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Abstract: Significant research efforts have been devoted in the past decades to accurately modelling
the complex heat transfer phenomena within biological tissues. These modeling efforts and analysis
have assisted in a better understanding of the intricacies of associated biological phenomena and
factors that affect the treatment outcomes of hyperthermic therapeutic procedures. In this contribution,
we report a three-dimensional non-Fourier bio-heat transfer model of cardiac ablation that accounts
for the three-phase-lags (TPL) in the heat propagation, viz., lags due to heat flux, temperature
gradient, and thermal displacement gradient. Finite element-based COMSOL Multiphysics software
has been utilized to predict the temperature distributions and ablation volumes. A comparative
analysis has been conducted to report the variation in the treatment outcomes of cardiac ablation
considering different bio-heat transfer models. The effect of variations in the magnitude of different
phase lags has been systematically investigated. The fidelity and integrity of the developed model
have been evaluated by comparing the results of the developed model with the analytical results of
the recent studies available in the literature. This study demonstrates the importance of considering
non-Fourier lags within biological tissue for predicting more accurately the characteristics important
for the efficient application of thermal therapies.

Keywords: hyperthermia; cardiac ablation; bio-heat transfer; non-Fourier heat transfer; TPL model;
numerical simulations

1. Introduction

Minimally invasive thermal therapies (viz., radiofrequency, laser, microwave, and
cryo- and ultrasound ablations) are well-established as a promising localized treatment
option for treating different types of cancers, cardiovascular diseases, neurodegenerative
disorders, as well as chronic pain [1–5]. The goal of thermal ablation is to attain direct
cellular injury by the application of extreme temperatures, either too high (hyperthermic
ablation) or too low (cryoablation). During thermal therapies, the applicator/catheter is
introduced percutaneously into the target tissue with the aid of image-guided modalities,
such as computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound [1,6].
The energy deposited within the biological tissue from the applicator in high-temperature
thermal therapies leads to localized heating at the target site resulting in protein denatura-
tion, mitochondrial dysfunction, halt in enzyme function, and cell membrane collapse [2].
Importantly, minimally invasive thermal therapies result in a potential reduction in the
physical, emotional, and financial stress on patients as compared to surgery and are quite
useful for treating patients on whom conventional surgery cannot be performed due to
associated comorbidities.

Computational modeling and simulations have played an important role in better
understanding the underlying physics of various thermal ablative procedures among
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different organs/tissues. These models also assist in providing a reasonable a priori estimate
of the treatment outcomes of therapy that is beneficial in optimizing the thermal dosage
and better planning of the procedure, thus minimizing the risk of unnecessary damage to
the surrounding healthy tissue and critical structures. Several advancements have been
reported in the computational modeling of thermal ablation in the past decades to reach a
stage where the discrepancy between the model outcome and experimental/clinical results
is minimal [7–11]. So that the patient-specific models can be readily integrated within the
hospital workflow to provide accurate predictions during the treatment planning stage,
thereby enhancing the efficacy of such thermal therapies.

The Fourier’s law-based Pennes model [12] is a widely used bio-heat transfer model
for analyzing the heat transport within the biological tissue during thermal therapies.
However, the assumption of the infinitely fast speed of heat transport in the Pennes model is
heavily criticized, particularly in the biological tissues which have highly non-homogenous
inner structures. Thus, the heat always propagates at a finite speed within biological
tissues, suggesting the existence of thermal delay and non-Fourier behavior [9,13,14].
Several numerical studies have incorporated the single-phase lag (accounting for the
lag associated with the heat flux vector as proposed by Cattaneo [15] and Vernotte [16])
and dual-phase-lag (accounting for the lag associated with the heat flux vector and the
temperature gradient as proposed by Tzou [17]) [18–29]. More recently, a three-phase-
lag (TPL) heat transfer model was applied in biological tissue, accounting for the phase
lags associated with the heat flux vector, temperature gradient, and thermal displacement
gradient, as proposed by Choudhuri [30], based on the thermoelasticity model developed by
Green and Naghdi [31,32]. Zhang et al. [33] have reported the first study utilizing the TPL
model in biological tissue to quantify the heat response of the skin, adopting the method of
separation of variables to obtain the analytical solution of temperature distributions. Later,
the TPL bio-heat transfer model was successfully applied and reported in other recent
studies [34–36]. However, all of these previous studies related to the application of the TPL
model in biological tissue consider a one-dimensional analysis. Hereby, we provide the first
three-dimensional study of the TPL bio-heat transfer model applied to cardiac ablation. In
this study, we report a comparative analysis of treatment outcomes obtained with different
bio-heat transfer models during cardiac ablation. In particular, the heat-sink effect caused
by both microvasculature blood perfusion and the blood flow within the cardiac chamber
was considered in our analysis. The finite element method (FEM) has been utilized to
solve the governing equations, and the results have been presented in terms of both the
temperature distribution and ablation volume. Parametric studies have been conducted
to evaluate the influence of the magnitude of three lags on the treatment outcome of the
cardiac ablation. Next, the governing equations, material properties, boundary conditions,
and numerical setup for the proposed model are presented in Section 2.

2. Materials and Methods

The three-dimensional computational domain of cardiac ablation considered in the
present study comprising the cardiac tissue, blood chamber, and the applicator, is presented
in Figure 1 [37]. Further, the heat transport utilizing Pennes’ bio-heat transfer model is
based on the classical Fourier’s law, which assumes that heat propagation occurs at an
infinite speed and relates to the heat flux (q) as [12]:

q(
→
r , t) = −k∇T(

→
r , t). (1)
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The thermal lag associated with the time delay between the heat flux and tempera-
ture gradient was independently introduced by Cattaneo [15] and Vernotte [16] in the 
Fourier’s conduction law as: 

Figure 1. (a) Reduction in the computational domain from the full thorax model to a limited domain
model (Adapted from Irastorza et al. [37] under the terms of the Creative Commons CC BY license
for an open access article). (b) Schematic of the three-dimensional model of cardiac ablation that
comprises of myocardium tissue, blood chamber, and the applicator.

The generalized Fourier conduction of Pennes’ bio-heat transfer equation based on
energy conservation in the Cartesian coordinate system is represented as:

ρc
∂T
∂t

= k∇2T −ωbρb cb(T − Tb) + Qm + Qp, (2)

where ρ is the density (kg/m3), c is the specific heat capacity (J/kg/K), T is the tissue
temperature (K), k is the thermal conductivity (W/m/K), ρb is the density of blood (kg/m3),
cb is the specific heat capacity of blood (J/kg/K), ωb is the blood perfusion rate (1/s), Tb is
the temperature of blood entering the tissue, the term [ρbcbωb(T − Tb)] represents the heat
sink effect caused by the small capillary vasculature, Qm is the metabolic heat generation
(W/m3), which is normally ignored due to its minimal impact compared to other heat
source terms during thermal ablation, and Qp (W/m3) represents the volumetric heat
generation during thermal ablative procedures (e.g., radiofrequency or laser heat sources).
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The thermal lag associated with the time delay between the heat flux and temperature
gradient was independently introduced by Cattaneo [15] and Vernotte [16] in the Fourier’s
conduction law as:

q(
→
r , t + τq) = −k∇T(

→
r , t), (3)

where τq is the thermal relaxation time that represents the time delay between the heat flux
vector and the temperature gradient. The constitutive relation obtained by incorporating
the thermal relaxation time phase lag as the linear extension of Fourier law is known as the
single-phase-lag (SPL) non-Fourier heat transfer model (or Cattaneo-Vernotte (C-V) heat
transfer model). In this case, the resulting hyperbolic-type SPL heat equation is given by:

τqρc ∂2T
∂t2 +

(
ρc + τqωbρbcb

)
∂T
∂t =

k∇2T −ωbρb cb(T − Tb) + Qm + Qp + τq

(
∂Qm

∂t +
∂Qp
∂t

)
.

(4)

Tzou [17] proposed another relaxation time to account for the effects of micro-structural
interaction along with fast transient effects of thermal inertia, and accordingly, the conduc-
tion relation between heat flux and temperature gradient was modified as:

q(
→
r , t + τq) = −k∇T(

→
r , t + τt), (5)

where, as before, τq is the phase lag for the heat flux, and τt is the phase lag for the
temperature gradient. For τq < τt, heat flux precedes the temperature gradient, and for
τq > τt, the temperature gradient precedes the heat flux. It is noteworthy to mention that
in order to obey the causality principle τq ≥ τt, as highlighted in [13]. By substituting
Equation (2) in Equation (5), and after some mathematical manipulations, the dual-phase-
lag (DPL) non-Fourier heat transfer model can be obtained as:

τqρc ∂2T
∂t2 +

(
ρc + τqωbρbcb − τtk∇2) ∂T

∂t =

k∇2T −ωbρb cb(T − Tb) + Qm + Qp + τq

(
∂Qm

∂t +
∂Qp
∂t

)
.

(6)

For τt = 0, Equation (6) reduces to the SPL bio-heat transfer model (Equation (4)), and
further reduces to Fourier’s heat transfer model (Equation (2)) for τq = 0.

Later, Choudhuri [30] proposed a three-phase-lag model by incorporating an addi-
tional phase lag of thermal displacement gradient in the DPL model based, in its turn, on
the thermoelastic model developed by Green and Naghdi [31,32] and as given by:

q(
→
r , t + τq) = −

[
k∇T(

→
r , t + τt) + k∗∇v(

→
r , t + τv)

]
, (7)

where τq, τt, and τv are phase lags associated with heat flux, temperature gradient, and
thermal displacement gradient, respectively, v is thermal displacement satisfying

.
v = T,

and k∗ is the rate of thermal conductivity. After some mathematical manipulations of
Equation (7) combined with Equation (2), the following constitutive equation for TPL can
be obtained [33]:

τqρc ∂3T
∂t3 +

(
ρc + τqρc k∗

k + τqωbρbcb − kτt∇2
)

∂2T
∂t2 +(

ρc k∗
k + ωbρbcb + ωbρbcb

k∗
k + τqωbρbcb

k∗
k − k∇2 − k∗τv∇2

)
∂T
∂t =

k∗∇2T −ωbρb cb
k∗
k (T − Tb) +

∂Qm
∂t +

∂Qp
∂t + τq

(
∂2Qm

∂t2 +
∂2Qp
∂t2

)
.

(8)

Importantly, the phase lags should obey the following inequality to obtain a stable
solution, 0 ≤ τv < τt < τq [38]. For k* = 0 and integrating w.r.t time, Equation (8) will reduce
to the DPL bio-heat transfer model. Further with τt = 0, this equation will reduce to the
SPL model, and additionally, with τq = 0, the equation will reduce to the Pennes’ bio-heat
transfer model.
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In the present study, we have simulated a cardiac ablative procedure at a constant
power. As such, for a constant power source, the time-derivative of the volumetric heat
generation (i.e., Qp) would be zero in the TPL model (Equation (8)). To avoid this paradox,
we have considered a constant temperature at the tip of the applicator, which is maintained
at 95 ◦C. It is noteworthy to mention that the constant temperature can be easily maintained
during the thermal ablative procedures utilizing a closed-loop feedback proportional-
integral-derivative (PID) controller, as demonstrated in previous studies [39–43]. A compar-
ative analysis has been conducted by comparing the temperature distributions predicted
within the myocardium tissue incorporating Pennes’ (Equation (2)), SPL (Equation (4)),
DPL (Equation (6)), and TPL (Equation (8)) bio-heat transfer models.

The blood flow within the cardiac chamber was modeled utilizing the laminar and
incompressible flow as given by the coupled momentum and continuity, Navier–Stokes
equations:

ρb
∂u
∂t + ρb(u · ∇)u = ∇ ·

[
−pI + µ(∇2u)

]
+ F,

∇ · u = 0,
(9)

where u is the velocity vector (m/s), ρb is the density of blood (kg/m3), p is the blood
pressure (Pa), µ is the dynamic viscosity of blood (=2.1 × 10−3 Pa.s), and F is the body
force neglected in this study [43–45]. It is noteworthy to mention that Newtonian behavior
has been used to model the blood, which is adequate for shear rates >100 s−1 [46,47]. The
fluid–structure interaction (FSI) has received significant attention in research related to
cardiovascular modeling [48–55]. In this study, FSI only pertains to the convective heat-sink
(cooling) effect induced by the blood flow during cardiac ablation, as the cardiac tissue has
been modeled as a rigid body. However, future studies are warranted to incorporate the
mechanical deformation of the cardiac tissue caused by the pulsatile blood flow within the
cardiac chamber, as has been recently reported in [56,57].

Further, the blood perfusion rate has been modeled utilizing a temperature-dependent
piecewise model, whereby a constant value of blood perfusion rate prevails below the
temperature of 50 ◦C and ceases beyond it [40,58], as given by:

ωb =

{
0.017 s−1 for T < 50

◦
C

0 for T ≥ 50
◦
C

}
(10)

The ablation volume (V) attained during the cardiac ablation was obtained utilizing
the isotherm of 50 ◦C, i.e., the volume of myocardium tissue having a temperature of
≥50 ◦C after the selected treatment time, as given by [37,40,59]:

V =
y

Ω

dV (mm3) (where Ω ≥ 50
◦
C) (11)

A finite-element method (FEM)-based COMSOL Multiphysics software [60] was used
to solve different bio-heat transfer models for predicting the temperature distributions
and ablation volumes during 60 s of cardiac ablation. The initial temperature of the entire
computational domain presented in Figure 1b was 37 ◦C, and the tip of the applicator was
maintained at a temperature of 95 ◦C throughout the simulation. Further, the blood flow
inside the cardiac chamber was modeled by considering two values for the blood velocity
at the inlet, viz., 8.5 cm/s and 3 cm/s representing the high and low blood flow rates,
respectively [19,43–45,58]. The outlet of the cardiac chamber was subjected to zero pressure
conditions. No-slip boundary conditions were imposed on the wall of the applicator in
the cardiac chamber as well as the tissue-fluid interface. The thermophysical properties
of cardiac tissue considered in the present study were: ρ = 1060 kg/m3, c = 3111 J/kg/K,
ρb = 1000 kg/m3, cb = 4180 J/kg/K,ωb = 0.017 s−1, k = 0.54 W/m/K, k* = 0.1 W/m/K/s,
τq = 16 s, τT = 6 s and τv = 2 s [19,33,43–45,58]. The computational domain presented
in Figure 1b was discretized using the heterogeneous tetrahedral mesh elements with
additional refinements close to the applicator where higher thermal gradients were ex-
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pected. Furthermore, a grid independence study was performed to determine the optimal
number of mesh elements that would result in a mesh-independent solution. The mesh
refinements were carried out using the ablation volume convergence criterion, i.e., the mesh
was progressively refined until the absolute error for ablation volume was less than 0.5 %
compared to the previous mesh size. The final mesh comprises of 551,690 domain elements,
26,674 boundary elements, and 1288 edge elements. The constitutive equations for heat
transfer and fluid flow, presented earlier, were solved using the multifrontal massively
parallel sparse direct solver (MUMPS) [61], employing a segregated solution approach. All
of the simulations were conducted on a Dell Precision 7920 Tower workstation with 96 GB
RAM and 2.20 GHz Intel® Xeon® processors with a computational time of less than 4 h for
each simulation.

3. Results and Discussion

The developed TPL model has been validated with the results of one of the recent
studies [33] that provides the analytical solution for the bio-heat response of skin tissue
based on the TPL model. In particular, the same parameters and boundary conditions of [33]
have been utilized, viz., outer skin surface temperature = 80 ◦C, arterial blood temperature
= 37 ◦C, thickness of the tissue = 9 mm, density of the tissue = 1190 kg/m3, specific heat
capacity of tissue = 3600 J/kg/K, density of the blood = 1060 kg/m3, specific heat capacity
of the blood = 3770 J/kg/K, the blood perfusion rate = 1.87× 10−3 s−1, thermal conductivity
of the tissue = 0.235 W/m/K, the rate of thermal conductivity = 0.1 W/m/K/s, phase lag
associated with heat flux = 16 s, phase lag associated with temperature gradient = 6 s,
and the phase lag associated with thermal displacement gradient = 2 s. The comparative
analysis of the present results with that of [33] is presented in Figure 2. As evident from
Figure 2, a good agreement has been obtained between the results predicted from the
present model with those reported in [33]. Hence the TPL model used in the present study
is efficient and lends great confidence to the results reported in the next sections.
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Figure 2. Comparison of the predicted results of the present TPL model with that of Zhang et al.
(2020) [33]: (a) temporal evolution of temperature at a location of 4.5 mm; and (b) temperature
distribution at time t = 50 s.

Figure 3 presents the comparison between the predictions with the Pennes’, SPL,
DPL, and TPL bio-heat transfer models during cardiac ablation under low blood flow
conditions within the cardiac chamber. The temporal evolutions of the temperature at a
distance of 0.5 mm, 1 mm, and 2 mm below the applicator tip are presented for different
bio-heat transfer models in Figure 3a–c, respectively. It can be seen from Figure 3 that



Fluids 2022, 7, 180 7 of 15

for all locations, the thermal propagation speed is fastest in the Pennes’ model, which is
based on the Fourier law of heat conduction that presumes an infinitely fast propagation of
thermal signals within the medium. Furthermore, the thermal propagation speed is lowest
in the SPL model, owing to the delayed response between the heat flux and temperature
gradient that leads to the propagation of thermal disturbance at a finite speed. The thermal
propagation speed in the DPL and TPL models lies between those of the Pennes’ and
SPL, with the TPL model thermal response being lower than that of DPL. It is noteworthy
to mention that the TPL model exhibits both the diffusion and wave characteristics of
heat propagation, similar to the DPL model. Furthermore, as evident from Figure 3, the
temperature prediction with the SPL model is always on the higher side for all three points.
The deviations in the temperature prediction between the Pennes’ and TPL models are
significantly higher for the first 30 s or so and eventually diminish with the passage of time.
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Figure 3. Temporal evolution of temperature predicted with different bio-heat transfer models at a
location of: (a) 0.5 mm, (b) 1 mm, and (c) 2 mm below the tip of the applicator.

Figure 4a,b present the temperature distribution predicted with different bio-heat
transfer models along the line below the tip of the applicator at 30 s and 60 s, respectively.
The distance of 0 mm reflects the tip of the applicator that is maintained at the temperature
of 95 ◦C. As evident from Figure 4a, among all the bio-heat transfer models, the temperature
predicted by the SPL model is on the slightly higher side until it is close to 1.5 mm. After
this location, the Pennes’ model predicts a higher temperature compared to the other
three models’ predictions. This can be attributed to the fact that the location where the
Pennes’ model temperature prediction becomes higher than that of the SPL model shows
the position where the thermal wave arrives in the SPL model. So, before this position,
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more heat was concentrated and confined due to the finite thermal propagation speed
in the SPL model as compared to the infinite thermal propagation speed in the Pennes’
bio-heat transfer model, which leads to more thermal energy transfer to the unaffected zone
away from the applicator. These findings are consistent with those recently reported in [33].
Furthermore, the deviations between the temperature predictions of different bio-heat
transfer models are more pronounced at 30 s and eventually diminish with the passage of
treatment time of cardiac ablation, as can be seen from Figure 4a,b.
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Figure 4. Temperature distribution predicted with different bio-heat transfer models along the line
below the tip of the applicator at: (a) 30 s, and (b) 60 s.

Figure 5 presents the comparison of predicted ablation volume with different bio-heat
transfer models after 10 s, 30 s, and 60 s of the cardiac ablative procedure. As depicted in
Figure 5, there prevail significant deviations in the ablation volume predicted by Pennes’,
SPL, DPL, and TPL bio-heat transfer models post 10 s of cardiac ablation. In particular,
the ablation volumes predicted by SPL, DPL, and TPL models are 44%, 57%, and 75%,
respectively, lesser as compared to the Pennes’ model predictions. This deviation decreases
with an increase in the treatment time of cardiac ablation. For instance, at the end of 30 s
and 60 s ablations, the differences between Pennes’ and TPL model predictions are 37% and
21%, respectively. Similarly, at the end of 30 s and 60 s ablation, the differences between
Pennes’ and DPL model predictions are 11% and 2%, respectively. Thus, the importance
of considering the non-Fourier heat transfer phenomena in the computational models of
thermal ablations becomes quite essential in therapies for which treatment time ≤60 s.
It is noteworthy to mention that the treatment time for cardiac ablation varies between
30–60 s, so it becomes extremely important to consider the various lags introduced due to
the non-Fourier phenomena in the bio-heat transfer models to obtain accurate predictions.
Similarly, for the thermal ablative procedures that utilize pulsed laser ablation (On–Off
cycles), the non-Fourier phenomena will play a more pronounced role in the accurate
treatment outcome predictions from computational studies.
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The influence of the blood perfusion rate on the TPL model predictions for cardiac
ablation has been presented in Figure 6. Importantly, blood perfusion within the biological
tissue accounts for microvascular tissue perfusion in absence of large blood vessels [9].
The temporal evolution of temperature with and without blood perfusion at a point 1 mm
below the tip of the applicator has been presented in Figure 6a. As evident from Figure 6a,
the temperature profile obtained with accounting for blood perfusion effects is significantly
lower as compared to the temperature profile obtained without considering the blood
perfusion. The lower temperature profile can be attributed to the heat-sink effect caused
by the blood perfusion during the thermal ablative procedure. Furthermore, as depicted
in Figure 6a, the deviation in the two curves of the temperature profile is lower till the
first 40 s or so and increases afterward as the steady-state temperature is attained. Thus,
the effect of the consideration of the blood perfusion within the bio-heat transfer model
of cardiac ablation is to lower the steady-state temperature within the tissue. Figure 6b,c
present the comparison of temperature distribution obtained with and without considering
the effect of blood perfusion in the TPL bio-heat transfer model along the line below the
tip of the applicator at 30 s and 60 s, respectively. The deviation between the temperature
distribution obtained with and without blood perfusion at 30 s is lower as compared to that
obtained at 60 s. Again, this highlights the fact that blood perfusion has more influence
on the steady-state temperature during the thermal ablation, as at 60 s, the steady-state
temperature has been reached, which is evident from Figures 3 and 6a. The temporal
variation of the ablation volume predicted with the TPL bio-heat transfer model under low
blood flow (3 cm/s), and high blood flow (8.5 cm/s) conditions within the cardiac chamber
are presented in Figure 7. It can be seen from Figure 7 that initially, the deviation between
the ablation volume is quite negligible, and it increases with the passage of time as the
steady-state temperature is attained. Thus, both the macro- and micro-blood perfusions
significantly affect the treatment outcomes of the cardiac ablation as predicted using the
TPL bio-heat transfer model.
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The result of parametric studies of the influence of single-phase-lag (τq), dual-phase-
lag (τt), and three-phase-lag (τv) on the thermal behavior obtained with the TPL model is
presented in Figures 8 and 9. The effect of τq on temperature response at a point 1 mm
below the tip of the applicator is presented in Figure 8a. As evident from this figure, the
higher the value of τq, the higher would be the lagging characteristic of thermal behavior
that would lead to a steeper rise in temperature. Thus, the heat propagation within the
tissue decreases with an increase in the value of τq.
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The effect of τt on the temperature response at a point 1 mm below the tip of the
applicator is presented in Figure 8b. As evident from Figure 8b, the influence of variation
in τt is smaller on the thermal propagation and lag characteristics as compared to τq.
Figure 8c presents the influence of variation in the thermal displacement gradient τv on
the temperature response at a point 1 mm below the tip of the applicator. As evident from
Figure 8c, the increase in the value of τv results in a decrease in the predicted temperature
during cardiac ablation. The effect of the influence of variation in τq, τt, and τv on the
ablation volumes predicted after 10 s, 30 s, and 60 s of cardiac ablation are presented in
Figure 9. As evident from this figure, the maximum variation in the ablation volume for
different values of lags occurs at 10 s and then decreases with the increase in treatment time.
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The limitations of this numerical study are mainly related to the considerations of
unidirectional and constant blood flow, which is highly complex and variable in the actual
patient scenarios. Moreover, the flow rate and flow direction of blood in the cardiac
chamber are highly dependent on the cardiac cycle. Further, we have considered the
homogeneous and isotropic properties of cardiac tissue with a sharp insertion of the
applicator without considering any mechanical deformation. In addition, the material
properties of the cardiac tissue are considered to be constant, and in actuality, they vary with
temperature. Albeit, this has been done purposely to quantify the variations only induced
due to the phase lags and to suppress the variations induced due to other properties.
Another limitation is associated with the validation of the numerical model with the
results reported in the previous numerical study due to the lack of experimental in vivo
data/findings available in the literature. Future studies are required to address these
limitations to provide further improve the predicted temperature distribution and ablation
volume during cardiac ablation. The extension of these models in terms of multiscale
coupling at the tissue-cellular scale can be found in [62–65]. Despite these limitations, we
were able to highlight the importance of considering the phase lags in the computational
modeling of cardiac ablation for predicting accurate treatment outcomes.
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4. Conclusions

In the present study, we have reported a three-dimensional TPL non-Fourier bio-heat
transfer model for cardiac ablation, considering the phase lags of heat flux, temperature gra-
dient, and thermal displacement gradient. The model has also accounted for fluid-structure
interactions. A comparative analysis has been conducted to highlight the deviations be-
tween the temperature distribution and ablation volume obtained with Pennes’, SPL, DPL,
and TPL bio-heat transfer models. Our findings suggest that there are significant prevailing
variations in the predicted temperature distribution and ablation volumes among different
bio-heat transfer models during cardiac ablation. These variations are very pronounced up
to the first 30 s or so and decrease thereof, justifying the need for the consideration of these
phase lags in the bio-heat transfer models for predicting more realistic estimates of ablation
volume and temperature distribution, thus minimizing the deviations between the experi-
mentally obtained and numerically predicted results. Importantly, these considerations
would play a more pronounced role in thermal ablative modalities where the treatment
time is 60 s or less (as in the case of cardiac ablation) or thermal ablative procedures that
utilize pulsed laser ablation (On–Off cycles). Furthermore, parametric studies have also
been conducted to quantify the effect of variations in the magnitude of different phase
lags, blood perfusion rate, and blood flow on the treatment outcomes of cardiac ablation as
predicted by the TPL bio-heat transfer model.
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