of magnetic
fields by electrically conducting fluid flows. On the other hand, the Riga dynamo exper-
iment is a laboratory experiment designed to study the self-excitation of the magnetic
field in a single helical flow [194]. Therefore, the trend was to tune the flows to have a
well-marked helicity to enforce the generation of magnetic fields. In fact, an exponentially
growing eigenmode was observed for the first time by the end of 1999 [195]. Since then,
there have been many experimental campaigns, which have provided a plethora of data
on the kinematic and saturated regime. A comprehensive overview regarding these exper-
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imental campaigns and the main results of the Riga dynamo experiments have recently
been reported by Gailitis et al. [196]. Important results related to magnetic instabilities have
been the experimental demonstration of the helical [197] and the current-driven Taylor
instability [198]. However, a two-scale analysis performed by Gilbert et al. [199] showed
that helicity is not necessary for the associated dynamo instability, and the lack of parity-
invariance in the velocity field is sufficient for the dynamo action. In compliance with this
point, Andrievsky et al. [200] recently provided numerical evidence that vanishing velocity
helicity does not prevent steady flows from generating small-scale magnetic fields and
that large-scale magnetic fields can be generated by the α-effect or the negative diffusivity
mechanisms. Therefore, the kinematic generation of magnetic fields does not necessarily
require the production of helical flows. However, these findings do not preclude the fact
that helicity also plays a role in magnetic field generation, as has been demonstrated by the
Riga experiments [196].

8. Concluding Remarks

In this paper, we have reviewed past and recent experimental and theoretical work
dealing with flow through helically coiled pipes. Over the years, there has been growing
interest in this type of systems due to their wide range of applications in the industry.
Unlike other pipe geometries, helically coiled pipes can accommodate a larger heat transfer
area per unit volume, exhibit higher efficiency in heat and mass transfer and provide small
residence time distributions. In addition, due to their compactness, they are mostly used as
heat exchangers and steam generators in power plants.

The most relevant feature of helical pipe flows is the secondary flow field, i.e., the
cross-sectional circulatory flow that overlaps the main helical flow, caused by the centrifugal
forces that originate from the pipe curvature. As the flow rate increases, the intensity of the
circulatory flow in the form of either a couple of counter-rotating vortices or a single vortex
also increases. The secondary flow has the effect of stabilizing the flow so that laminar
flow can persist longer compared to other conventional pipe geometries. This has the
immediate implication that the critical Reynolds number at which the flow experiences
a transition from a laminar to a turbulent state occurs at much higher values than, for
example, in straight tubes.

A survey of the open literature on experimental and theoretical investigations of the
flow and heat transfer characteristics in helical pipes shows the existence of a large number
of papers. Most work on laminar flow has mainly focused on studying pressure losses for
different flow rates and helical pipe geometries and deriving predictive correlations of the
friction factor coefficient as a function of the Reynolds and/or Dean number under laminar
and turbulent flow conditions. In the present review, the discussion has been divided into
three main parts. The first part deals with an overview of the more relevant results from the
experimental research, while the second part is devoted to a brief discussion on analytically
and semi-analytically derived results. The third part overviews the results for laminar and
turbulent flows from computational fluid dynamics (CFD) simulations. A short review on
the investigation of heat transfer enhancement in corrugated and twisted helical pipes has
also been added to the CFD part. Other aspects of the research regarding flow in helical
pipes, such as flow visualization and entropy generation due to viscous dissipation and
heat transfer, were discussed in a separate section. Although significant progress has been
achieved in understanding the complex flow interactions that occur in a helical pipe, there
still remains much work to be completed to address the effects of pipe corrugations and
deformations on the flow, particularly for the case of randomly spaced corrugations and
surface ribs. On the side of multiphase flows, nearly all the research has focused on two-
phase flows in helical pipes. Moreover, these studies are mostly on air–water flows, which
are different from the helical pipe flows that operate in the environment of the oil and gas
industry. Also, the geometrical parameters of the coil pipes employed in most experimental
and numerical studies differ from the actual operating conditions in heat transfer areas.
In general, several important issues concerning complex thermal hydraulic mechanisms in
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nuclear reactors and other industrial devices still remain to be solved. However, some of
these issues are closer than ever to be at least partially solved owing to the more and more
powerful computational resources that are becoming available today.
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Nomenclature

a Constant factor
a′ Semi-major axis of elliptical cross-section (m)
b Constant factor
b′ Semi-minor axis of elliptical cross-section (m)
D Characteristic number (dimensionless)
d Diameter of circular cross-section (m)
D Pipe inner diameter (m)
Dc Coil diameter (m)
De Dean number (dimensionless)
De′ Generalized Dean number (dimensionless)
Deq Equivalent coil diameter (m)
e Roughness height (mm)
Eu Euler number (dimensionless)
f Entropy flux vector (W m−2 K−1)
F Fanning friction factor (dimensionless)
FD Darcy–Weisbach friction factor (dimensionless)
FoM Figure of merit
Fs Friction factor for laminar flow (dimensionless)
Gn Germano number (dimensionless)
h Coil pitch (m)
h′ Pitch of spiral corrugation (mm)
K Behavior index
k Thermal conductivity (W m−1 K−1)
L Straight pipe section (m)
Lc Length of coil portion (m)
n Consistency index
Nu Nusselt number (dimensionless)
p Pressure (Pa)
p′ Twist pitch (mm)
pi Regression parameters
Ppump Pumping power (W)
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Pr Prandtl number (dimensionless)
q Heat flux (W m−2)
Q Volumetric flow rate (m3 s−1)
Q̇T Total heat transfer rate (W)
R Pipe inner radius (m)
Rc Helical coil radius (m)
Re Reynolds number (dimensionless)
Re′ Generalized Reynolds number (dimensionless)
Recr Critical Reynolds number (dimensionless)
Reτ Frictional Reynolds number (dimensionless)
S Entropy generation rate per unit volume (W m−3 K−1)
T Viscous stress tensor (N m−2)
Tb Bulk temperature (K)
Tmean Mean temperature (K)
T̄w Inner wall temperature (K)
v Mean flow velocity (m s−1)
v Velocity vector (m s−1)
vτ Friction velocity (m s−1)
∆p Differential pressure (Pa)
∆s Section length (m)
τ̄w Averaged wall shear stress (kg m−1 s−2)
λ Ratio of torsion to curvature ratio (dimensionless)
β0 Torsion parameter (dimensionless)
∇ Nabla operator (m−1)
Greek letters
ν Kinematic viscosity (m2 s−1)
γ Curvature ratio (dimensionless)
α Helix angle, lift angle
β Ratio of pitch to length of one helical turn (dimensionless)
ρ Density (kg m−3)
γ′ Generalized curvature ratio (dimensionless)
η Torsion of the helix (dimensionless)
λ′ Flow pattern transition parameter (dimensionless)
α′ Constant
β′ Constant
φ Concentration (dimensionless)
κ Dimensionless curvature
τ Dimensionless helix torsion
Φ Rotation angle
θ Angle
µ Dynamic viscosity (kg m−1 s−1)
Subscripts
c Curvature, coil
D Darcy
cr Critical
0 Initial, lower
eq Equivalent
w Wall
b Bulk
i Integer index
τ Shear stress
ref Reference
g Gas, global
l Liquid
tp Two-phase
µ Viscous
h Heat transfer
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