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Abstract: Flow configurations that maximize the instantaneous rate of conversion from potential to
kinetic energy are sought using a combination of analytical and numerical methods. A hydrostatic
model is briefly investigated, but the presence of unrealistic ageostrophic flow configurations renders
the results unrealistic. In the quasigeostrophic (QG) model, flow configurations that locally optimize
the conversion rate are found, but it remains unclear if these flow configurations produce the global
maximum conversion rate. The difficulty is associated with the fact that in the QG model, the vertical
velocity is a quadratic function of the QG streamfunction, which renders the conversion rate a cubic
function of the QG streamfunction. For these locally maximal conversion rates, the rate of conversion
depends on the horizontal length scale of the flow: for scales larger than the deformation radius, the
maximal rates are small and decrease as the horizontal scale increases; for scales smaller than the
deformation radius, the maximal conversion rate rises until it becomes comparable to the maximal
rate at which potential energy can be extracted from the mean flow.

Keywords: ocean dynamics; energy cycle; baroclinic instability; turbulence

1. Introduction

The transfer of large-scale available potential energy to mesoscale eddy energy by
baroclinic instability is one of the most important energy pathways in the dynamics of the
global oceans [1]. In the Lorenz energy cycle [2], nonlinear baroclinic instability processes
transfer large-scale potential energy to eddy potential energy (EPE); EPE is then converted
to eddy kinetic energy (EKE); and EKE is either returned to the large-scale flow or dissipated
through a wide range of mechanisms. Theories of geophysical macro-turbulence concern
themselves, inter alia, with predicting the length scales at which the EPE production and
conversion to EKE occur. An early theory proposed by Salmon [3] has become a touchstone
of the modern understanding [4], having been revised and expanded by a wide range of
authors. This early theory, and many successors, is formulated in the context of a highly
idealized two-layer quasigeostrophic model whose vertical structure can be formulated in
terms of two ‘modes’: a barotropic mode that is depth-independent, and a baroclinic mode
that is antisymmetric in the vertical. (The term ‘mode’ here simply means elements of a
basis, not the normal modes of a mechanical system, cf. [5,6].) These modes diagonalize
the energy, and Salmon’s theory was framed in terms of energy in the modes rather than
in terms of kinetic and potential energy. The barotropic mode has no potential energy,
while the baroclinic mode has both potential and kinetic energy, so the connection of the
modal energy perspective to the perspective based on kinetic and potential energy is murky.
Nevertheless, the modern theory of geophysical turbulence (cf. [4] Section 9.3) inherits
the following picture from Salmon’s theory: EPE is generated at scales larger than the
deformation radius (defined below) and then cascades downscale; conversion from EPE to
EKE occurs primarily at scales near the deformation radius; EKE is then dissipated by a
range of processes, especially by frictional interaction with the bottom boundary at scales
somewhat larger than the deformation radius.
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The goal of the present investigation is to study the process of conversion from EPE
to EKE from a mathematical rather than a physical perspective. Rather than studying the
dynamical processes responsible for conversion, the goal is to investigate the mathematical
limits on the rate of conversion per unit energy. The approach is based on considering all
possible flow configurations at a fixed energy level and then seeking a configuration that
will maximize the rate of potential to kinetic energy conversion. These flow configurations
need not be steady solutions of the governing equations, or even states that might realisti-
cally be produced by the dynamics, so the rates obtained in this way should be understood
as a limit on what a realistic flow can achieve, rather than as a prediction of what a realistic
flow will achieve. The method is closely related to methods used to provide upper bounds
on the heat flux in Rayleigh–Bénard convection, e.g., [7–9].

Barham and Grooms studied the mathematical limits on the rate by which eddies
can extract potential energy from the mean flow in a fluid model incorporating only the
hydrostatic approximation [10], and in a quasigeostrophic model [11]. They found that the
eddies are able to extract potential energy from the mean flow at a rate that is independent
of the length scale of the eddies. This was something of a null result, in the sense that the
bounds on what the flow can do are not closely related to what the flow actually does: a
wide range of investigations have found that the EPE is primarily generated at scales larger
than the deformation radius [12–20]. The results of the present investigation make a closer
connection to the phenomenology of geostrophic turbulence than the results of [10,11]: it
is shown that conversion from EPE to EKE is much less efficient than the generation of
EPE at scales large compared to the deformation radius. While the results do not provide a
rigorous mathematical explanation for why EPE is typically generated at scales larger than
the deformation radius (there are many dynamical theories to predict this, e.g., [3,14,15]), it
does connect to the downscale cascade of EPE and to the fact that conversion from potential
to kinetic energy is observed to be weak at scales larger than the deformation radius.

A limitation of the current results is that the maximal rates of conversion obtained
through the analysis are not proven here to be truly maximal. The conversion rate is a
function of the flow configuration, and there are an infinite number of flow configurations
that are stationary points of the function, i.e., these flow configurations correspond to local
extrema or saddle points of the function. The analysis here identifies an infinite set of
these stationary points that can be analyzed using Fourier methods and linear eigenvalue
theory. Whether there are other flow configurations that could result in higher conversion
rates remains an open question. The difficulty is related to the fact that conversion, in a
quasigeostrophic approximation, is a cubic function of the flow state, which is more difficult
to analyze than the production of EPE (cf. [10,11]), which is a quadratic function of the
flow state.

The paper is organized as follows. In Section 2, conversion is studied in the context of
the hydrostatic Eady problem, similar to the development in [10]. As in [10], the results are
complicated by the presence of unrealistic ageostrophic flow configurations, so, as in [11],
the quasigeostrophic (QG) version of the problem is studied next. The QG problem is
studied analytically in Section 3 and numerically in Section 4. Conclusions are offered in
Section 5.

2. The Hydrostatic Eady Problem

The linear perturbation equations in the nondimensional Eady problem with hydro-
static and Boussinesq approximations are [10,21]

(∂t + z∂x)u′ + εw′ x̂ + ε−1(ẑ× u′)h = −ε−1∇h p′ (1)

∂z p′ = b′ (2)

(∂t + z∂x)b′ − v′ + w′ = 0 (3)

∇h · u′ + ε∂zw′ = 0 (4)
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where z is the coordinate along the axis of rotation and gravity and x is the coordinate
along the direction of mean flow. The domain is periodic in the x and y directions and
z ∈ [0, 1]. The subscript h denotes the horizontal component of a vector, e.g., ∇h = (∂x, ∂y).

The buoyancy frequency is N and the dimensional background velocity is ū = Λz.
The Richardson number is ε−2, where ε = Λ/N. The time scale for nondimensionalization
is N/( f Λ), where f is the Coriolis parameter; the vertical length scale is H; the horizontal
length scale is the deformation radius NH/ f . The horizontal velocity scale is HΛ; the
vertical velocity scale is H f ε2; the buoyancy scale is HNΛ.

The perturbation kinetic energy equation is obtained by taking the dot product of (1)
with u′ = (u′, v′) and integrating over the domain (with several integrations by parts)

1
2

d
dt

∫
V
(u′)2 + (v′)2dV =

∫
V

w′b′ − εw′u′dV (5)

where
∫

V denotes an integral over the physical domain V. The perturbation available po-
tential energy equation is obtained by multiplying (3) by b′ and integrating over the domain

1
2

d
dt

∫
V
(b′)2dV =

∫
V

v′b′ − w′b′dV. (6)

The term of interest here is the conversion from potential to kinetic energy

C =
∫

V
w′b′dV. (7)

Because this is a hydrostatic model, the vertical velocity w′ is obtained from the horizontal
velocity using

w′ = −ε−1
∫ z

0
∂xu′ + ∂yv′ds (8)

where the variable s is a stand-in for the vertical coordinate.
The goal is to obtain a configuration of (u′, v′, b′) that maximizes the conversion C at a

fixed energy level E0. We therefore define the Lagrangian

I[u′, v′, b′, λ] = C− λ(E− E0) (9)

where λ is the Lagrange multiplier and the total energy is

E =
1
2

∫
V
(u′)2 + (v′)2 + (b′)2dV. (10)

The Lagrangian is a quadratic function of the buoyancy and velocity and the energy level
E0 can be scaled out of the problem, so, without loss of generality, let E0 = 1.As usual,
the Euler–Lagrange equations are derived by finding conditions that describe stationary
points of the Lagrangian.

The Euler–Lagrange equations for this constrained optimization problem are obtained
as follows. We first consider the Fréchet derivative of the energy, which is simply

dE =
∫

V
u′δu + v′δv + b′δbdV. (11)

To derive the Fréchet derivative of the shear production, start from the expression

dC =
∫

V
b′δw + w′δbdV. (12)

To proceed, we need the following simple integration by parts identity, also used in [10]∫ 1

0
g(z)

∫ z

0
h(s)dsdz =

(∫ 1

0
g(z)dz

)(∫ 1

0
h(z)dz

)
−
∫ 1

0
h(z)

∫ z

0
g(s)dsdz (13)
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which is valid for integrable functions g and h. This expression enables the following
manipulation of the first term in (12):

ε
∫ 1

0
b′δwdz = −

∫ 1

0
b′
∫ z

0

(
∂xδu + ∂yδv

)
dsdz (14)

= −
(∫ 1

0
b′dz

)(∫ 1

0

(
∂xδu + ∂yδv

)
dz
)
+
∫ 1

0

(
∂xδu + ∂yδv

) ∫ z

0
b′dsdz.

The fact that δw = 0 at both the upper and lower boundaries sets
∫ 1

0 ∂xδu + ∂yδvdz = 0.
The Fréchet derivative of the conversion is therefore

dC = −ε−1
∫

V

[
δu
(∫ z

0
∂xb′

)
+ δv

(∫ z

0
∂yb′

)
+ δb

(∫ z

0
∇h · u′

)]
dV. (15)

Configurations of (u′, v′, b′) that are stationary with respect to the conversion rate subject
to the condition of fixed energy satisfy

dI = dC− λdE = 0 (16)

for all (δu, δv, δb). The Euler–Lagrange equations are therefore∫ z

0
∂xb′ds = ελ u′ (17)∫ z

0
∂yb′ds = ελ v′ (18)∫ z

0
∇h · u′ ds = ελb′. (19)

Perturbation fields (u′, v′, b′) that satisfy these equations are associated with conversion
rates λ. Note that horizontally incompressible flow with b′ = λ = 0 is a stationary point of
the Lagrangian, but an uninteresting one since it has no conversion.

A system of partial differential equations for the optimal flow configurations can be
obtained by taking the partial derivative of these equations with respect to z and then
condensing to a single equation

∇2
hb′ = ε2λ2∂2

zb′. (20)

Noting that (19) implies that, for these optimal configurations b′ = 0 on the top and bottom
boundaries, we can expand solutions as

b′ = b̂k,neik·x sin(nπz) + c.c. (21)

where ‘c.c.’ denotes the complex conjugate and the amplitude of b̂k,n is determined by the
condition of unit total energy. The conversion rate λ satisfies

λ = ± |k|
εnπ

. (22)

The conversion rate exhibits an ultraviolet catastrophe where the conversion rate
approaches infinity at small scales. Ultraviolet catastrophes can call into question the
well-posedness of a system of equations; in this case, this is not a concern. Conversion
is not a component of the total energy budget, since the contributions to the kinetic and
potential energy budgets cancel on adding, so this ultraviolet catastrophe does not cause
unbounded growth of energy at small scales. Instead, it means that certain small-scale flow
configurations will almost instantaneously convert their potential energy to kinetic energy,
which is of course not problematic for the dynamics.
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The flow configurations associated with these high conversion rates have divergent
horizontal velocities: (19) implies

∇h · u′ = ελ∂zb′ = ± |k|
nπ

∂zb′. (23)

As |k|→ ∞, the magnitude of the divergence grows without bound, which causes the
magnitude of the vertical velocity to also grow without bound per (8). These flow configu-
rations are mathematically permissible—vertical velocity is not included in the conserved
energy for this model, so infinite vertical velocity is not precluded by the constraint of
finite energy—but physically unrealistic for balanced ocean dynamics, which have small
vertical velocities. Thus, as in [11], the next section pursues the question in the context of a
quasigeostrophic model. An alternative approach, not taken here, would be to analyze the
conversion in the non-hydrostatic model; this would include the vertical velocity as part of
the kinetic energy, which would prevent it from growing unboundedly in the progression
to small scales.

3. Conversion in the Quasigeostrophic Model

The nondimensional eddy vorticity and buoyancy evolution equations in an inviscid
quasigeostrophic (QG) approximation in the presence of a zonal mean flow are

∂tω + J[ψ, ω] + ū(z)∂xω + β∂xψ− ∂zw′ = 0 (24)

∂tb′ + J[ψ, b′] + ū(z)∂xb′ − v′∂zū(z) + w′N2(z) = 0 (25)

where ω = ∇2
hψ is the eddy vorticity, b′ = ∂zψ is the eddy buoyancy, N(z) is the nondimen-

sional buoyancy frequency, and J[ψ, ω] = ∂xψ∂yω − ∂yψ∂xω = u′ · ∇ω. The depth H is
used to nondimensionalize z, and the deformation scale L = N0H/ f is used to nondimen-
sionalize x and y, where f is the Coriolis parameter at a fixed reference latitude, and N0 is
the maximum value of the dimensional buoyancy frequency. The time scale is N−1

0 ; the
scale of ψ is N0L2 and of w′ is NL. The nondimensional planetary vorticity gradient is
β = β0L/N, where β0 is the meridional rate of change of the Coriolis parameter at the
same reference latitude.

These two evolution equations for derivatives of ψ could, in principle, be incompatible;
the incompatibility is prevented by vertical velocity w′, which acts to keep the two evolution
equations consistent. The condition on w′ that keeps the two equations consistent is
obtained by applying −∂z to (24), applying∇2

h to (25), and adding the results. This leads to
the Omega equation [22] for w′:

N2(z)∇2
hw′ + ∂2

zw′ = ∂z[J[ψ, ω] + βv]−∇2
h
[

J[ψ, b′]
]
+ 2(∂zū(z))∂xω. (26)

The evolution of kinetic and available potential energy in the QG model can be
obtained, respectively, by multiplying (24) by −ψ and integrating over the domain, and by
multiplying (25) by b′/N2(z) and integrating over the domain. The results are

1
2

d
dt

∫
V
(u′)2 + (v′)2dV =

∫
V

w′b′dV (27)

1
2

d
dt

∫
V

(b′)2

N2(z)
dV =

∫
V

v′b′∂zū(z)
N2(z)

− w′b′dV (28)

where one integration by parts was performed to obtain the kinetic energy equation, using
w′ = 0 conditions on the boundaries.
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3.1. Derivation of the Lagrangian

The form of the potential to kinetic conversion and of the total energy are the same as
in the hydrostatic Eady problem, with the important difference that in the QG problem,
the velocity and buoyancy are all derived from a single variable ψ. In terms of the QG
streamfunction, we can write the total energy as

E =
1
2

∫
V
|∇hψ|2 + 1

N2(z)
(∂zψ)2dV. (29)

Unlike in the hydrostatic Eady problem, conversion is a cubic function of ψ, although it can
be split into a sum of cubic and quadratic components. For notational convenience, Ω is
defined to be the differential operator acting on w′, i.e.,

Ω[w′] = N2(z)∇2
hw′ + ∂2

zw′. (30)

The operator Ω is self-adjoint when acting on the Sobolev space of functions with homoge-
neous Dirichlet boundary conditions whose weak derivatives of order ≤ 2 belong to L2(V),
which implies that Ω−1 is also self-adjoint (cf. [23], examples 10.1 and 10.4). Noting that Ω
is linear, we can split conversion as follows:

C = C3 + C2 (31)

C3 =
∫

V
Ω−1

[
∂z

[
J[ψ,∇2ψ]

]
−∇2

h[J[ψ, ∂zψ]]
]
∂zψdV (32)

C2 =
∫

V
Ω−1

[
β∂z∂xψ + 2(∂zū(z))∂x∇2ψ

]
∂zψdV (33)

where C3 is cubic and C2 is quadratic. The fact that Ω−1 is self-adjoint and commutes with
∂x implies that ∫

V
Ω−1[∂x∂zψ]∂zψdV =

1
2

∫
V

∂x

(
Ω−1[∂zψ]∂zψ

)
dV = 0. (34)

From this, we conclude that the vertical velocity generated by the β term in the Omega
equation does not lead to any conversion, and thus

C2 = 2
∫

V
Ω−1

[
(∂zū(z))∂x∇2ψ

]
∂zψdV. (35)

Note that β has a profound influence on the dynamics, and thus an indirect influence on
the rate of conversion of EPE to EKE.

With this notation, the problem of interest is to maximize the rate of conversion at
fixed energy level E0. The Lagrangian for this constrained optimization problem is

I[ψ] = C3 + C2 − λ(E− E0). (36)

Unlike the non-QG case, the presence of a cubic term implies that the energy level E0 cannot
be set to unity by a rescaling of ψ.

3.2. Analysis of the Cubic Term

The presence of the cubic term C3 implies that the Euler–Lagrange equations for
this Lagrangian constitute a quadratic eigenvalue problem, unlike the linear eigenvalue
problems associated with EPE production analyzed in [10,11]. However, the cubic term has
a curious property: for all flow configurations ψ for which dC2 − λdE = 0, we have that
C3 = dC3 = 0. This implies that any conclusions drawn from analyzing only the quadratic
part of the Lagrangian apply also to the full Lagrangian, with the only caveat being that
the optimal conversion rates discovered in this way may not be globally optimal for the
full problem.
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The following theorem justifies the foregoing statement about the cubic part of
the Lagrangian.

Theorem 1 (Univariate degeneracy of C3). Any flow configuration that satisfies
ψ(x, y, z) = p(kxx + kyy, z) sets C3 = dC3 = 0 for any kx and ky.

Proof. The fact that C3 = 0 for any ψ(x, y, z) = p(kxx + kyy, z) follows from the fact that
the Jacobian advection operator is zero for two univariate arguments: J[p(kxx + kyy),
r(kxx + kyy)] = 0.

To prove that dC3 = 0 for any ψ(x, y, z) = p(kxx + kyy, z), begin by using the fact that
Ω is self-adjoint to write

C3 =
∫

V

(
∂z

[
J[ψ,∇2ψ]

]
−∇2

h[J[ψ, ∂zψ]]
)

Ω−1[∂zψ]dV. (37)

Integrations by parts in the vertical and horizontal now produce the following, where
horizontal periodicity has been used, as well as the fact that Ω−1[·] produces a function
that is zero on the upper and lower boundaries:

C3 = −
∫

V
J[ψ,∇2ψ]

(
∂zΩ−1[∂zψ]

)
+ J[ψ, ∂zψ]

(
∇2

hΩ−1[∂zψ]
)

dV. (38)

With this expression in hand, we can consider the Fréchet derivative of C3

dC3 = −
∫

V
J[ψ,∇2ψ]

(
∂zΩ−1[∂zδψ]

)
+ J[ψ, ∂zψ]

(
∇2

hΩ−1[∂zδψ]
)

dV

−
∫

V
J[δψ,∇2ψ]

(
∂zΩ−1[∂zψ]

)
+ J[δψ, ∂zψ]

(
∇2

hΩ−1[∂zψ]
)

dV (39)

−
∫

V
J[ψ,∇2δψ]

(
∂zΩ−1[∂zψ]

)
+ J[ψ, ∂zδψ]

(
∇2

hΩ−1[∂zψ]
)

dV.

The first line is zero whenever ψ(x, y, z) = p(kxx + kyy, z) because of the property of the
Jacobian noted above. The remaining terms can all be expressed in the form∫

V
qJ[r, s]dV (40)

where either r or s is a perturbation. (Note that q does not refer to potential vorticity in this
expression.) The identity J[r, s] = −J[s, r] allows us to consider s to be the perturbation
without loss of generality. Integration by parts puts these terms into the form∫

V
qJ[r, s] = −

∫
V

s
(
∂y(q∂xr)− ∂x(q∂yr)

)
dV. (41)

If ψ = p(kxx + kyy, z), then, for all of terms on the second and third lines of (39), q and r
are of the form q = q(kxx + kyy, z) and r = r(kxx + kyy, z). For functions of this form,

∂y(q∂xr)− ∂x(q∂yr) = 0 (42)

which implies that dC3 = 0.

Note that no claim is made that these are the only flow configurations for which
dC3 = 0. A complete, rigorous analysis of the stationary points of the full Lagrangian is
outside the scope of this investigation.
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3.3. Euler–Lagrange Equations for the Quadratic Part

Having established the foregoing property of C3, we next derive Euler–Lagrange
equations for the quadratic component of the Lagrangian

I2[ψ] = C2 − λ(E− E0). (43)

As with the hydrostatic Eady problem, the fact that this Lagrangian is quadratic implies
that the energy level E0 can be set to unity without loss of generality. The Fréchet derivative
of the energy is

dE = −
∫

V

(
∇2

hψ + ∂z

(
1

N2(z)
∂zψ

))
δψdV. (44)

The Fréchet derivative of the quadratic component of conversion is

dC2 = −2
∫

V

(
∂zΩ−1

[
(∂zū(z))∂x∇2

hψ
]
+ (∂zū(z))Ω−1

[
∂x∇2

h∂zψ
])

δψdV. (45)

Expand both ψ and δψ as Fourier series,

ψ(x, y, z) =
1√

LxLy
∑
k

ψ̂k(z)eik·x (46)

δψ(x, y, z) =
1√

LxLy
∑
k

δ̂ψk(z)e
ik·x (47)

where Lx and Ly are the nondimensional length and width of the periodic domain. With
this expansion, we have the following representations of dE and dC2:

dE = −∑
k

∫ 1

0

(
−|k|2ψ̂k + ∂z

(
1

N2(z)
∂zψ̂k

))
δ̂ψ
∗
kdz (48)

dC2 = 2i ∑
k

kx|k|2
∫ 1

0

(
∂zΩ−1[(∂zū(z))ψ̂k

]
+ (∂zū(z))Ω−1[∂zψ̂k

])
δ̂ψ
∗
k. (49)

where δ̂ψ
∗
k is the complex conjugate of δ̂ψk. Stationary points of the quadratic Lagrangian

are thus single Fourier modes that satisfy the Euler–Lagrange equations

2ikx|k|2
(

∂zΩ−1[(∂zū(z))ψ̂k
]
+ (∂zū(z))Ω−1[∂zψ̂k

])
=

λ

(
−|k|2ψ̂k + ∂z

(
1

N2(z)
∂zψ̂k

))
. (50)

Because stationary points of the quadratic part of the Lagrangian are single Fourier modes,
they are of the form ψ(x, y, z) = p(kxx + kyy, z). Theorem 1 implies that C3 = dC3 = 0
for these configurations, so these flow configurations are also stationary points of the
full Lagrangian.

3.4. Asymptotic Analysis

Exact solutions of the Euler–Lagrange equations for the quadratic part (50) remain
elusive due to the presence of the Ω−1 operator. Before proceeding directly to numerical
investigations of conversion, it is valuable to provide some asymptotic analysis to comple-
ment the numerics. Two limits of interest are large and small scales. To analyze these limits,
we return to the Omega Equation (26), written for a single Fourier mode and omitting the
passive β term [

−N2(z)|k|2 + ∂2
z

]
ŵk = −2ikx|k|2(∂zū(z))ψ̂k. (51)
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Clearly, ŵk → 0 as kx → 0, which implies that conversion also goes to zero as kx → 0. More
generally, at large scales, i.e., k� 1, it is clear that ŵk ∼ kx|k|2, so conversion must go to
zero at scales much larger than the deformation radius.

For small scales, k� 1, it is evident that

ŵk ∼ 2ikx
∂zū(z)
N2(z)

ψ̂k. (52)

Exponentially thin boundary layers return ŵk to zero on the boundary if necessary, but these
layers contribute an asymptotically subdominant amount to the total conversion. The total
conversion for large k thus scales as twice the real part of

2ikx

∫ 1

0

∂zū(z)
N2(z)

ψ̂k∂zψ̂∗kdz. (53)

The elementary inequalities 2|ab| ≤ (a2 + b2) and k2
x ≤ |k|2 imply that the conversion in

this limit is bounded by

2
∫ 1

0

|∂zū(z)|
N(z)

(
|k|2|ψ̂k|2 +

|∂zψ̂k|2
N2(z)

)
dz (54)

which further implies that the rate of conversion per unit energy is bounded by twice the
Richardson number

2
∥∥∥∥∂zū(z)

N(z)

∥∥∥∥
∞

. (55)

This boundedness at small scales is in contrast to the behavior seen in the hydrostatic Eady
problem in Section 2, and mirrors the behavior of EPE production rates found in [11].

4. Numerical Investigation into Conversion Rates

This section provides a numerical investigation of maximal conversion rates, applying
only to the quadratic component of conversion in the presence of a zonal mean flow. Rather
than discretize the Euler–Lagrange Equations (50), the analysis is framed directly in terms
of the conversion for a single Fourier mode∫

V
w′b′dV = 2Re

[∫ 1

0
ŵk b̂∗kdz

]
. (56)

By applying standard equispaced, second-order, centered finite differences to the Omega
equation for a single Fourier mode (51) and to ∂zψ̂k = b̂k, one obtains an expression of
the form

C2 ≈ ψ̂∗kCψ̂k (57)

where C is a Hermitian matrix and ψ̂k is a vector of values of ψ̂k at Nz equispaced points
on z ∈ (0, 1). The energy may similarly be numerically approximated using

E ≈ ψ̂∗kEψ̂k (58)

where E = (|k|2I − L)/(4Nz) and L is a discrete approximation to the operator
∂z
(

N−2(z)∂z(·)
)
. With these discrete approximations, the generalized eigenvalues λ of

Cψ̂k = λEψ̂k (59)

are the conversion rates per unit energy associated with flow configurations given by the
generalized eigenvectors ψ̂k. The fact that C and E are both Hermitian and that E is positive
definite imply that there are exactly Nz real generalized eigenvalues λ for each Fourier
mode k.
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For comparison, the same treatment is applied to the rate of eddy potential energy
production following [11]; the continuous expression is

P =
∫

V
v′b′

∂zū(z)
N2(z)

dV = 2Re
[

ikx

∫ 1

0
ψ̂k∂zψ̂k

∂zū(z)
N2(z)

dz
]

. (60)

The discrete approximation takes the form

P ≈ ψ̂∗kPψ̂k (61)

and the optimal rates of production per unit energy are found as generalized eigenvalues λ
of the Hermitian generalized eigenvalue problem

Pψ̂k = λEψ̂k. (62)

The code used to generate the C, P, and E matrices can be found in [24].
Results are computed for three mean flow profiles:

Eady ū(z) = z− 1
2

(63)

Phillips ū(z) = −1
2

cos(πz) (64)

Ocean Charney ū(z) =
3
2

z2 − 1
2

(65)

all with N(z) = 1 and using Nz = 200 points. These three profiles represent three
different ways of violating the Charney–Stern–Pedlosky criteria for baroclinic stability
([4], Section 6.4.3; see also [25]). For each mean flow configuration and over a range of
wavenumbers k, the optimal rates of conversion and production per unit energy are computed.

These conversion rates are shown as functions of kx and ky in Figure 1, and as a
function of kx for ky = 0 in Figure 2. As predicted by the asymptotic theory, the conversion
rates go to zero as kx → 0, which is in contrast with the production rates. For the latter,
there is a singularity at k = 0 such that, for ky = 0 and kx → 0, the production rate remains
nonzero, whereas for ky 6= 0, the production rate goes to zero as kx → 0. This contrast is a
key finding of this investigation: QG flow is able to produce EPE at scales larger than the
deformation radius much more efficiently than it is able to convert EPE to EKE, at least
when considering only linear conversion processes. However, this mismatch only occurs
near the ky = 0 axis; at large scales away from this axis, the maximal rates of conversion
and production are both weak.

Figure 2 compares the conversion and production rates on the same plot for ky = 0.
For all mean flow configurations, the maximum possible rate of EPE production is larger
than the maximum possible rate of linear conversion at large scales. The rate of conversion
increases towards small scales, and the maximum possible rate of conversion exceeds that
of production at kx < 10 for the Eady and Phillips mean flows; for the Charney mean flow,
conversion exceeds production at much smaller scales (not shown). None of the computed
conversion rates violates the asymptotic bound derived in Section 3.4.

Figure 3 shows the flow configurations ψ that optimize conversion and production
for all three mean flow configurations at kx = 1, ky = 0. At this wavenumber, the maximal
production rate is significantly greater than the maximal conversion rate, and the flow
configurations that achieve these maximal rates are markedly different: the vertical tilt of
the horizontal flow is opposite for optimal conversion and optimal production.
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Figure 1. Conversion (left) and production (right) rates per unit energy as a function of kx and
ky for the Eady (upper row), Phillips (middle row), and Ocean Charney (lower row) mean flow
profiles. In each panel, there are 10 contour intervals above zero up to the maximum value on the
colorbar. In each row, the contour intervals in the left and right columns are matched. The horizontal
wavenumbers kx and ky are nondimensionalized using f /(NH).
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Figure 2. Left: Vertical profiles of mean flow ū(z) for the three configurations (63)–(65).
Right: Conversion (dashed) and production (solid) rates per unit energy as a function of kx for
ky = 0 for all three mean flow configurations. Green: Charney; Red: Eady; Yellow: Phillips. The hori-
zontal wavenumber kx is nondimensionalized using f /(NH).

Figure 3. Flow configurations ψ that locally optimize the rate of conversion (left) and production
(right) per unit energy for the Eady (upper row), Phillips (middle row), and Ocean Charney (lower
row) mean flow configurations. In all panels, ψ has been normalized to amplitude 1, and the contours
are from −1 to 1 in increments of 0.2. The horizontal coordinate x has been nondimensionalized
using NH/ f .
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5. Conclusions

The goal of this paper was to study the mathematical limits on the rate of conversion
from eddy potential energy (EPE) to eddy kinetic energy (EKE) with reference to the ocean’s
Lorenz energy cycle. The first result parallels one of the results of [10], namely that when
the problem is studied using only the hydrostatic approximation, the results are clouded
by the presence of highly unrealistic ageostrophic flow configurations that convert EPE to
EKE with an efficiency that is unbounded in the progression to infinitesimal horizontal
length scales. Thus, following [11], the quasigeostrophic version of the problem is studied
next so that, somewhat ironically, the more restrictive approximation might lead to more
realistic results.

In the quasigeostrophic approximation, the conversion rate is a cubic function of the
eddy flow configuration because the vertical velocity is a quadratic function of the QG
streamfunction through the Omega Equation (26) [22]. Nevertheless, in the presence of a
mean flow, the vertical velocity can be written as the sum of two components that depend
linearly and quadratically on the eddy flow state; the conversion rate can thus also be
written as the sum of two components that depend quadratically and cubically on the eddy
flow state. The second result of this study is the discovery that eddy flow configurations
that correspond to local extrema of the quadratic part of the conversion rate also correspond
to local extrema of the full conversion rate including the cubic term. This enables the use
of methods based on Fourier analysis and linear eigenvalue problems to find eddy flow
configurations that correspond to local maxima of the conversion rate; whether these local
maxima are also global maxima remains an open question.

Studying the local maxima only, it is found that the rate of EPE to EKE conversion
goes to zero as the horizontal length scale of the eddy flow configuration grows above the
deformation radius, and that as the horizontal length scale decreases past the deformation
radius, the rate of conversion appears to grow towards an upper bound. Putting these
results together with those of [11] on the maximal rate of EPE generation leads to the
following picture: at large scales, the maximal rate of EPE generation is much larger
than the maximal rate of conversion from EPE to EKE. Thus, if EPE is generated near the
maximal rate at large scales, it cannot be converted equally rapidly to EKE; to achieve a
statistically steady state, the EPE must be transferred towards smaller scales, where it can
be converted to EKE efficiently. As these results are only concerned with limits on what
the flow can do, they do not predict what the flow will do. Nevertheless, the results are
consistent with the phenomenological theory of QG turbulence.

This study raises some questions that remain unresolved. An obvious example is
whether there are eddy flow configurations that can achieve higher conversion rates than
the ones identified here. The question can be addressed using more advanced analytical
methods, or using numerical methods for partial-differential-equation-constrained opti-
mization. Barotropic shear could be introduced into the mean flow profiles; this would
prevent the problem from being partially diagonalized by a Fourier basis, and would simi-
larly require more advanced analytical methods, or using numerical methods for partial-
differential-equation-constrained optimization. Aside from the cubic problem, there still
remain open questions about the quadratic component of the problem. For example, one
might attempt to derive a rigorous bound on the quadratic conversion rate to complement
the asymptotic analysis provided in Section 3.4. Finally, the problems in the hydrostatic
model could potentially be alleviated by studying conversion in the non-hydrostatic model.
In the non-hydrostatic model, all three components of velocity are included in the kinetic
energy, which prevents the vertical velocity from growing unboundedly at small scales.
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