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Abstract: Models describing long wave–short wave resonant interactions have many physical appli-
cations, from fluid dynamics to plasma physics. We consider here the Yajima–Oikawa–Newell (YON)
model, which was recently introduced, combining the interaction terms of two long wave–short wave,
integrable models, one proposed by Yajima–Oikawa, and the other one by Newell. The new YON
model contains two arbitrary coupling constants and it is still integrable—in the sense of possessing a
Lax pair—for any values of these coupling constants. It reduces to the Yajima–Oikawa or the Newell
systems for special choices of these two parameters. We construct families of periodic and solitary
wave solutions, which display the generation of very long waves. We also compute the explicit
expression of a number of conservation laws.

Keywords: long wave–short wave resonant interaction; nonlinear waves; integrable systems; particular
solutions

1. Introduction

The study of wave propagation poses quite a number of challenging different mathe-
matical and computational problems [1].

The wave motion of continuous media is generally represented by solutions of one
or more partial differential equations (PDEs). Typically, homogeneous wave propagation
equations have a linear part, which is characterized by a dispersion law, and a nonlinear one,
which is responsible for self and/or cross interaction. While the linear part can be treated
by decomposition into Fourier harmonics, the nonlinear part—even if its dependence on
the fields is analytic—is generically treatable only by numerical methods. These two parts,
in terms of solvability, recombine in cooperation with each other for a small set of very
special wave equations, the so-called integrable ones, by allowing for a sort of nonlinear
Fourier-like analysis [2,3].

We have in mind (and consider below) only waves propagating in a one-dimensional
space, even if integrable wave equations in higher dimension are known too. Since their
first discovery more than half a century ago, the firmament of integrable wave equations has
been continuously growing. From the very beginning, water waves have played a pivotal
role in this research, with the discovery of the integrability of the Boussinesq equation, the
Korteweg–de Vries (KdV) equation and the nonlinear Schrödinger (NLS) equation, which
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may serve as approximate models of waves traveling on a water-free surface subject to
various physical conditions.

The existence of solitons is the most celebrated and effective prediction from the study
of water wave equations of integrable type. Subsequent research has pointed out that
discovering integrable wave equations is not only due to a lucky strike in the process
of approximating complicated PDEs of physical significance. In fact, integrable models
can be obtained by means of a perturbation approach, the so-called multiscale method
(see [4–6]), when applied to a given known nonlinear wave equation. Indeed, given a
physically relevant PDE, by appropriately rescaling both wave amplitudes and space–time
coordinates via the introduction of a small parameter ε, and by expanding in powers
of ε, one ends up with a different PDE which models the amplitude modulation in the
rescaled space–time coordinates. The point is that this process preserves the integrability
property of the original wave equation and thus it yields a (possibly) new integrable wave
equation. The rationale behind this method is based on physical arguments: one considers
the nonlinear terms as a perturbation of known Fourier-like solutions (harmonics) of the
linear dispersive part. Consequently, approximate solutions of the original PDE look
like superpositions of exponentials as, for instance, ∑j ψjei j (kx−ωt), whose amplitudes ψj
depend on rescaled coordinates only. The parameters k and ω are the wave number and
frequency on the dispersion curve ω = ω(k). If the superposition of harmonics contains
more wave numbers, this multiscale method in general yields a system of coupled PDEs,
which models wave–wave interactions.

A necessary condition for this to happen is the (weak) resonance relation:

ω(k1 + k2 + · · ·+ k j) = ω(k1) + ω(k2) + · · ·+ ω(k j), j > 1 .

Several models of resonant interaction have been derived in this way (e.g., see [5–7]) to
investigate their main features by means of known integrability techniques, provided such
models were selected as sufficiently “close” to a wave equation of specific physical interest.

This perturbative approach is also appropriate to investigate the resonant coupling of
two quasi-monochromatic waves, one with very long wave-length, say, with wave number
kL ≈ 0, and the second one with a much shorter wave-length, say with wave number
kS � kL. As originally pointed out in [8], this interaction can be understood as a resonant
triad k1, k2, k3, namely

k1 + k2 = k3 , ω(k1) + ω(k2) = ω(k3) ,

with
k1 = kL , k2 = kS − (1/2)kL , k3 = kS + (1/2)kL .

Indeed, if the long wave is sufficiently long, say kL → 0, and the dispersion function
ω(k) is analytic at k = 0, this condition is equivalent to the stronger condition that the long
wave and the short wave have the same group velocity, vL = vS.

The search for integrable PDEs which reasonably model phenomena due to long wave–
short wave (L-S) interaction started in the early years of the soliton era in fluid dynamics,
plasma physics and optics. The Yajima–Oikawa (YO) system [9]

iSt + Sxx − LS = 0 , Lt = 2(|S|2)x (1)

was first derived in the one-way wave approximation in plasma. Here and in the following,
S and L are the complex, and, respectively, real amplitudes of the short and long waves.
This system shows up also via the multiscale technique [7] in multiple ways. In fact, it
proves to be a multiscale reduction of an integrable equation of interest in water waves,
namely the Boussinesq equation [5]. A second and alternative integrable L-S wave system
was proposed by Newell [10]. This one reads

iSt + Sxx + (iLx + L2 − 2σ|S|2)S = 0 , Lt = 2σ(|S|2)x , σ2 = 1 , (2)
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where, in addition to a long wave–short wave coupling, the short wave has the same
self-interaction as the NLS equation, which may be both defocusing (σ = 1) or focusing
(σ = −1) according to the sign σ. We will refer to the system (2) as to the N equation.
However, the way to obtain this system as a multiscale reduction of an integrable equation
does not seem to be known.

In [11], it was shown that the YO and N Equations (1) and (2) need not be separately
treated to investigate the short wave–long wave interaction. Indeed, these two different
model equations, remarkably enough, can be combined in just one system, which we
refer to as the YON model, that is itself integrable for any real value of the two arbitrary
parameters α and β, namely

iSt + Sxx +
(

iαLx + α2L2 − βL− 2α|S|2
)

S = 0 , Lt = 2(|S|2)x . (3)

This system coincides with the YO Equation (1) for α = 0, β = 1, while it reads as
the N Equation (2) by setting α = σ, β = 0 and by substituting the field L with σ L. This
unifying result provides a greater flexibility in modeling the resonant interaction of long
and short waves, and allows to construct and analyze in one go the special solutions of the
two models, (1) and (2). On the mathematical side, we note that the YON model (3) turns
out to be a reduction of a larger system of four coupled PDEs [12].

The preliminary step to inquire on the application of the YON system to specific
physical wave phenomena is the compatibility of the L-S resonance condition (see the
triad resonance above) with the dispersion law (for an instance of such analysis in optics,
see [13]). Having in mind a fluid dynamical context, we recall a few elementary facts to
show that water waves on the free surface of a two-dimensional rectangular container
require that gravity be contrasted by surface tension [14]. Indeed, this effect allows the
resonance, which, however – at least in geophysical applications—is far from being of
experimental relevance; see [15]. As it happens, if the surface tension is neglected, the
dispersion law

ω2 = g k tanh(h k) ,

where g is the gravity acceleration and h is the depth of the flat bottom, does not allow
for the L-S resonance since the group velocity dω(k)/dk is monotonically decreasing in
the entire range 0 < k < +∞. Surface tension, if the wave length is sufficiently short, may
contrast gravity and change the dispersion law into

ω2 = g k tanh(h k)
[

1 +
n k2

g ρ

]
,

where n = 0.074 N/m is the surface tension constant and ρ is the water density. Although
this change of the frequency dispersion formally allows for the S-L resonance, the value of
kS which satisfies the strong resonance condition vL = vS strongly depends on the depth
h. For instance, a short wave of about 1 cm length requires a flat bottom of approximately
1 cm depth. For stratified fluids, see for instance [16,17].

Despite such resonant conditions leading to small effects in capillarity–gravity wave
propagation, we deem it of interest to investigate the YON model because of its potential
applicability while being integrable. Indeed, it has been shown [11] that there exists a Lax
pair of equations for an auxiliary function Ψ(x, t, λ) (where λ is a complex number called
spectral parameter or spectral variable)

Ψx = X Ψ , Ψt = T Ψ , (4)

whose compatibility condition

Xt − Tx + [X , T] = 0 (5)
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is equivalent to the YON system (3). Here X(x, t, λ) and T(x, t, λ) are complex matrix-
valued functions depending on the field variables S and L, and also polynomially on the
spectral variable λ,

X = iλ X1 + X0 , T = (iλ)2T2 + iλ T1 + T0 , (6)

where X1 and T2 denote constant, traceless, diagonal matrices

X1 =

 1 0 0
0 0 0
0 0 −1

 , T2 =
i
3

 1 0 0
0 −2 0
0 0 1

 , (7a)

and the matrices X0, T1 and T0 have the form

X0 =

 0 S iL
αS∗ 0 S∗

iα2L− iβ αS 0

 , T1 =

 0 iS 0
iαS∗ 0 −iS∗

0 −iαS 0

 , (7b)

T0 =

 −iα|S|2 −αLS + iSx i|S|2
−α2LS∗ + βS∗ − iαS∗x 2iα|S|2 −αLS∗ − iS∗x

iα2|S|2 −α2LS + βS + iαSx −iα|S|2

 . (7c)

However, in the following, we will not make use of the Lax pair (4), and we refer the
interested reader to [11], where further details on the integrable character of the system can
be found.

In the next section, we discuss several families of periodic and traveling wave solu-
tions of the YON system (3), including dark and bright solitons, as well as rational solitons.
Finally, in Section 3, using a set of multipliers, we construct and exhibit a family of con-
servation laws. To this purpose, it is instrumental the use of symmetry transformations
of our system (3). Thus we end this section by observing that the YON system (3) is
trivially invariant with respect to translations in space and time, as well as to rotations
around the origin in the S plane. Moreover, the YON system is invariant under the general
transformation

(x, t, S, L)→
(

ε−1x, ε−2t, ε exp
[
i
(ε2 − 1)β2t

4α2

]
S, εL− (ε− 1)β

2α2

)
where ε 6= 0 is an arbitrary parameter. Note that the limit α→ 0 of the above transformation
can be obtained by mapping ε→ exp (−2α2ε) first. If α = 0, we have that (3), namely the
YO system (1), is invariant under the additional scaling:

(x, t, S, L)→
(

ε2 x, ε4 t, ε−3 S, ε−4 L
)

,

while, if β = 0, say if (3) is the N system (2), the invariant scaling transformation is

(x, t, S, L)→
(

ε x, ε2 t, ε−1 S, ε−1 L
)

,

where ε 6= 0 is an arbitrary parameter.

2. Solutions of the YON Model

Although system (3) is integrable and hence it allows for solutions to be found by a
variety of elegant and powerful solution techniques rooted into integrability theory, for
the purpose of this paper, we use instead an Ansatz to derive periodic and traveling wave
solutions, without resorting to heavier mathematical machineries. Our Ansatz naturally
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follows the form of the periodic and traveling wave solutions of the nonlinear Schrödinger
equation, and it reads

S(t, x) = s(z)ei(φ(z)−ωt), L(t, x) = `(z), (8)

where z = x − Vt for V ∈ R, V 6= 0, ω ∈ R and s, φ, ` are real valued functions. After
substitution of the Ansatz into the second equation of (3), the resulting equation can be
integrated in order to obtain ` in terms of s:

`(z) = − 2
V

s(z)2 + c1, (9)

where c1 is an arbitrary integration constant. We now make use of this new expression
for L, substitute in the first equation of (3) and separate it into real and imaginary parts in
order to obtain the system

s(z)φ′′(z) + 2s′(z)φ′(z)−
[

V +
4α

V
s(z)2

]
s′(z) = 0, (10a)

s′′(z)− s(z)φ′(z)2 + V s(z)φ′(z) + (α2c2
1 − βc1 + ω) s(z) +

(
2β

V
− 4α2c1

V
− 2α

)
s(z)3 +

4α2

V2 s(z)5 = 0. (10b)

for the functions s and φ. Equation (10a) can be integrated with respect to z after multipli-
cation by s, yielding an expression for the first derivative of φ in terms of s:

φ′(z) =
α

V
s(z)2 +

V
2
+ c2 s(z)−2, (11)

where c2 is an integration constant. We now plug this expression for φ′ into Equation (10b),
obtaining

s′′(z) +
1

4V

[
V3 + 4V

(
α2c2

1 − βc1 + ω
)
− 8αc2

]
s(z) +

2
V
(β− αV − 2α2c1) s(z)3 +

3α2

V2 s(z)5 − c2
2 s(z)−3 = 0 . (12)

Equation (12) can be integrated with respect to z after multiplication by s′, resulting in
a differential equation for s′(z)2:

s′(z)2 = − 1
4V

[
V3 + 4V

(
α2c2

1 − βc1 + ω
)
− 8αc2

]
s(z)2 +

1
V
(−β + αV + 2α2c1)s(z)4 − α2

V2 s(z)6 + 2c3 − c2
2 s(z)−2, (13)

where c3 is an integration constant. Observe that for α = 0, the coefficient of s(z)6 becomes
zero and the equation simplifies, leading to the Weierstraß elliptic function. The case α = 0
corresponds to the YO model, well studied in the literature, e.g., see [18,19] for some recent
results about periodic and rational solutions and the literature therein.

Here and thereafter, we will assume α 6= 0. Introducing the following change of
variable

V
2α

u(z) = s(z)2 − u0 , u0 =
V(α V + 2K1α2 − β)

4α2 , α 6= 0 (14)

Equation (13) becomes, without any loss of generality,

u′(z)2 = −u(z)4 + µ2u(z)2 + µ1u(z) + µ0 (15)

where
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µ0 = − V
2α3 c3 +

4α2ω− 8α2 V2 − β2

4α4 c2 +
α2µ1 + 2α V2(µ2 + 6ω)− α2 V3 − 3β2 V

2α3 c+

+
1
4

{
2µ1 V + V2

(
4ω− β2

α2

)
−
[
β2 − α2(µ2 + 4ω)

]2
α4

} (16)

whereas c, µ1, and µ2 are arbitrary constants. Note that the number of arbitrary constants
is preserved. The integration constants c1, c2 and c3 can be rewritten in terms of c, µ1 and
µ2 as follows:

c1 =
c + β

2α2 , (17a)

c2 = −
V
{

c2 + 6cα V + 2β2 + α2[V2 − 2(µ2 + 4ω)
]}

16α3 . (17b)

c3 =
V3[−2α3µ1 + 2α2µ2(c + α V)− (c + α V)3]

32α4 . (17c)

As for φ(z), from (11), we obtain the quadrature

φ′(z) =
α
[
α V2 − c V + α(µ2 + 4ω)

]
− β2 + 2αu(z)[c + 2α V + αu(z)]

2α[c + α V + 2αu(z)]
(18)

For µ1 = 0, Equation (15) admits periodic solutions in terms of Jacobi elliptic functions,
which we discuss below.

2.1. Jacobi Elliptic Sine Solution

Let us assume that u(z) has the form

u(z) = γ0 + γ1 sn
(

a(z− z0), m
)

, (19)

where sn(z) denotes the Jacobi elliptic sine of z, where γ0, γ1, a, z0 and m are real parameters,
and 0 ≤ m ≤ 1. Inserting (19) into (15) with µ1 = 0 and playing with the properties of
the Jacobi elliptic functions, one obtains a polynomial of degree four in sn(a(z− z0), m)
equated to zero. Setting the coefficients of each power of sn(z) to zero, one obtains a set
of algebraic equations for the parameters ω, m, a, γ0, γ1, µ2 and c. In particular, a relation
for ω in terms of the other parameters can be found by setting the constant term of the
polynomial to zero. This latter relation returns a non-real ω for any choice of the other
parameters, and therefore, this excludes the existence of a sn-solution of the form (19)
starting from Ansatz (8).

2.2. Jacobi Elliptic Cosine Solution

Proceeding as above but with the Jacobi elliptic cosine cn(z) replacing sn(z) in (19),
we obtain the following solution to (15) in:

u(z) = ma cn
(

a(z− z0), m
)

, (20)

with
µ2 = (2m2 − 1)a2 , c = b− α V , (21a)

and

ω =
2β2 + 2α2[a2(1− 2m2)− 2V2]+ 4α Vb + b2 ±

√
(b− 2amα) (b + 2amα) [b2 + 4a2(1−m2)α2]

8α2 , (21b)
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where m, z0, a 6= 0 and b are real parameters, with 0 ≤ m ≤ 1. Replacing the expression of
u(z) into the original Ansatz (8), we obtain the following solution of the YON system:

S(x, t) =
1
2

ei(φ(z−ωt)

√√√√V
[
b + 2mαa cn

(
a(z− z0), m

)]
α2 , (22a)

L(x, t) =
β− α V − 2mαa cn

(
a(z− z0), m

)
2α2 , z = x−Vt , (22b)

where φ(z) satisfies the quadrature

φ′(z) =
1

4α

b + 2α
[
V + ma cn

(
a(z− z0), m

)]
±
√
(b− 2amα) (b + 2amα) [b2 + 4a2(1−m2)α2]

2mαa cn
(

a(z− z0), m
)
+ b

 , (22c)

where the sign in front of the square root is the same sign chosen for ω. Observe that,
in addition to the coupling parameters α and β in the YON model (3), the solution (22)
features five real parameters, namely a, b, m, V and z0, with a sixth real, arbitrary parameter
coming from the integration of (22c).

For this to work, we need s, φ, and ω to be real. In order to assure that, we need
to check the sign inside all the square roots involved, which gives us constraints on the
parameters, namely ∣∣∣∣ b

αa

∣∣∣∣ ≥ 2m , Vb ≥ 0 . (23)

Furthermore, in the special case m = 1, the value b = 0 is allowed as long as α Va > 0;
see Section 2.4.

The short wave |S| oscillates between the values

1
2

√
V(b + 2mαa)

α2 and
1
2

√
V(b− 2mαa)

α2 ,

That is to say, |S|2 oscillates with amplitude |Vma/α|, while the long wave L oscillates
between the values

β− α V − 2mαa
2α2 and

β− α V + 2mαa
2α2 ,

that is, with amplitude 2|ma/α|. The cn-solution is periodic in x with period |4K(m)/a|
and in t with period |4K(m)/(aV)|, where K(m) is the complete elliptic integral of the first
kind of m,

K(m) =
∫ π

2

0

dθ√
1−m sin2 θ

=
∫ 1

0

dt√
(1− t2)(1−mt2)

. (24)

An example of cn-solution is illustrated in Figure 1.
Moreover, we observe that there are two special solutions corresponding to the par-

ticular choices m = 0 and m = 1. If m = 0, the elliptic cosine reduces to the trigonometric
cosine, and the solution becomes a plane wave. If m = 1 the elliptic cosine reduces to the
hyperbolic secant, leading to a localized solution, treated in Section 2.4.
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(a) (b)
Figure 1. Elliptic cosine solution with α = 1, β = 2, V = 1.2, b = 5, a = 1.3, z0 = 0, m = 0.5. (a). Short
wave |S|. (b). Long wave L.

2.3. Jacobi Delta Amplitude Solution

Proceeding as above with the Jacobi delta amplitude dn(z) replacing sn(z) in (19), we
obtain the following solution to (15)

u(z) =
a
m

dn
(

a(z− z0), m
)

, (25)

with

µ2 =

(
2

m2 − 1
)

a2 , c = b− α V , (26a)

and

ω =
1

8m2α2

{
2α2[− 2V2m2 + (m2 − 2)a2]+ 4Vm2αb + m2(2β2 + b2)±

√
(mb− 2aα) (mb + 2aα)[m2b2 − 4a2(1−m2)α2]

}
, (26b)

where m, z0, a 6= 0 and b, are real parameters, with 0 ≤ m ≤ 1.
The solution in this case has the form

S(x, t) =
1
2

ei(φ(z)−ωt)

√√√√V
[
mb + 2αa dn

(
a(z− z0), m

)]
mα2 , (27a)

L(x, t) =
m(β− α V)− 2αa dn

(
a(z− z0), m

)
2mα2 , z = x−Vt (27b)

where φ satisfies the quadrature

φ′(z) =
1

4mα

2Vmα + mb + 2αa dn
(

a(z− z0), m
)
±
√
(mb− 2aα) (mb + 2aα)[m2b2 − 4a2(1−m2)α2]

2αa dn
(

a(z− z0), m
)
+ mb

 , (27c)

where the sign in front of the square root is the same sign chosen for ω. Similar to the Jacobi
elliptic solutions (22), observe that the solutions (27) feature five real parameters, namely a,
b, m, V and z0, with a sixth real, arbitrary parameter coming from the integration of (27c).

Again, checking the square roots that appear for having real solutions, we obtain the
following constraints on the parameters:

2

√
1−m

m2 ≤ b
αa
≤ 2

√
1−m2

m2 , α Va > 0 , 0 < m ≤ 1 . (28)

It also allows the special values b
αa = −2

√
1−m
m2 and b

αa = 2
m , for 0 < m ≤ 1. We

discuss the special case m = 1 in Section 2.4.



Fluids 2022, 7, 227 9 of 15

The dn solution has periodicity for L and |S| with period |2K(m)/a|, where K(m)
is the complete elliptic integral of the first kind of m, while the phase of S has a period
|4K(m)/a|.

The short wave |S| oscillates between the values

1
2

√
V[2αa(1−m)1/2 + mb]

mα2 and
1
2

√
V(2αa + mb)

mα2 ,

That is to say, the oscillations in |S|2 have an amplitude
∣∣Va(1−

√
1−m)/(2α)

∣∣, while
the long wave L oscillates between the values

m(β− α V)− 2αa
2mα2 and

m(β− α V)− 2αa
√

1−m
2mα2 ,

that is, with an amplitude
∣∣a(1−√1−m)/α

∣∣. An example of dn-solution is illustrated in
Figure 2.

(a) (b)
Figure 2. Delta amplitude solution with α = 1, β = 1, V = 2, b = 9, a = 3, z0 = −2, m = 0.5.
(a). Short wave |S|. (b). Long wave L.

2.4. Traveling Waves: Solitons

The choice m = 1 in (20) makes the period of the elliptic cosine diverge, so the solution
becomes localized. The corresponding solutions are solitons, both of the dark and bright
types.

The solution for m = 1, which for a generic choice of parameters corresponds to a dark
soliton, has the form

S(x, t) =
1
2

ei(φ(z)−ωt)

√√√√V
[
b + 2αa sech

(
a(z− z0)

)]
α2 , (29a)

L(x, t) =
β− α V − 2αa sech

(
a(z− z0)

)
2α2 , z = x−Vt , (29b)

ω =
1

8α2

[
2β2 − 2α2(2V2 + a2) + 4Vαb + b2 ±

√
b4 − 4α2a2b2

]
, (29c)

with

φ(z) =
z− z0

4α

(
2α V + b± sgn(b)

√
b2 − 4α2a2

)
+ arctan

(
tanh

( a
2
(z− z0)

))
∓ sgn(b) arctan

(
(b− 2αa) tanh

(
a
2 (z− z0)

)
√

b2 − 4α2a2

)
+ φ0 , (29d)
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where φ0 is an arbitrary phase, and the sign function sgn satisfies sgn(0) = 0. As a
consequence of (23), and as it can be observed from the formulae above, the general
condition on the parameters for the validity of the soliton solution, when b 6= 0, is∣∣∣∣ b

αa

∣∣∣∣ ≥ 2 . (30)

The special choice b = 0 (see below) is also allowed by the system, though the resulting
solution has the phase

φ(z) =
V (z− z0)

2
+ arctan

(
tanh

( a
2
(z− z0)

))
+ φ0 .

The square of the short wave, |S|2, has an amplitude
1
2

∣∣∣∣Va
α

∣∣∣∣ over the background∣∣∣∣Vb
4α

∣∣∣∣, while the long wave L has an amplitude − a
α

over the background
β− α V

2α2 . Note

that both amplitudes and the background of S do not depend on β at all, while they all
depend inversely on α.

By construction, both S(x, 0) and L(x, 0) are centered at x = z0, while S(x, t0) and
L(x, t0) for a given t0 are both centered at x = z0 + Vt0.

Whenever b = 0, S has zero background, and whenever V = β/α, L has zero back-
ground too. Both equalities being true means having a bright soliton solution, both being
false leads to a dark soliton solution, while the cases where one is true and the other is not
lead to mixed bright–dark solutions.

The resulting formula for the bright case is

S(x, t) =
√

2
2

ei(φ(z)−ωt)

√√√√ βa sech
(

a(z− z0)
)

α2 , (31a)

L(x, t) = −
a sech

(
a(z− z0)

)
α

, z = x− β

α
t , (31b)

ω = − β2 + α2a2

4α2 , (31c)

φ(z) =
β(z− z0)

2α
+ arctan

(
tanh

( a
2
(z− z0)

))
+ φ0 . (31d)

The same procedure can be carried out by taking m = 1 in the dnoidal solution (25).
The solitons obtained in this way have the exact same formula as the ones obtained from
the cnoidal case. An example of bright soliton solution is illustrated in Figure 3.

(a) (b)

Figure 3. Bright soliton solution, with α = 0.5, β = 2, a = 0.25, b = 0, V = 4, z0 = −20. (a). Short
wave |S|. (b). Long wave L.
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2.5. Traveling Waves: Rational Solution

By letting c1 = c2 = c3 = 0 in (13) it reads

s′(z)2 = − α2

V2 s(z)2
[

s(z)4 − V
α2 (αV − β) +

V2

3α4 (αV − β)2
]

, (32)

where ω is given below. An integration process now yields

∫ 0

s

3
√

3 α2|α|
(V(αV − β)− 3α2ζ2)3/2 dζ = ±

√
α2

V2 z .

Computing the integral, solving with respect to s(z) and substituting into the expres-
sions for `(z) and φ(z) leads to the solution

S(x, t) =
z√
3 α

ei(φ(z)−ωt)

√
V (αV − β)3

9α2 + (αV − β)2z2 , (33a)

L(x, t) = − 2(αV − β)3z2

3α2[9α2 + (αV − β)2z2]
, z = x−Vt, (33b)

ω =
α2V2 − 8αβV + 4β2

12α2 , (33c)

φ(z) = arctan
(

3α

(αV − β)z

)
+

(
V
2
+

αV − β

3α

)
z + φ0, (33d)

where φ0 is an arbitrary phase, and the constraint V(αV − β) > 0 is assumed.
The short wave |S| is a dark rational solution with an amplitude depression of√

V(αV − β)/(3α2) propagating on the non-vanishing background
√

V(αV − β)/(3α2),
whereas the long wave L has an amplitude 2(αV − β)/(3α2) over the asymptotic back-
ground −2(αV − β)/(3α2). An example of rational solution is illustrated in Figure 4.

(a) (b)
Figure 4. Rational solution with α = 2, β = 1, V = 1. (a). Short wave |S|. (b). Long wave L.

In the case where β = 0 and we are back to the Newell system (2), the solution is
simplified to

S(x, t) =
z√
3 α

ei(φ(z)−ωt)

√
α V4

9 + V2z2 , (34a)

L(x, t) = − 2V3z2

3α[9 + V2z2]
, z = x−Vt, (34b)

ω =
V2

12
, (34c)

φ(z) = arctan
(

3
Vz

)
+

(
V
2
+

αV
3α

)
z + φ0, (34d)



Fluids 2022, 7, 227 12 of 15

where α > 0. To the best of our knowledge, this is the first time such a solution is derived
for (2).

Another solution can be obtained for V(αV − β) > 0 but now for ω = −c2/4, still
with c1 = c2 = c3 = 0. The quadrature (13) is now rewritten as

s′(z)2 = − α2

V2 s(z)4
[

s(z)2 − V
α2 (αV − β)

]
,

and integration leads to the solutions

S(x, t) = ei(φ(z)−ωt)

√
V(αV − β)

α2 + (αV − β)2z2 , (35a)

L(t, x) = − 2(αV − β)

α2 + (αV − β)2z2 , z = x−Vt, (35b)

ω = −c2/4, (35c)

φ(z) =
V
2

z + arctan
(
(αV − β)z

α

)
+ φ0 . (35d)

The short wave |S| and long wave L are bright rational solutions with amplitudes of√
V(αV − β)/(α2) and −2(αV − β)/(α2), respectively, on a zero background. To the best

of our knowledge, this is also a novel solution of (2).

3. Conservation Laws

The YON model (3) is integrable, and therefore it allows infinitely many conservation
laws. In this section, we are interested in deriving a few explicit ones, by finding convenient
multipliers. A conservation law of (3) corresponds to an expression

ρt + fx = 0, (36)

where ρ ≡ ρ(S, L, Sx, Lx, . . . ) is the density and f ≡ f (S, L, Sx, Lx, . . . ) the corresponding
flux, respectively. For instance, a trivial conservation law of the YON system (3) is

ρ0 = L, (37a)

f0 = −2|S|2 (37b)

which coincides with the second equation in (3).
In [20–22], it was established that every conservation law corresponds to a symmetry

of the equation, but very often, this symmetry is non-classical or even non-local. For cases
where Noether’s theorem is applicable, this correspondence is explicit, as Noether symme-
tries lead to (possibly trivial) conserved vectors; however, we ruled out this approach, as
we were unable to find a variational formulation for system (3). Instead of using Noether’s
approach, we consider the direct method illustrated in [20–23], consisting in finding a
vector g = (g1, g2, g3), called multiplier, that depends on S, L and their derivatives up to a
certain fixed but arbitrary order, such that

δg1F1

δS
= 0,

δg2F2

δS∗
= 0,

δg3F3

δL
= 0, (38)

where

F1 = iSt + Sxx +
(

iαLx + α2L2 − βL− 2α|S|2
)

S , F2 = F ∗1 , F3 = Lt − 2(|S|2)x , (39)
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and where δ/δu is the variational derivative with respect to the variable u. If such a vector
g can be found, then it ensures the existence of ρ and f such that

ρt + fx = g1F1 + g2F2 + g3F3 = 0 . (40)

By making use of GeM [24–28], for any choices of α, β ∈ R, we can find some pairs
of conserved densities and fluxes depending on derivatives up to the second order, the
simplest ones of which read

ρ1 =
α

2
L2 − |S|2, (41a)

f1 = −2αL|S|2 − 2 Im(S∗Sx), (41b)

ρ2 = 2α2L|S|2 − β|S|2 + 2α Im(S∗Sx), (42a)

f2 = 2α|Sx|2 − 2α Re(S∗Sxx) + 4α2L Im(S∗Sx)− 2β Im(S∗Sx), (42b)

while the remaining ones can be found in Appendix A.

4. Conclusions

Models describing long wave–short wave resonant interactions arise in a variety of
physical contexts, from fluid dynamics to plasma physics. In this paper, we consider the
recently proposed, long wave–short wave YON (Yajima–Oikawa–Newell) model (see [11]),
an integrable model featuring two arbitrary parameters, and unifying and generalizing the
Yajima–Oikawa model and the Newell model.

We studied some relevant families of periodic and solitary wave solutions, displaying
the generation of very long waves. Among others, we also displayed the expression of
solutions that we term, with some abuse of language, “rational”. Differently from the
NLS equation, where the amplitude |S| is indeed rational (cf., the Peregrine soliton), in
the present case, it is rather the function |S|2 that comes to be rational. This is due to the
quintic nonlinearity appearing in the YON system for the short wave amplitude |S|, rather
then the usual cubic one as in the NLS equation. An analytical study of the stability of
the solutions presented in this paper is left to future investigation. In this respect, we
limit ourselves to report here that we carried out a preliminary numerical study, solving
the initial value problem for initial conditions obtained by computing our solutions at
t = 0, using the method of lines with pseudospectral, Fourier discretization in space and
an adaptive Dormand–Prince embedded Runge–Kutta method for the time stepping: the
numerical results seem to suggest the existence of regions of stability and regions where
different forms of instability are observed, similar to what is predicted for plane wave
solutions of the YON system [11,29].

The families of explicit solutions presented in this paper were obtained by choosing a
suitable Ansatz. A systematic derivation of soliton solutions of bright, gray and dark types,
as well as of breathers and rogue waves, exploiting the integrable character of the YON
system, is currently in progress.

In this paper, we also derived a few conservation laws, which are of interest in view
of the numerical and analytical studies of this system. An argument based on the effect
of the surface tension on the dispersion relation for short waves, allowing for short–long
wave resonance, is presented to justify the physical relevance of the YON model in a fluid-
dynamical context (and in particular for experimental set-ups of capillarity–gravity wave
propagation on the scales of the centimeters), where the value of the wave number strongly
depends on the water depth. In spite of the expected physical relevance, a derivation,
via multiscale techniques, of the full YON system—similar to the Newell model, which is
contained within the YON system—as an (integrable) reduction from a known physical
PDE has not yet been achieved and remains an intriguing open problem. It is worth
observing that a subcase of the YON model, namely the Yajima–Oikawa model, has been
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indeed derived via the multiscale technique in more than one way [7], suggesting that this
should be possible also for the more general YON model.
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Appendix A. Conserved Vectors Depending on Derivatives up to the Second Order

In this Appendix, we list the remaining densities and fluxes (in addition to (41) and
(42)) depending on derivatives up to the second order.These were computed using GeM
[24–28], for α, β ∈ R.

ρ3 =2α2tL|S|2 + α2

2
xL2 − β

2
xL− βt|S|2 − αx|S|2 + 2αt Im(S∗Sx), (A1a)

f3 =− 2α2xL|S|2 + βx|S|2 + 4α2tL Im(S∗Sx) + 2αt|Sx|2 − 2αx Im(S∗Sx) (A1b)

− 2βt Im(S∗Sx)− 2αt Re(S∗Sxx);

ρ4 =
1
2

α5L4 − 2α4L2|S|2 − α3βL3 + 2α3|S|4 + 4α3L Im(S∗Sx)−
1
2

α3L2
x + 2β2|S|2 − 4αβ Im(S∗Sx) + 4α2|Sx|2, (A2a)

f4 =6α3βL2|S|2 + 8α4L|S|4 − 4α2β|S|4 − 4αβ|Sx|2 + 4α3L|Sx|2 − 4α5L3|S|2 + 8α3|S|2 Im(S∗Sx) (A2b)

+ 4β2 Im(S∗Sx)− 4α4L2 Im(S∗Sx) + 8α3Lx Re(S∗Sx) + 4αβ Re(S∗Sxx)− 4α3L Re(S∗Sxx) + 8α2 Im(S∗xSxx).
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