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Abstract: Using variational mode decomposition, we analyze the signal from velocities at the center
of the channel of a microfluidics drop-maker. We simulate the formation of water in oil droplets
in a microfluidic device. To compare signals from different drop-makers, we choose the length of
the water inlet in one drop-maker to be slightly shorter than the other. This small difference in
length leads to the formation of satellite droplets and uncertainty in droplet uniformity in one of the
drop-makers. By decomposing the velocity signal into only five intrinsic modes, we can fully separate
the oscillatory and noisy parts of the velocity from an underlying average flow at the center of the
channel. We show that the fifth intrinsic mode is solely sufficient to identify the uniform droplet
formation while the other modes encompass the oscillations and noise. Mono-disperse droplets are
formed consistently and as long as the fifth mode is a plateau with a local standard deviation of less
than 0.02 for a normalized signal at the channel inlet. Spikes in the fifth mode appear, coinciding with
fluctuations in the sizes of droplets. Interestingly, the spikes in the fifth mode indicate non-uniform
droplet formation even for the velocities measured upstream in the water inlet in a region far before
where droplets form. These results are not sensitive to the spatial resolution of the signal, as we
decompose a velocity signal averaged over an area as wide as 40% of the channel width.

Keywords: droplet formation; microfluidics; signal analysis

1. Introduction

Droplet microfluidics is a powerful technique enabling the precise control of the size of
the droplets, loading of cargo, sorting, and merging droplets at small volumes of the order
of picolitres. These capabilities have led to the extensive use of droplet microfluidics in a
wide range of applications in industries such as in pharmaceutical, material production,
and in research and development [1–3]. Moreover, droplet microfluidics is a promising
tool in signal processing [4,5]. The sizes of the droplets are determined by the interfacial
tension between the two fluids, the geometry of the microfluidics chip, and the flow rates
of each fluid phase [6,7]. Microfluidics chips operated in their optimum regime prove to be
stable and reliable for the production of monodisperse droplets [8–12]. On-chip processes
can be optimized to minimize errors in performance since a microfluidic chip interacts
with a few external control units, pumps, and valves [13]. However, small errors, such as
satellite droplets, missed mergers, or unexpected merging of droplets may still occur due to
instabilities in external units or in local flow [14,15]. In general, these errors are monitored
visually and anomalies can be sorted out with different methods, either by deflecting some
fluids to a separate channel using external electric or acoustic forces or by passing the
droplets through filters to sort by size [5,16,17]. Since most microfluidics chips run at high
speeds, 100 s of µL/h [15], it is crucial to detect and correct errors at comparable speeds.
Flow fluctuations in a microfluidic channel driven at a high flow rate can grow quickly
and disrupt the flow downstream due to the nonlinear nature of fluid flows. Although
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not all fluctuations are significant, it is not possible to identify them theoretically or in
real time once a microfluidic device is running. Nevertheless, flow velocities and pressure
fluctuations in a device are accessible in real time [18,19].

In principle, standard methods of signal processing can be implemented to quantify
or predict anomalies in microfluidics, although they are not commonly used. Fourier
transform and wavelet analysis perform well in simplifying complex and noisy time series.
However, this powerful signal analysis method is less efficient in nonlinear and non-
stationary systems such as fluid flows and can be computationally intense. Moreover,
dynamic mode decomposition is developed based on continuous snapshots of flow and
is shown to closely describe the motion of the flow even in the turbulence regime [20]. In
recent decades, the empirical mode decomposition (EMD) method has been developed to
better analyze signals from nonlinear and non-stationary data sets [21–23]. EMD is data
driven, a posteriori, and adaptive, which aims to separate events by utilizing the notion of
instantaneous frequency, in contrast with fundamental frequencies as in Fourier analysis.
EMD has been used in a variety of applications, including identification of dominant
frequencies in atmospheric data [24], separating unsteady spatiotemporal scales in the
mixing layer in wind tunnel data [25], analyzing instantaneous turbulent velocity field in
unsteady flows [26], and extracting health-related hemodynamics features [27]. One of
the successful uses of EMD is to identify modes or frequencies with physical significance
in a noisy signal, as in characterizing the properties of turbulence from stationary and
non-stationary grid-generated flows [28]. For example, in a systematic study, a periodic
perturbation was introduced to the flow, and EMD was used to separate the high-frequency
part of the signal from the low-frequency parts, and the artificial perturbation was retrieved.
Variational mode decomposition (VMD) has been developed based on EMD with a lower
sensitivity to noise [29]. This method stepped away from recursive decomposition and
extracts modes concurrently. It finds central frequencies and oscillatory modes within
various basebands [29], and is even proven to extract central data from geophysical data
where isolated spikes appear often [30,31]. The applications of VMD in different areas of
fluid mechanics and hydrodynamics has been extremely promising in isolating physical
signals and providing predictive metrics for improved performances [32–35].

In this paper, we use a novel method of signal decomposition, variational mode decom-
position, to determine the formation of uniform droplets in a microfluidic drop-maker. We
simulate the formation of water in oil droplets in a microfluidic device with two independent
drop-makers. To compare the signal from different geometries, we choose the sizes of the
water inlets of the drop-makers to be slightly different. We map the velocities calculated in the
simulation onto a uniform grid to mimic the velocity field commonly measured in experiments
using particle image velocimetry. Using variational mode decomposition, we decompose the
velocities measured at the center of the channel to its intrinsic mode functions (IMF). For the
velocity signal in our simulations, only five modes are sufficient to fully separate noise and
high oscillations from the underlying average velocity. The first mode in the decomposition,
IMF 1, usually has the highest oscillations and noises among all modes. The second to fourth
modes have considerable oscillations with magnitudes similar to each other and similar to
the first mode or at least within the same order of magnitude. However, the fifth mode,
IMF 5, appears to only show the underlying average velocities at the center of the channel
with values much larger than the other IMFs. We find that uniform droplets form when
IMF 5 is a plateau with small variations around its local average. Interestingly, this signature
plateau coincides with uniform droplet formation even when we use the velocities inside the
water inlet and long before the fluid is broken into droplets. We show that variational mode
decomposition is able to quantify anomalies in the signal that trigger fluctuations in flow and
droplet sizes downstream.
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2. Materials and Methods
2.1. Droplet Simulation

To study the flow fluctuations during droplet formation in a microfluidic T-junction
with high spatial resolution, we use COMSOL multiphysics (3.2.10), a laminar two phase
flow module, and the level set method [36]. The geometry of the microfluidic device
consists of two T-junction dropmakers located on opposite sides of a long channel. Droplets
are generated on two sides of this channel and meet in the middle of the device where
they can either merge or bypass each other and exit through a single outlet as shown in
Figure 1 (Supplementary Materials). The widths of the inlets channels are 50 µm. Droplets
are formed when the inner fluid, water, in the middle inlet is sheared with the outer fluid,
an oil which has an interfacial tension of γ = 3 mN/m with water [36], which flows in the
two adjacent inlets as shown in Figure 1 (Supplementary Materials). Here, we choose to
generate water in oil emulsion droplets. The density of the inner fluid, ρ, is 1 kg/L and the
outer fluid is 1.6 kg/L and their respective viscosities are µin = 1 mPas and µout = 1.2 mPas.
To keep the simulations stable and resolve the interfaces, COMSOL used an adaptive mesh
with nonuniform grid sizes. The lengths of the channels on either side are 425 µm, measured
from the beginning of the inlet. These lengths are optimized so the two-phase simulation
is stable and the interfaces are resolved while the microfluidic device resembles physical
experiments [1]. The inner fluid is flowed at 2 cm/s and the outer fluid at u = 2 cm/s. At
these flow rates, a steady stream of droplets is expected to form in the dripping regime [7].
The imposed pressure at outlet is Pout = 0 Pa. The capillary number is 8.0× 10−3, ratio of
capillary to viscous force (Ca = µoutu/γ). The corresponding Weber number, the ratio of
drag to cohesion force, We = ρu2r/γ is 6.0× 10−3, where r is the radius of the channel. The
Capillary and Weber numbers are within the dripping regime where the balance between
the capillary forces at the interface of two fluids and the viscous force from the outer fluid
determines the formation of a droplet [7]. Once a droplet is formed, it flows through
the channel leading to the junction with the opposite dropmaker as shown in Figure 1
(Supplementary Materials). The left inlet channel is shortened to mimic a fabrication error
while the right channel has an optimized geometry for the flow rates chosen. The left
channel begins to form droplets a few milliseconds before the right channel as well as form
satellite and non-uniform droplets sporadically. The numerical simulation in COMSOL
uses an adaptive mesh to optimize the computational time. Consequently, the data are on a
non-uniform grid with finer mesh sizes close to the interfaces. Using the natural neighbor
algorithm, we interpolate this data on a uniform grid. The mesh size is 200 nm and the
total area of the mesh is 850 × 215 µm2.

50µm

0 45 130
Velocity (mm/s)

OilBoundaryWater

0°180°

Direction of Velocity
x

y

5
0

µ
m

Figure 1. Visualization of two-phase fluid and flow velocities in a microchannel where droplets
generated from right and left drop-makers meet at the center of the channel. Color Hue represents
direction of the velocity, Saturation represents the volume fraction of water, and brightness Value
represents the magnitude of the velocity.

2.2. Signal Decomposition

Variational mode decomposition extracts oscillatory modes of the signal and provides
insight into how the flow evolves as a function of time at various positions. VMD is a mod-
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ern algorithm based on some of the concepts of empirical mode decomposition which were
first developed with nonlinear and non-stationary processes in mind to decompose a time-
domain signal into intrinsic mode functions [21,37]. These oscillatory modes, IMF, follow
two primary criteria: (i) the number of extrema and number of zero crossings must either
be equal or only differ by one; this criteria is equivalent to the narrow band requirement
for a stationary Gaussian process. (ii) The mean value of the envelope defined by the local
maxima and minima must be zero [38]. The second criterion creates a local time-dependent
requirement which assists with decomposing nonlinear signals and allows IMFs to have
both modulated amplitude and frequency with a finite bandwidth. However, boundaries
and spikes in the original signal can lead to artifacts in the IMFs to satisfy the criteria
mentioned above. To resolve such issues, various methods have been developed among
which variational mode decomposition (VMD) has been successfully used to describe
dynamics in fluid systems [31]. VMD stepped away from recursive decomposition and
extracts modes concurrently. It searches through frequencies of the original signal to find
central frequencies and oscillatory modes within various basebands [29]. VMD adaptively
selects the IMFs concurrently, which results in modes covering finite bandwidth within the
original signal. Being weighted towards central frequencies, IMFs contain physically rele-
vant information of various processes that influence the original signal, see Appendix A. In
this paper, we use the MATLAB (R2020a) built-in variational mode decomposition function
to decompose the velocity, u(t), at a given space into its oscillatory modes. The number of
IMFs needed to decompose the signal into physically relevant modes is not known a priori.
We vary the number of IMFs between 4 and 6 to decompose the signal. We find that five
IMFs are sufficient throughout our data to decompose the signal without any redundancy
or loss of modes that appear significant in predicting the droplet dynamics. Increasing the
number of IMFs affects the decomposition noise and oscillatory components which are of
less interest in this system in the laminar regime.

The goal is to analyze the flow dynamics in a time-domain signal to find a signal that
will allow us to determine if uniform droplets are being created at certain instances by
viewing a single region within the inlet. This is in contrast with other methods of signal
analysis in fluids such as dynamic mode decomposition which require a much larger data
set in the entire field.

3. Results

We develop a consolidated visualization method that integrates multiple physical
quantities, velocity, and fluid phase, into a simple graphic to better identify different dy-
namics. To visualize the direction and magnitude of fluid velocities along with the volume
fraction of each fluid phase, corresponding colors, intensities, and saturation are assigned
to form a single HSV image (Hue, Saturation, Value) as shown in Figure 1 (Supplementary
Materials). Hue is determined by the angular velocity at each position and is mapped to a
360-degree color wheel with red and cyan corresponding to 0 and 180 degrees, respectfully.
Saturation represents the volume fraction of oil and water. Saturation is 1.0, where the
volume fraction of water is larger than 55% and 0.25 where the volume fraction is smaller
than 45%. Saturation matches the volume fraction of water everywhere else as shown in
the Saturation color bar in Figure 1 (Supplementary Materials). Moreover, the magnitude
of the velocities is represented by Value, which describes how light or dark a Hue is with
larger velocities appearing brighter. Since there is an uneven distribution of velocities, with
many small velocities and a few large velocities, there is poor contrast within the slow
velocity regions. To enhance the contrast in these regions, we use a global transformation
that bins and maps velocities across all spatial and temporal points into Values. However,
the distinction between the few high velocities is no longer visible. This transformation and
mapping, known as histogram equalization, aims to create a uniform probability density
function that enhances contrast for tightly grouped velocities. Although it is unlikely to
create a completely uniform histogram, histogram equalization generally results in a wider
range of the intensity scale to be used and, consequently, the contrast is enhanced [39].
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This process is only used for the visualization of the data and the velocities after histogram
equalization are not used in data analysis.

Droplets of water in oil are formed on either side of the long channel and carried by
the outer fluid (oil) as shown in Figure 1 (Supplementary Materials). Droplets formed in
the left channel appear red as they travel from left to right. These droplets meet droplets
from the opposing channel at the T-junction. Droplets either merge or deflect towards the
outlet vacating the device while appearing purple due to their now downwards velocity.
Interestingly, we observe a considerable number of satellite droplets in the left channel where
we intentionally selected non-ideal inlet geometry. Consequently, the sizes of the droplets
from the left channel are less uniform and the dynamics at the point of merging become
unpredictable with many missed mergers as observed in Figure 1 (Supplementary Materials).

We use variational mode decomposition to analyze temporal flow fluctuations down-
stream and identify any significant modes. We choose a region of 4 × 4 µm2 in the right
channel, 290 µm downstream, to investigate where there is less variation in flow velocity
away from the inlets prior to the outlet, as shown in Figure 2b. We calculate the average
flow velocity in this region since our velocity field has a resolution of 200 nm, which is not
achievable in most experiments.
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Figure 2. Velocity and decomposition at one position as a function of time. (a) Magnitude of velocity
from 12 to 200 ms (b) for a 4 × 4 µm2 bin in the center of the channel; (c) First intrinsic mode function
(IMF 1) of the decomposed velocity signal showing the fastest oscillations in the original signal;
(d) IMF 2, the second largest oscillations heavily affected by the initiation of flow; (e) IMF 3 showing
the bulk of the original velocity signal; (f) IMF 4 slower oscillations with a transition at around 20 ms
corresponding to the initiation of flow; (g) IMF 5 is the slowest oscillation of the flow with an average
close to velocity of the outer fluid at 40 mm/s, and a spike early in the signal at time briefly after the
initiation; (h) Residual of the signal.

Interestingly, droplets pass this region with very little variation in size and shape. We
utilize variational mode decomposition to separate fluctuations from the steady flow of
droplets and drop formation. Various regions require a different number of modes to pro-
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duce unique IMFs without frequency and amplitude overlap. We choose five intrinsic mode
functions for this position for all IMFs to remain significant and residual to have minimal os-
cillation. From our visualization of the right channel in Figure 1 (Supplementary Materials),
no major fluctuations are expected since we see consistent production of uniform droplets.
However, IMF 2 and 4 have a large amplitude present at the start of the signal which
wanes later in the signal. The maximum amplitude of IMF 2 (IMF 4) from 0 < t < 80 ms
( 0 < t < 25 ms) is 4.73 (8.83) times greater than the maximum amplitude in the rest of the
IMF. The simulation begins with the device filled with oil. Therefore, there are fluctuations
in the velocities due to water being introduced to the device. We consider this an initiation
stage for the flow. The effect of the initiation of flow is present in IMFs 2 and 4. The ampli-
tude in IMF 3 appears to be modulated periodically, which we attribute to the steady flow
of droplets. IMF 5 summarizes both the effect of initiation of flow as well as the periodicity
from the flow of droplets. Moreover, the sharp drop in the amplitude in IMF 5 matches the
time when IMF 3 transitions to a periodic signal. Additionally, this time is close to where
initiation effects in IMF 4 start to wane. The decomposition clearly separates the events
affected by the initiation of flow, which appear in IMF 2 and IMF 4, and the steady flow
and drop formation that are evident in IMFs 1, 3, and 5. Interestingly, IMF 5 has some of
the initiation effects which are distinct peaks matching the IMF 2 and IMF 4 as well as the
fluctuation within relatively consistent signals in IMF 1 and IMF 3 at around 60 ms. The
residual does not have any significant physical meaning (Figure 2h), except that the signal
can be recovered exactly by adding the residual and all other IMFs.

Using variational mode decomposition, we analyze temporal flow fluctuations at both
water inlets and identify any significant modes that indicate changes in droplet formation.
We calculate the velocity signal and IMFs of 4 × 4 µm2 regions prior to the oil inlets and
pinch off points, 20 µm into the water inlets, for the left and right drop-makers shown in
Figure 3. Interestingly, we observe that the right channel signal and IMFs appear similar to
the results found downstream, comparing Figure 3h–k to Figure 2c–f. The periodicity in IMF
2 coincides with the steady flow of droplets while IMF 3 and 4 show the effects of initiation.
Here, IMF 1 is an order of magnitude smaller than the other IMFs. Additionally, IMF 5
contains a peak close to the initiation of the flow and the amplitude falls off close to the
average flow velocity after the initiation. We observe that there is almost no periodicity in
IMF 5 which is different from data downstream where droplets continuously pass through.
The decomposition of the signal for the left channel at the water inlet leads to IMFs with
highly variable amplitudes. The amplitudes of IMFs 1 to 3 are comparable to each other
and are larger than that of IMF 4, as can be seen in Figure 3b–e. We observe multiple large
peaks in IMF 5 which are of the same order of magnitude as the effect due to the initiation
of flow. By contrast, there is a plateau in IMF 5 during the time interval, 115 < t < 155 ms.
Interestingly, this plateau in IMF 5 coincides with the formation of uniform droplets from
the left channel. Moreover, during this time interval, the amplitude of IMF 3, which has
the largest range among all IMFs, is at its minimum. IMF 4 is also at its minimum during
this time interval. We observe that IMF 2 during this time interval has a behavior similar
to what is seen in uniform droplet formation in the right channel. Additionally, IMF 2
contains most of the original signal during this time interval. Satellite and non-uniform
droplets are formed in the left channel at all other times. The effect of initiation is apparent
in IMF 3 and 4 in the right channel, Figure 3j,k, while, in the left channel, this effect is not
the most significant change in amplitude in any of the IMFs, Figure 3d,e, and becomes
suppressed. It should be noted that the signal obtained from the left water inlet ranges
between 1 mm/s while the signal from the right channel ranges 0.2 mm/s. Additionally,
IMF 1 for the left channel (Figure 3b) has amplitudes an order of magnitude larger than
that seen in IMF 1 of the right channel (Figure 3h). IMF 1 contains the highest oscillating
component of the signal which is typically attributed to noise in the system.



Fluids 2022, 7, 174 7 of 14

24

24.5

25

V
e

lo
c
it
y
 (

m
m

/s
)

26.5

26.6

26.7

–0.005

0

0.005

IM
F

1

–0.2

0

0.2

–0.2

0

0.2

IM
F

2

–0.06

0

0.06

–0.5

0

0.5

IM
F

3

–0.05

0

0.05

–0.02

0

0.02

–0.01

0

0.01

IM
F

4

20 40 60 80 100 120 140 160 180 200

Time (ms)

26.57

26.58

IM
F

5

20 40 60 80 100 120 140 160 180 200

Time (ms)

24.4

24.42

24.44

24.46

(a)

(e)

(c)

(d)

(f)

(g)

(h)

(l)

(i)

(j)

(k)

(b)

Figure 3. Velocity and decomposition in the water inlet as a function of time. Left: the velocity
signal (a) and decomposition into intrinsic mode functions (b–f) for the left channel of Figure 1
(Supplementary Materials) demonstrates various large fluctuations. Right: velocity signal (g) and
decomposition (h–l) for the right channel with a single large fluctuation.

Our analysis of the decomposed signal demonstrates and predicts if uniform and
non-uniform droplets will be formed; surprisingly, our prediction is based on the signal
in the region before where droplets are pinched off. Naturally, it is difficult to predict
the formation of uniform droplets from this region. We identify characteristics in the
decomposed signal that indicate time intervals when uniform droplets are formed. It
appears that the peaks in IMFs 3 and 4 mostly coincide with fluctuations that destabilize
the formation of uniform droplets. Uniform droplets are formed whenever there is a
plateau in IMF 5. To better define the plateau, the average and standard deviation of
the IMF 5 are calculated on a moving window of at least 7 ms, corresponding to the time
needed to form two droplets. The fluctuations in the IMF 5 can be ignored as long as this
local standard deviation is smaller than 0.02. To predict if a uniform droplet is formed, we
calculate the standard deviation of IMF 5 over 7 ms before this time-step, assuming we
have no information about future velocities.

To investigate the applicability of the signal decomposition in lower resolution data, we
study the relationship between various spatial resolutions of the signal and decomposition.
Additionally, this helps with evaluating the relevance of this method for experimental data
considering simulations that generally have higher spatial resolutions than in experiments.
We analyze two velocity signals taken from the same position, centered between the oil
inlets, at different resolutions ranging from 4× 4 to 20× 20 µm2. To quantify the similarities
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in the IMFs, we calculate the maximum normalized cross-correlation of the above signals
with the signal obtained from a 1 × 1 µm2 region (5 × 5 pixels2):

IMFcorrij =
∑N−m−1

n=1 IMF(1)
i,n+m IMF(2)

j,n√
∑n=1

N |IMF(1)
i,n |2 ∑n=1

N |IMF(2)
j,n |2

(1)

where i and j represent the IMF number, and n and m are the elements in each IMF. The
superscript (1) and (2) represent the different resolutions of the data. In our calculations,
we choose (1) to be at the 1 × 1 µm2 resolution and vary (2) between 4 × 4 µm2 and
20 × 20 µm2. Here, IMFcorrij is an array with values between −1 and 1. We expect, for
i = j at a coincident time, IMFcorrij to be highly correlated. However, on rare occasions
there is a time lag between the signals because we are averaging over a larger window that
encompasses fluid elements in nearby locations. Hence, we report the maximum of this
array for every combination of IMFs.

Comparing the velocities averaged over a 4 × 4 and 20 × 20 µm2 region centered
between the two oil inlets, we find that the higher resolution has larger average velocities.
This is natural since the lower resolution signal is averaging velocities closer to the wall,
which are slower velocities than the center, as seen in Figure 4a. The different IMFs from
the two resolutions are barely different in amplitude and frequency from one another
as seen in Figure 4b–g. Small differences are observed in IMF 1, which is an order of
magnitude smaller than the other modes, Figure 4b. We attribute these differences at this
position to the 20 × 20 µm2 window extending into the water channel which has additional
inlet noise. Our calculation of the maximum IMFcorrij demonstrates that the coinciding
IMFs are highly correlated regardless of spatial resolution, Figure 4h. Additionally, non-
coinciding IMFs have very little correlation as demonstrated by the extremely small and
negligible sizes of the correlation bubbles in Figure 4h. The lowest maximum IMFcorrij of
the coinciding IMFs is 0.97 seen for IMF 4 of the 20 × 20 µm2 region. It is apparent that the
results of the decomposition are weakly dependent on spatial resolution up to 20 × 20 µm2

when using a 1 × 1 µm2 region. Our results imply that this method should work on lower
resolution experimental data. Additionally, IMFs 2 to 4 and the residual match closely
between the two different resolutions.

To verify the robustness of this method, we calculate the maximum normalized cross-
correlation, IMFcorrij, across the center of the channel averaged for different positions. To
avoid overlaps of the larger window, we choose these positions to be 65 µm apart. We
calculate the IMFcorrij for the signal obtained from a 1 × 1 µm2 window correlated with
the 4 × 4, and the 20 × 20 µm2 windows. Interestingly, IMF 5 remains highly correlated
regardless of window size and position in the channel as shown in Table 1. Coinciding
IMFs are heavily correlated for the 4 × 4 µm2 window size with very little correlation
amongst non-coinciding IMFs, as can be seen by comparing the diagonal elements of
Table 1 with the off-diagonal elements. These results clearly show that the 4 × 4 µm2

window is small enough and the decomposed signal matches the 1 × 1 µm2 window
closely (max(IMFcorrij) > 0.99). However, the IMFcorrij for i = j for IMFs 2, 3, and 4 are
less correlated for the larger window size, 20 × 20 µm2. Here, the off-diagonal elements
(i 6= j) increase as seen in Table 2.
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Table 1. Maximum normalized cross correlation averaged over 12 positions with areas of 4 × 4 µm2 re-
gion. The IMF 1 to 5 on the columns are from the 1 × 1 µm2 and the rows are from the 4 × 4 µm2.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

IMF 1 1.0000 0.1003 0.0293 0.0239 0.0038
IMF 2 0.1003 0.9999 0.0808 0.0447 0.0052
IMF 3 0.0293 0.0805 0.9998 0.1500 0.0054
IMF 4 0.0240 0.0446 0.1487 0.9997 0.0125
IMF 5 0.0038 0.0052 0.0054 0.0124 1.0000

Table 2. Maximum normalized cross correlation averaged over 12 positions with areas of
20 × 20 µm2. The IMF 1 to 5 on the columns are from the 1 × 1 µm2 and the rows are from the
20 × 20 µm2 region.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

IMF 1 0.9090 0.1622 0.0326 0.0240 0.0037
IMF 2 0.1663 0.4976 0.3705 0.0486 0.0051
IMF 3 0.0332 0.2301 0.5048 0.3761 0.0053
IMF 4 0.0263 0.0518 0.2601 0.6468 0.0124
IMF 5 0.0039 0.0061 0.0061 0.0093 0.9997

Upon further investigation, IMF numbers swap occasionally when decomposing
signals from different window sizes or neighboring positions. An example of this swapping
is demonstrated for two window sizes (4 × 4 and 20 × 20 µm2) at the center of the
channel in Figure 5. Here, swapping IMFs 2 and 3 of the larger window would result in a
greater IMFcorrij. Interestingly, this swapping seems to be contained to IMFs 2, 3, and 4.
These three IMFs are small in magnitude and similar in frequency where small changes
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in the average signal can swap their assigned IMF number. Additionally, the swapping
is predominately amongst neighboring modes, IMFs 2 and 3 and IMFs 3 and 4 swapping.
The prevalence of swapping increases with window size as additional velocities further
from the center of the channel are being averaged into the signal prior to decomposition.
However, IMF 1 remains highly correlated regardless of window size up to 20 × 20 µm2.
The most consistent mode is IMF 5 as it was heavily correlated (Max(IMFcorrij) > 0.99)
even when using a 20 × 20 µm2 window size at various positions. We observe that IMF
5 is a good indicator for changes in droplet formation and remains strongly correlated
regardless of the spatial resolution tested.
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Figure 5. Velocity signal and decomposition at one position as a function of time. (a) magnitude
of velocity from 12 to 200 ms (b) for a 4 × 4 µm2 (blue circles) and 20 × 20 µm2 (orange asterisk)
window size at the center of the channel; (c) first intrinsic mode function (IMF 1); (d) IMF 2 where the
larger window decomposition swaps with IMF 3; (e) IMF 3 where the larger window swaps with
IMF 2; (f) IMF 4; (g) IMF 5, (h) Residual.

4. Discussion

We simulate the formation of water in oil droplets and extract a high resolution velocity
field from the simulation. In this microfluidic drop-maker, we incorporate two independent
drop-makers with slightly different inlet geometries—in one of which the inlet is shorter
than the other. The short inlet leads to the formation of satellite droplets at the same flow
conditions as the other inlet. Using variational mode decomposition, we decompose the
velocity signal at the center of the channel into its intrinsic modes. We show that, by only
decomposing the signal into five intrinsic modes, we can fully separate the oscillatory and
noisy parts of the velocity from an underlying average flow at the center of the channel.
Interestingly, IMF 5 carries most of the physical information. IMF 5 has distinct spikes when
the flow is initiated and it transitions into a plateau as long as the droplets are uniform.
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The IMF 5, of variational mode decomposition, has a smooth shape when uniform droplets
are formed even if we analyze the velocities in the water inlet and before the region where
droplets form. Additionally, this method is not sensitive to the spatial resolution of the
signal, as we decompose a velocity signal averaged over a considerably large area. We
show that magnitude of IMF 5 remains to be highly correlated with the high resolution
velocities further confirming the robustness of prediction of flow fluctuations by IMF 5. By
choosing the appropriate number of modes, we efficiently separate the physical part of the
signal from oscillatory and noisy parts. Our analysis provides a metric to predict uniform
and satellite droplet formations.

The variational mode decomposition is a promising method of signal decomposi-
tion suitable for fluid flows with random or periodic fluctuations. Additionally, VMD
is integrated into scientific software such as MATLAB, making it readily accessible to a
broad range of users. Moreover, VMD can be applied to spatially sparse data without
losing critical information about the underlying signal, as we demonstrate in this paper.
While some of the conventional methods of signal analysis, such as Fourier transform
and Dynamic mode decomposition, have been used in different areas of fluid mechanics,
mainly in turbulence and channel flows, the use of signal analysis in microfluidics has
received less attention. Nevertheless, the integration of microfluidics circuits in commercial
platforms for sorting and processing small volumes of fluids is rapidly growing. Hence,
the application of signal analysis in microfluidics for optimization, troubleshooting, and
quality assessments is on the rise. Here, we demonstrate the successful application of VMD
in predicting droplet sizes and provide a platform for future use of VMD in microfluidics
signal analysis. Future exploration of the application of this method and extension into
experimental and real time analysis can improve the performance of microfluidics chips
with single point velocity monitoring.
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Appendix A. Variational Mode Decomposition

Variational mode decomposition separates a signal into components that can be
expressed mathematically as amplitude-modulated-frequency-modulated signals [29]. This

https://www.mdpi.com/article/10.3390/fluids7050174/s1
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is in contrast with Fourier transform which describes a signal as a sum of non-varying
sinusoidal functions. A mode, uk, in VMD is described as

uk(t) = Ak(t)cos(φk(t)) (A1)

where A is the time-dependent amplitude and φ is the phase. Decomposing a signal
into functions that can vary over time allows VMD to become locally adaptive and have
the ability to act as a narrow band filter. The robust nature of such a decomposition
method effectively allows VMD to decompose signals from nonlinear and non-stationary
systems [29]. A real function can be represented as an analytic signal that is comprised of
the original function and its Hilbert transform as:

fA(t) = f (t) + iH f (t) = A(t)eiφ(t) (A2)

Here, H f (t) is the Hilbert transform of the signal, fA(t) represents the analytical
representation of the signal, and A(t) is the instantaneous amplitude and envelope of the
signal. Instantaneous frequency is found by the rate of change of the φ(t). The mode uk
can be expressed as analytic signals. This allows us to represent the mode in the form of a
complex exponential with no negative frequencies:

uk,A(t) = uk(t) + iHuk(t) = Ak(t)eiφ(t) (A3)

In summary, variational mode decomposition utilizes frequency mixing and Hilbert
transforms to extract narrow band functions from a signal [29]. This minimization problem
is framed by attempting to simultaneously finding a unique number of functions, or modes,
around different central frequencies that sum to the original signal. These central frequen-
cies, ωk, are initialized randomly or selected and are then mixed with a mode of varying
phase and amplitude that is narrow-band limited around the respective central frequency.
The central frequency is then updated by utilizing the center of mass of the mode’s power
spectrum. Additionally, the modes are determined adaptively and concurrently to balance
the errors between them:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

i
πt

)
∗ uk(t)

]
e−iωkt

∥∥∥∥2

2

}
s.t. ∑

k
uk(t) = f

(A4)

where i/πt denotes the impulse response of a Hilbert Transform. Consequently, the convo-
lution of i/πt and the estimated mode results in an analytic signal. The analytical signal is
then mixed with the signal containing the estimated central frequency, ωk. This results in
modes frequency spectrum shifted into “baseband” by their respective estimated center
frequencies for all k’s. The bandwidth of these modes are then estimated by the L2 Norm of
the gradient resulting in a constrained variational problem, Equation (A4). To render the
problem unconstrained, Dragomiretskiy and Zosso recommend using Lagrangian Multi-
pliers and a quadratic penalty term [29]. Additionally, the alternate direction method of
multipliers can be used to perform a sequence of iterative sub-optimizations to find the
solution to the final minimization problem. A full solution is provided in Dragomiretskiy
and Zosso’s article [29].
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