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Abstract: Cell migration is critical for many vital processes, such as wound healing, as well as
harmful processes, such as cancer metastasis. Experiments have highlighted the diversity in migration
strategies employed by cells in physiologically relevant environments. In 3D fibrous matrices and
confinement between two surfaces, some cells migrate using round membrane protrusions, called
blebs. In bleb-based migration, the role of substrate adhesion is thought to be minimal, and it remains
unclear if a cell can migrate without any adhesion complexes. We present a 2D computational
fluid-structure model of a cell using cycles of bleb expansion and retraction in a channel with several
geometries. The cell model consists of a plasma membrane, an underlying actin cortex, and viscous
cytoplasm. Cellular structures are immersed in viscous fluid which permeates them, and the fluid
equations are solved using the method of regularized Stokeslets. Simulations show that the cell
cannot effectively migrate when the actin cortex is modeled as a purely elastic material. We find
that cells do migrate in rigid channels if actin turnover is included with a viscoelastic description for
the cortex. Our study highlights the non-trivial relationship between cell rheology and its external
environment during migration with cytoplasmic streaming.

Keywords: cellular bleb; cell locomotion; pressure-driven cell movement; fluid-structure interaction;
method of regularized Stokeslets

1. Introduction

Single cell migration is an almost ubiquitous phenomenon in eukaryotic biology that
serves many important physiological roles including embryonic development, immune
response, and wound healing [1]. Cells use a variety of biophysical mechanisms to mi-
grate that vary depending on their external environment [2]. For example, mesenchymal
migration employed by cells such as keratocytes and fibroblasts on a flat 2D substrate is
characterized by actin polymerization at the leading edge and substrate adhesion [3–5]. In
contrast, some cells in 3D use an amoeboid mode of motility, where cells have a round mor-
phology and lack mature adhesions and actin stress fibers [6,7]. Amoeboid migration plays
important roles in developmental biology and immune system function [8,9]. Additionally,
certain tumor cells can transition between mesenchymal and amoeboid migration modes
and thereby increase cancer invasiveness [1]. Some cells have even been shown to switch
migration modes after biochemical or mechanical stimulation [10–12].

The focus of this manuscript is on a relatively novel migratory mechanism of rounded
cells that do not rely on cell-surface adhesion for efficient migration in complex 3D envi-
ronments [13,14]. We refer to this form of locomotion as adhesion-independent amoeboid
movement. This migration mode is relevant for the migration of leukocytes through the
endothelial barrier out of blood circulation to the location of damaged tissue during wound
healing [8,15], and the in vivo migration of various cells in developing embryos [16],
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metastatic cancer [1,17], and immune cells migrating through tissue while patrolling for
pathogens [18].

Amoeboid cells move much faster and are more autonomous from their extracellular
environment than mesenchymal cells in the sense that they adapt to their environment
instead of remodeling it [13]. Locomotion of amoeboid cells does not depend on adhesive
ligands, and they are able to migrate efficiently in a non-frictional manner even in suspen-
sions or artificial materials [15,19]. In the adhesion-independent amoeboid mechanism,
cells find the path of least resistance through the extracellular matrix by picking larger pores
in the matrix over small ones [20], actively deforming their cell body and/or transiently
dilating the pore in order to pass it through [21–23]. Charras and Paluch hypothesized that
a cell exerts forces perpendicularly to the substrate such that it can squeeze itself forward
using membrane protrusions called blebs [24]. This phenomenon has been termed ‘chim-
neying’ [25] (authors observed cells migrating between two glass coverslips), in reference
to a technique used by mountain climbers. Exactly how cellular forces are transmitted to
the substrate in order to produce migration remains an open question.

In this work, we consider amoeboid cell migration in the case where the leading
edge protrusion is generated by a bleb, a spherical membrane protrusion characterized
by a delamination of the actomyosin cortex from the cell plasma membrane [26]. When
the actin cortex is separated from the membrane, tension from actomyosin contractility
is no longer transmitted to the membrane in the delamination region, and pressure is
locally reduced [27]. Cytoplasmic content then streams from the cell body into this region,
expanding the round membrane protrusion. Bleb initation can occur by either a localized
loss in membrane-cortex adhesion proteins or local-rupture of the cortex [24,28]. Actin,
myosin, and associated proteins eventually reform under the naked membrane to drive
bleb retraction and complete the life-cycle of a bleb. Blebbing cell migration has been
observed in a number of cell types, such as amoebas, zebrafish germ layer progenitor cells,
and Walker 256 carcinosarcoma cells [16,29,30].

Several computational models have been developed to investigate the relative impor-
tance of key factors in confined migration, such as geometry of the environment, actomyosin
contractility, role of nucleus, and type of leading edge protrusion [31–33]. The aim of such
computational modeling is to complement the experimental findings and propose mecha-
nisms for generating internal forces and transmitting these forces to the surface in order
to produce traction. A detailed hybrid agent-based/finite-element model of cancer cell
motility was presented in [32]. The authors consider a number of migratory mechanisms
including pressure-driven (amoeboid) and actin-rich (mesenchymal) protrusions on flat
surfaces, channels, and discontinuous 3D-like environments with varying levels of cell-
surface adhesion. The authors found that in the absence of any cell-surface adhesions
only cells exhibiting the amoeboid mechanism could migrate efficiently in a discontinuous
environment. A similar type of model was proposed in [33] to quantify conditions for
motility modes for a cell migrating through an elastic extracellular matrix. One limitation of
both models is that intracellular fluid flow is not incorporated (i.e., intracellular pressure is
treated as constant). The model in [31] does include intra-and extracellular fluid mechanics,
but results focus on the role of nuclear stiffness during amoeboid cell migration. The theory
of active gels has also been used to model confined cell migration [34,35]. For example, in
[35], the authors show that motion can occur in confinement when the cell cytoplasm is
modeled as a polymerizing viscoelastic material.

A natural question to ask is whether a confined environment is even necessary for cell
migration in a fluid environment. Several groups have developed models to determine
conditions when a cell can “swim” in low Reynolds number fluid. The Scallop Theorem
states that time-symmetric motion cannot achieve net displacement in Stokes flow [36]. In
order to swim in fluid, many prokaryotes (and sperm, paramecia and some eukaryotes)
use a beating flagella or cilia to migrate. Such flagellated organisms achieve self-propulsion
through periodic flagellar bending waves [37,38]. Experiments have shown that amoebae
and neutrophils are also able to swim [39], and several models of amoeboid cell swimming
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have been developed (reviewed in [40]). A model for bleb-based swimming modeled
the cell as two spheres submerged in fluid that can expand or contract radially that are
connected by an extensible arm in [41]. An amoeboid cell representative of Dictyostelium
discoideum immersed in fluid was shown to swim through shape changes and membrane
tension gradients in [42,43].

In [44], the authors developed a model similar to ours in that it includes a blebbing
cell immersed in Stokes fluid with the model equations solved for using the method of
regularized Stokeslets [45]. The authors showed that in their model the cell was able to
swim because membrane deformations during bleb expansion differed from those during
bleb retraction. Results showed that migration speed was optimal at an intermediate
confinement level. This model was then used to predict that the optimal gap size in-
creases with weakening adhesion between the cell membrane and actin cortex, which was
experimentally verified in [46].

Here, we present a dynamic computational model of adhesion-independent cell mi-
gration using cycles of bleb expansion and retraction. Our model is formulated using
the method of regularized Stokeslets [45] to handle the fluid-structure interaction. Our
model differs from previous work in that we consider intra and extra-cellular fluid flows,
the actomyosin cortex is modeled as a poro-viscoelastic material, and various channel
geometries are considered. Our results show that cyclic pressure gradients from blebbing
together with cortical actin dynamics result in cell shape changes such as expansion and
contraction of the cell body. However, the shape change pattern is nearly reversible and
does not result in sustained net locomotion, even in confined environments. In exploring
design principles for locomotion, the channel width is varied and an asymmetrical wall ge-
ometry is considered. Neither one of these endeavours improved cell movement. However,
introducing actin turnover did produce sustained net locomotion in both suspensions and
confined environments. Our results show that confinement enhances locomotion speed
for most channel geometries. Speficially, if the wall has large crevices, a cell can become
stuck and bleb vertically within a channel gap. Simulation results also show that migration
speed increases with actin turnover.

The paper is organized as follows. In Section 2, we describe the model of the cell,
channel, and bleb life cycle. We describe the computational algorithm to solve and imple-
ment the model equations. In Section 3, the model is first simulated using a poroelastic
cortex using different bleb sizes as well as channel geometries. Next, we consider blebbing
with cortical actin turnover as modeled by the Maxwell viscoelastic constitutive law in
unconfined and various confined geometries. The effect of actin turnover on cell migration
speed is also quantified. A discussion of results and conclusion remarks are provided in
Section 4.

2. Materials and Methods

We build a computational model of a cell placed in a microfluidic rigid channel
undergoing cycles of bleb expansion and contraction driven by intracellular fluid flows as
illustrated in Figure 1. The model is two-dimensional in that it captures the motion of the
cell in the horizontal direction of motion as well as the channel height. We assume that the
flow in the third dimension across the channel is negligible. The motion in the horizontal
direction is due to extracellular fluid flows induced by cell shape changes. Our model
has three sub-cellular components: an elastic plasma membrane, a contractile actomyosin
cortex, and the cell cytoplasm. The cell cytoplasm is assumed to be a viscous fluid enclosed
in the thin actin cortex and plasma membrane. The cortex is modeled as a thin 1D porous
(visco)elastic material and its position is denoted by Xcortex(s, t) where t is time and s is
the local parametric coordinate on the structure. The plasma membrane is described as
an incompressible 1D elastic outer layer with position Xmem(s, t). The cortex is bound to
the plasma membrane via membrane-anchoring proteins modeled here as elastic links [47].
When a bleb is initiated, membrane-cortex attachment links are removed and the cell front
expands due to the emergent fluid pressure gradient. As the cortex reforms at the bleb
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site, membrane-cortex attachment links reform and the cell front retracts. Since the focus is
on adhesion-independent migration, there are no physical links between the cell and the
extracellular environment.

Cell
 

 

hhb Rigid channel 

u = 0 (No ow boundary) 

u = 0 (No ow boundary) 

cortex

ular fluid

C ll l bl bbiX
b

X
b

Figure 1. Schematic of blebbing cell in a channel. In our model, a cell is compressed within a rigid
channel of adjustable wall geometry and height. No flow boundary conditions are enforced at an
outer boundary Xb. The default setup is a confinement height of h = 13 µm for a 20 µm diameter cell
with an outer boundary of height hb = 32 µm. The cell model consists of an incompressible plasma
membrane (black dots), a (visco)elastic actomyosin cortex (white, green, and blue square points), and
a viscous cytoplasm. The lines connecting membrane and cortex points represent membrane-cortex
attachment links.

2.1. Equations of Motion

Movement in viscous fluid at zero Reynolds number is governed by Stokes equations
due to the small length scales at the cellular level [36]. In our model, the external forces
applied to the fluid are due to the deformations of the plasma membrane, the membrane-
cortex attachment links, the viscous drag with cortex, as well as a repulsive steric interaction
with the top and bottom channel walls:

µ∆u−∇p + f mem
elastic + f mem/cortex

attach + f cortex
drag + f mem

steric = 0 (1)

∇ · u = 0, (2)

where u is the fluid velocity, p is the fluid pressure, and µ is the fluid viscosity. Expressions
for these cellular forces are provided below. We use the convention of lower case letters in-
dicating fluid quantities while upper case letters indicate forces and positions of structures.

We consider two rheological descriptions for the membrane and cortex contours. Each
contour experiences forces due to either elasticity or viscoelasticity. Let f i

elastic denotes the
elastic force density on the membrane and cortex

f i
elastic =

∂

∂s
(Tiτi), (3)

where τi denotes the unit tangent vector to the closed curve Γi = X i(s, t) = Xmem(s, t) or
Xcortex(s, t). The tension T is given by

T = γ + k
(∣∣∣∂X

∂s

∣∣∣− 1
)

, (4)

which describes a linearly elastic spring with stiffness k and resting tension γ. The plasma
membrane and actomyosin cortex have their own characteristic stiffness and resting tension
(see Table 1). When the membrane and cortex are modeled as viscoelastic structures,
we use a Maxwell model to capture stress relaxation of the actomyosin cortex due to
actin filament rearrangement within the cortex [48]. Following the approach in [49], a
viscoelastic structure is modeled as a purely elastic spring (see Equations (3) and (4))
whose reference configuration X0 relaxes to the current configuration X over time with the
derived expression

F dX0

dt
=

1
λ
(X − X0). (5)
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Here, F is the deformation gradient tensor (F = ∂X/∂X0) and λ is the strain re-
laxation timescale. In the limit of small strain, the authors in [49] show that the update
equation for the reference configuration in Equation (5) together with the elastic force in
Equation (3) agrees with the Maxwell model for viscoelasticity.

Membrane-cortex attachments are modeled as elastic springs that connect the plasma
membrane to the underlying actin cortex with a force density given by

f mem/cortex
attach = kattach(Xmem − Xcortex). (6)

The drag force on the cell cortex is balanced by (visco)-elastic forces within the cortex
and elastic forces from cortex attachment to the plasma membrane:

F cortex
drag + F cortex

elastic + F cortex/mem
attach = 0. (7)

The cortical drag is defined as F cortex
drag = − f cortex

drag = ξ(u−Ucortex) where ξ denotes
the viscous drag coefficient and Ucortex is the cortex velocity.

The cell interacts with the channel walls through a repulsive force due to contact with
the surface:

f mem
steric =

{
−ksteric |δ| n, δ < 0

0, δ > 0.
(8)

Note that the steric force is only nonzero when the membrane location exceeds the top
or bottom channel walls. Here, δ is the vertical distance from the plasma membrane to the
channel walls, n is a unit vector in the outward normal direction, and ksteric is the stiffness
of the steric interaction.

Next, we describe the model for a cellular bleb. In order to account for reformation of
the actin cortex within the bleb, we include an additional numerical contour to represent
the new cortex in the bleb. Figure 1 (right) shows the location of the old and new cortex
points and the location of membrane-cortex attachment links during blebbing. Cortical
elasticity is multiplied by local density ρ on the new and old cortex. A bleb is initiated
by setting the density of the new cortex to zero in a small region at the front of the cell.
Adhesive links between the old cortex and the membrane are removed but are maintained
in the new cortex. Since the elasticity is zero when a bleb is initialized, the new cortex
points stay close to the membrane in the growing bleb. We specify a time for bleb expansion
of 5 s to allow a large bleb to form at the cell front [50]. After 5 s, a bleb moves to the
retraction phase.

During bleb retraction, the density of the new (ρnew) and old cortex (ρold) are updated
over time according to the following equations:

dρnew

dt
= kform(1− ρnew) (9)

dρold
dt

= −kform ρold. (10)

The rate of cortex reformation at the bleb site is kform. Note that densities of the new
and old cortex are assumed to be spatially uniform in their respective locations. In the bleb
retraction phase, ρnew increases over time while ρold monotonically decreases. Once the
density on the old cortex reaches a critical value of 0.2 during bleb expansion, the bleb
switches from retraction to expansion by resetting the density on the old cortex to a value
of 1 and the density of the new cortex to 0. The critical value of 0.2 was chosen because the
location of the cortex at this value was found to be very close to its location before the bleb
was initiated.

Once a bleb cycle is completed (i.e., after the density on the old cortex reaches a value
of 0.2), the old cortex is reset to coincide with membrane points at the start of the new cycle
of bleb expansion. The process ensures a re-calibration at the beginning of a new cycle.



Fluids 2022, 7, 173 6 of 17

Table 1. Model parameters.

Symbol Quantity Value Source

rmem Initial cell radius 10 µm [28]
γmem Membrane surface tension 40 pN/µm [28]
kmem Membrane stiffness coefficient 4 pN/µm
γcortex Cortical tension 400 pN/µm [28]
kcortex Cortical stiffness coefficient 100 pN/µm [28]
kattach Membrane-cortex attachment stiffness 267 pN/µm3 [51]
ksteric Constant for cell–surface repulsive interaction 5 kPa
kform Rate of cortex reformation 1 s−1

Bleb expansion time 5 s
µ Cytosolic viscosity 0.01 Pa-s [26,28,52]
ξ Cortical drag coefficient 10 pN-s/µm3 [51]
λ Strain relaxation time scale 30 s

Given a configuration of the membrane and cortex structures, forces at every location
on the structures are computed as described above, and then the pressure and velocity
of the fluid, along with velocity of the membrane and cortex are obtained by solving
Equations (1), (2) and (7). The position of each structure is updated according to their own
respective velocities:

dX
dt

mem
= u (11)

dX
dt

cortex
=

1
ξ
(Fcortex

elastic + Fcortex/mem
attach ) + u. (12)

The viscoelastic response of the membrane and cortex structures require each an
additional equation for the stress relaxation of the structures, namely Equation (5).

2.2. Numerical Method

Given an initial configuration of the plasma membrane and cortex, the one-dimensional
contours are discretized into a finite number of nodes. At every node on the membrane and
cortex, forces are computed according to constitutive laws provided in the previous section.
After forces are numerically computed, we use the method of regularized Stokeslets [45] to
solve for the fluid velocity and pressure in Equations (1) and (2). In free space, the fluid
velocity at the membrane and cortex structures is

Mc-c

[
f mem

f cortex

]
=

[
umem

ucortex

]
orMc-c f c = uc, (13)

where

f c =

[
f mem

f cortex

]
=

[
f mem

elastic + f mem/cortex
attach + f mem

steric

f cortex
elastic + f cortex/mem

attach

]
. (14)

Mc-c denotes the regularized Stokeslet matrix with entries

Mij = − ln
(√

r2
ij + ε2 + ε

)
+

ε
(√

r2
ij + ε2 + 2ε

)
√

r2
ij + ε2

(√
r2

ij + ε2 + ε
) , (15)

where rij = |X i − X j| and the regularization parameter ε = 1.5∆s which maps smeared
cellular forces to fluid velocities at the cellular structures. Here, we use the 2D blob function
φε(x) from [45] to spread or regularize a point force density over a small ball around a
point x. Values for numerical parameters such as ∆s, the grid spacing of the discretized
membrane contour, are listed in Table 2. Once the fluid velocity is known, the position of
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the immersed cellular structures are update using the forward Euler time integrator scheme
applied to Equations (11) and (12).

Table 2. Computational and discretization parameters.

Symbol Quantity Value

Nib Membrane/cortex mesh size 134
∆s Initial structure grid step size 2π rmem/Nib
∆t Time step size 1 × 10−4 s
ε Regularization parameter 3∆s/2

Although the force balance in Equations (1) and (2) ensure zero sum of forces, the
introduction of cell-surface interaction can lead to a force imbalance. In 3D, the first term in
the Stokeslet decays such as O(1/r), where r is the distance from a point force, whereas
in 2D, this term decays like O(ln(r)). Therefore, even a numerically negligible error in
sum of forces can result in ‖u‖ → ∞ as r → ∞. To ensure the forces sum to zero, we
enforce a no flow boundary condition far away from the physical domain (see Figure 1
(right)). Although we could have imposed the boundary condition directly on the channel
walls as in [44], our approach allows us to avoid resolving thin fluid boundary layers
between the cell and channel wall from satisfying a no-slip boundary condition. Our
approach satisfies a no-penetration boundary condition u · n = 0 on the channel wall and
was previously used in [49] to simulate cell deformation in a microfluidic channel with
an imposed background flow. To obtain the velocity on membrane and cortex nodes, the
linear system in Equation (13) must then be modified to[

Mc-c Mc-b
Mb-c Mb-b

][
f c

−(Mb-b)
−1Mb-c f c

]
=

[
uc

0

]
. (16)

The notationMm-n denotes the regularized Stokeslet velocity matrix mapping smeared
forces at locations Xn to velocities at locations Xm. For example,Mb-c describes the effect
of cellular forces at Xc to evaluate velocities of the outer boundary channel Xb. Note that
the method in Equation (16) ensures that there is no fluid flow at the boundary location,
i.e., ub = 0. Alternatively, one can rewrite Equation (16) for the fluid flow at cellular nodes
Xc as

uc =Mc-c f c −Mc-b (Mb-b)
−1Mb-c f c. (17)

Pressure is computed as follows,[
Πc-c Πc-b
Πb-c Πb-b

][
f c

−(Mb-b)
−1Mb-c f c

]
=

[
pc

pb

]
, (18)

where Πm-n represents the regularized Stokeslet pressure matrix which maps regularized
forces at locations Xn to pressure at locations Xm [45]. Thus, pressure along the cellular
locations Xc is given by:

pc = Πc-c f c −Πc-b (Mb-b)
−1Mb-c f c. (19)

To compute the pressure at arbitrary locations Xq, which include the cell and external
boundary wall forces,

pq =
[
Πq-c Πq-b

][ f c

−(Mb-b)
−1Mb-c f

]
. (20)

In the limit of small relaxation, our model for viscoelasticity describes a fluid rather
than solid; the method does not guarantee to preserve the mesh spacing as the material
deforms. Thus, for large deformations, in the case of moving, deforming structure, a re-
meshing algorithm maintains resolution of the discretized structures. Here, the protocol is
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to re-mesh when a bleb cycle is completed (i.e., the density on the old cortex reaches a value
of 0.2). In order to re-space the nodes on the cortex and membrane structures uniformly
and preserve their strain, a periodic spline function is used to construct differentiable
functions from the position of the discrete nodes. The integral of these differentiable
functions yields the arclength of the closed curve, `(s) =

∫ s
0 |∂mX(m, t)| dm, as a function

of current Lagrangian coordinate for the deformed configuration. The inverse map from
the Lagrangian coordinate to the corresponding arclength is computed using another
periodic spline function, s(`). Lastly, we define a new equally-spaced arclength function
and compute the new parameteric coordinate on the arclength by evaluating the previously
formed function. Similarly, a periodic spline function is formed for the tension, γ(s), and
it is evaluated at the new parametric coordinate locations, γ(snew). A similar re-meshing
algorithm was implemented and tested in [31].

To validate our numerical methods, we simulated 30 s of bleb expansion and retraction
with no walls using a membrane and cortex discretization consisting of Nib = 134 and
268 points. We simulated the model with an elastic (λ = 0) and viscoelastic cortex (λ = 30).
In the Section 3, we include graphs of the horizontal displacement of the cell centroid over
time, and compute cell speed by a linear least-square fit over the first four cycles of bleb
expansion and retraction (26.5 s). The graphs for horizontal centroid displacement were
indistinguishable for both grid refinements. For the simulation with an elastic cortex, the
value of cell speed is 0.5448 µm/min (Nib = 134), and 0.5447 µm/min (Nib = 268). The
relative percentage error (relative to Nib = 268) was less than 2%. For the viscoelastic
model, cell speed is 2.4127 µm/min for Nib = 134 and 2.3445 µm/min for Nib = 268.
The relative percentage error (relative to Nib = 268) is less than 3%. We conclude that
simulation data are insensitive to the number of grid points, and use Nib = 134 for the
remainder of the paper.

3. Results

First, we simulate bleb expansion and retraction when the immersed cell is unconfined
(immersed in viscous fluid). A bleb is initiated by specifying a region on the right side of
the cell where the density of new cortex is set to zero, and adhesive links between the old
cortex and membrane are removed. This region is defined as the bleb neck. Forces from the
old cortex (due to elasticity) are not transmitted to the membrane in the bleb neck, and the
corresponding forces from the new cortex are zero during bleb expansion (as described in
Section 2.1). This leads to a localized pressure gradient and fluid flow that expands the cell
membrane and forms the protrusion.

Membrane position at several time values during one cycle of bleb expansion and
retraction are shown in Figure 2 with a bleb neck size of 16 µm. Because the motion of the
membrane appears to be approximately reciprocal, we do not expect significant migration
(or swimming) and simulation results show almost no displacement of the cell after one
bleb cycle. Since significant motion in confinement was reported using a similar model of
blebbing [46], we explore the possibility of confined migration with our model. We return
to the case of a cell freely swimming using cycles of blebbing in Section 3.2.

 Maximum
Extension

Expansion (t = 0.1, 1.5 s)

Retraction (t = 5.5, 6.7 s)

Figure 2. (Nearly) Reciprocal motion in one bleb cycle. The plasma membrane position during one
bleb cycle for a cell with an elastic membrane and cortex (no cortical turnover). Membrane position is
labeled in black during bleb expansion and by a dashed magenta line during bleb retraction. The
bleb is fully expanded at t = 5 s.
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3.1. Elastic Actomyosin Cortex Insufficient for Sustained Locomotion in Confinement

Next, we simulate cycles of blebbing when the cell is placed within a rigid channel.
The size of the bleb and the environment’s physical properties are varied and the resulting
deformations and motion are shown in Figures 3 and 4. Surprisingly, we find that nei-
ther increasing the bleb size nor introducing geometrical asymmetries in the channel can
produce persistent forward locomotion.
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Figure 3. Bleb cycle in a straight rigid channel. Bleb expansion and retraction over one cycle
(approximately 7 s) and after 4 bleb cycles (27 s) for (a) three different bleb sizes (bleb neck sizes of 4,
8, and 16 µm) and (c) three different channel widths (18, 13, and 9 µm). The vector field represents
the intracellular fluid velocity, and the scalar color field represents cytosolic pressure. The initial
position of the membrane is shown in red. The current position of the membrane is shown in black,
and the position of the old cortex are denoted with black circles. (b,d) The straight line in the centroid
horizontal displacement is a least squares fit to the data over 4 bleb cycles. (b) The slopes for the
small bleb, medium, and large bleb, respectively, are −0.1, −0.4, and 1.5 µm/min. (d) The slopes
for linear fits of simulation data for channel heights of 18, 13, and 9 µm are 0.1, 1.2, and −1.8 µm/s,
respectively.

First, the bleb neck size is varied to produce protrusions of different sizes. The channel
gap width is held fixed at 13 µm; the cell is squeezed to 56% of its diameter. With the choice
of parameters for bleb expansion and retraction in Table 1, a blebbing cycle corresponds to
approximately 7 s. The bleb neck size is varied to 4, 8, and 16 µm and the cell undergoes four
cycles of bleb expansion and retraction (Figure 3a). We report the horizontal displacement
of the cell centroid in Figure 3b. As the bleb expands, the cell centroid moves forward
gradually, while during bleb retraction, the centroid quickly moves back due to the fast
dynamic of cortex re-formation. The cycles of bleb expansion and retraction give rise to
cyclic motion of the horizontal displacement of the cell centroid in time. The frequency
of these oscillations is the result of the two leading timescales in the problem: the bleb
expansion and the cortex reformation timescales. We define the speed of movement to
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be the slope of the linear fit of the horizontal displacement of the cell centroid and in all
three cases, the cell speed is less than 2 µm/min (or less than 10% of the cell diameter).
Only the cell with the largest bleb neck size moves forward in the first 30 s; when we
investigated whether the forward motion is sustained over longer intervals, we found that
the cell continues to move forward at the same speed less than 2 µm/min (see Figure A1 in
the Appendix A). Based on these results we conclude that cell locomotion is not significant
when a cell is confined in a rigid straight wall channel, even with larger forward protrusions.

Next, we assess whether different physical properties of the environment can lead to
sustained migration. The width of the channel is varied in Figure 3c and the corresponding
horizontal displacement of the cell centroid is shown in Figure 3d. As before, the speed is
computed as the slope of the linear fit of the horizontal displacement of the cell centroid.
Yet again, the cell speed is less than 2 µm/min for all three confinement levels indicating
that the cell moves less than 10% of its cell diameter over the course of 4 bleb cycles.
Lastly, the geometry of the top channel is altered in order to mimic gaps and pores of
the extracellular matrix while the bottom channel is kept straight. This was chosen to
resemble the experimental setup in [29]. The top channel is modeled using a rigid sawtooth
function of varying frequency (and amplitude) (Figure 4a). The horizontal displacement
of the cell centroid is reported in Figure 4b. Unlike in the straight channel, we note that
the cell can undergo vertical deformations as it expands into the crevices of the top wall.
Consequently, the average centroid displacement does not exhibit a linear trend over time
(compare data in Figures 3b,d and 4b). The largest initial displacement is observed with a
low frequency, high amplitude sawtooth channel. In this case, the large gaps in the channel
wall allow a bleb to wedge into the gap (Figure 4c). The cell remains in the gap after bleb
retraction because the steric interactions with the wall prohibit backward motion. However,
we observe that during subsequent bleb cycles, the bleb expands into the gap instead of
the channel wall, with no further forward motion after approximately 7 s. This process
is the reason the low amplitude oscillations observed in the centroid displacement in the
horizontal directions in Figure 4b (purple line).
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Figure 4. Displacement during blebbing in an asymmetrical rigid channel. (a) Cell position as the
bleb expands at two time points (left panels at 19.9 s and right panels at 20.9 s) for different geometries
of the top channel wall: high frequency/low amplitude, mixed frequency, and low frequency/high
amplitude sawtooth. The vector field represents the intracellular fluid velocity, and the scalar color
field represents cytosolic pressure. (b) Cell centroid horizontal displacement over time for the three
different channel configurations. (c) The inset shows the cell configuration at two different time
points as the cellular bleb expands vertically into the crevice of the top wall modeled as a sawtooth
function with low frequency and high amplitude.
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3.2. Swimming Emerges with Actin Turnover in Blebbing Cells

In the previous section, we probed the cell’s ability to migrate by pressure-driven blebs
in confinement. Either changing the protrusion size or the configuration of the physical
environment does not produce substantial sustained forward displacement. Introducing
additional localized rear contraction to increase the intracellular fluid flow does not greatly
improve the results presented here (data not shown). Without introducing cell-surface
adhesion, we explore the effect of introducing actin turnover in the thin actomyosin cortex.
To model the effect of actin turnover, the constitutive law for the actomyosin cortex needs
to be altered to introduce stress relaxation. The cortex is modeled as a thin viscoelastic
material with relaxation timescale λ, while all other constitutive laws and parameters
remain constant. A small strain relaxation timescale is indicative of fast actin turnover and
a more viscous, fluid-like response. In the limit of infinite relaxation timescale, an elastic
response of the material is recovered. When compared to an elastic cortex, a cell with
a viscoelastic cortex deforms irreversibly during cycles of bleb expansion and retraction
(Figure 5). The irreversibility of the motion is due to deformations of the material, as the
intracellular fluid flows due to cycles of bleb expansion and contraction, coupled with
the evolution of the reference configuration to track the current configuration over time.
The faster the relaxation timescale, the more horizontal displacement is observed. In the
limit of very slow relaxation (i.e., λ→ ∞), the elastic response is recovered and the motion
is reversible (top panel in Figure 5). Taken together, these observations suggest that one
mechanism to produce adhesion-free motion in confinement is to model the actomyosin
cortex as a viscoelastic material.

a. Elastic cortex
Time = 27 sTime = 6 sTime = 5 sTime = 1 s

0

5

10

15

20

25

0

5

10

15

20

25

 b. With actin turnover (viscoelastic cortex)

25 Pa

20

15

10

5

0

 = 10 s  = 30 s  = 50 s  → ∞

Figure 5. Reciprocity of bleb-based motion for an elastic and a viscoelastic actomyosin cortex with
actin turnover timescale λ. (a) In the absence of confinement, the motion of bleb expansion and
retraction over one cycle (approximately 7 s) and at a time value after 4 bleb cycles (27 s) is (nearly)
reciprocal. (b) Cell position after 4 bleb cycles (27 s) for a cell with viscoelastic cortex with different
strain relaxation timescales λ. Across all panels, the initial bleb neck size is 16 µm. The initial position
of the membrane is shown in red. The current position of the membrane is shown in black, and the
position of the old cortex are denoted with black circles. The vector field represents the intracellular
fluid velocity, and the scalar color field represents cytosolic pressure.

3.3. Confinement Enhances Migration Speed of Blebbing Cells

We assess whether confined locomotion is possible with the viscoelastic description
of the actomyosin cortex. A blebbing cell with a viscoelastic cortical layer is placed in a
confined environment with a rigid straight bottom channel wall and either rigid straight or
rigid sawtooth top channel wall (Figure 6). We report an increase in horizontal speed in all
cases over the elastic description of the actomyosin cortex. For the rigid straight channel
simulations, the speed is computed through a linear fit of the horizontal displacement
over four full bleb cycles (27 s). The speed is 2 µm/min for a confinement gap width of
18 µm, 5 µm/min for a width of 13 µm, and 1 µm/min for the narrowest channel width of
8 µm (Figure 6a–c, respectively). In the case of the irregularly shaped channel, due to the
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nonlinearity of the centroid horizontal displacement, we report the speed resulting from a
linear fit of the horizontal displacement for 60 s rather than 30 s. The speed is 7 µm/min
for a high frequency, low amplitude sawtooth, 12 µm/min for a mixed frequency sawtooth,
and 9 µm/min (with a stall) for a low frequency, high amplitude sawtooth top channel
(Figure 6d–f, respectively). The trends are similar to the ones in the original model with
an elastic cortex. Namely, there is a nonlinear response between confinement gap and
migration speed for the rigid straight channel walls. The maximal speed is attained at the
intermediate gap level of 13 µm. Another trend is that the cell stalls as it traverses in a
channel with a low frequency, high amplitude sawtooth top wall (see Figure 6f). Similar to
simulations with an elastic cortex (data shown in inset Figure 4c), the bleb expands into a
large gap. During subsequent bleb cycles, the cells expands into the gap rather than forward
into the channel. No forward motion is observed after approximately 30 s. Interestingly,
simulations with an elastic cortex show the cell reaching its steady state location faster than
in simulations with a viscoelastic cortex.
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Figure 6. Cortical turnover enables cell motion in a variety of rigid confined environments. The curves
represent the horizontal displacement of the cell centroid over time in a confined environment. In
panels (a–c), the cell in placed in a rigid straight micro-channel of width 18, 13, and 9 µm, respectively.
Panels (d–f) show the horizontal displacement of the cell centroid over time for a cell placed in a
asymmetric rigid channel with a straight bottom wall and a: (d) high frequency, low amplitude,
(e) mixed frequency, and (f) low frequency, high amplitude sawtooth top wall. Across all panels, bleb
neck size is 16 µm. The light grey curve represents the data for an elastic membrane and cortex, while
the black curve denotes a viscoelastic cortex with strain relaxation timescale λ = 30 s.

Results summarizing the migration speed in various environments as a function of the
strain relaxation timescale of the viscoelastic blebbing cell are shown in Figure 7. A small
strain relaxation timescale is indicative of fast actin turnover and a more viscous, fluid-like
response. In the limit of infinite relaxation timescale, an elastic response of the material
is recovered. Three physical environments are considered: cell placed in free unconfined
space, a rigid straight channel with gap width of 13 µm, and a rigid channel with a straight
bottom wall and a high frequency, low amplitude sawtooth top wall. In both free space
and a rigid straight channel, the cell speed increases monotonically with faster turnover in
the actin cortex. For the geometrically asymmetric channel, the cell speed also increases
with faster turnover, but there is a sudden jump in speed around λ = 30 s. We find that for
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fast actin turnover, λ < 30 s, the cell moves fastest in an asymmetrical rigid channel, while
for slower turnover the cell moves fastest in a straight rigid channel. Overall, the trend in
our model is that a blebbing cell in a confined environment moves faster than a blebbing
cell in free space.
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Figure 7. Confinement enhances locomotion speed. Cell speed as a function of strain relaxation
timescale for actin turnover, λ. Three physical environments are considered: cell placed in free space
(unconfined), a straight rigid channel with channel width of 13 µm (confined), and an asymmetric
rigid channel with a low amplitude, high frequency sawtooth top channel and a straight bottom
channel. Each data point represents the speed computed from a linear fit over four full cycles of the
horizontal displacement of the cell centroid. The result for no actin turnover (i.e., an elastic cortex) is
for λ→ ∞.

4. Discussion and Conclusions

Model simulations of a blebbing cell with a poroelastic cortex immersed in viscous
fluid (and no channel) show that membrane shape changes are reciprocal during bleb
expansion and retraction. As a result, a cell cannot swim in zero Reynolds number flow [36].
Even when a geometric asymmetry is introduced with a curved top channel wall, the cell
cannot efficiently migrate. In this case, some motion is possible if a bleb wedges the cell
into a gap, but sustained motion does not appear possible under our simplified model
assumptions. Our results are contradictory to those in [44], where swimming between two
straight walls with an elastic cortex was observed. One notable difference between our
model and [44] is the force balance on the cortex (Equation (7)). The cortex model from [44]
was studied in [53], where the authors found an imbalance in cortical forces led to large
pressure relief compared to the model from [51] that forms the basis for this work. In [32],
the authors found that bleb-based migration without substrate adhesion was possible in
a discontinuous environment. We did not consider this type of environment here, but
migration in our model may be possible when the cortex is treated as an elastic material
and both walls are replaced with spaced point sources.

Our results show that the combination of blebbing with cortical actin turnover results
in swimming in the absence of confinement. In the context of viscoelasticity, the strain on
the cortex evolves in time thus, it creates an asymmetry in the resistance of the material
during the bleb expansion and retraction phases. In the case of straight channel walls, we
found the fastest migration speed at an intermediate gap size of 13 µm (Figure 6). In [44],
the authors attribute similar results to an increase in intracellular pressure that causes a
bleb to form at the rear of the cell. In our model, we only allow blebs to form at the front
of the cell and specify that a bleb retracts after 5 s, regardless of the geometry. If we had
altered this rule to take membrane speed or diffusion of actin into the bleb, it is possible
that the cell speed would be affected.

Our values for cell speed are consistent with those from experimental data in [46],
where confined cell speeds were reported to be 2–6 µm/min. In addition, in [46], the
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experiments showed a biphasic relationship between confinement and cell speed in the
case of horizontal channel walls, with larger speeds at medium confinement levels. We
observe this biphasic relationship in our simulations (see Figure 6). Since our results show
actin turnover is necessary for confined migration, confined motility experiments where
actin polymerization is perturbed by drugs, such as jasplakinolide, may result in decreased
or inhibited migration after treatment.

We found that migration speed increases as cortical turnover increases (relaxation
timescale λ decreases). Interestingly, simulation results show that when λ is less than 30 s,
cell migration speed is fastest in a geometry when one wall is described by a sawtooth
function and the other wall is flat (Figure 7). As λ increases and approaches the case of
an elastic cortex, the optimal channel geometry for migration is two flat channel walls.
We also observe channel geometries where the cell migrates for a period of time before
becoming lodged within a gap, even when the cortex is modeled as a viscoelastic material
(see Figure 6, bottom right). These results point to a non-trivial relationship between the
rheology of the cell and its environment. The notion that surface flows can drive adhesion
independent migration is not novel to our work [29]; the authors in [54] found that surface
treadmilling controlled by active RhoA at the cell rear is sufficient to drive directional
cellular motility on 2D surfaces and in liquid.

Several computational models have simulated confined or blebbing migration. In [33],
a model for confined migration (chimneying) assumed a mesenchymal mode of motility,
driven by actin polymerization at the leading edge, but required proteolysis for migration.
Our results on the importance of rearward flow of the cortical actin for 3D migration are
in agreement with those from [33], where a variety of motility mechanisms were studied.
Our results differ from those in [32], where simulations of a confined blebbing cell require
substrate adhesion for migration with straight channel walls. One difference between the
models is that Kelvin–Voigt viscoelastic elements were used to model the cell membrane
and cortex in [32], whereas we use a Maxwell model in this work.

Our model has several limitations that we hope to address in the future. In order to
simulate a viscoelastic material, we re-mesh the membrane and cortex structures after each
bleb cycle. The reference configuration can become under-resolved in areas, leading to
errors in force computations. In particular, when cortical turnover is fast, the cortex begins
to transition from a solid to a fluid, and our algorithm breaks down. In this case, it may
be appropriate to simulate the cortex as a fluid. A future direction is to develop better
numerical methods to re-mesh the deforming, moving structures and to simulate a thin
viscous fluid film immersed in another fluid (such as in [55]).

A cycle of adhesion-independent bleb-based amoeboid motility is thought to consist
of protrusion (bleb), outward forces against the channel or extracellular matrix, and fol-
lowed by a spatially localized rear contraction [50]. We have conducted limited studies
to explore the effect of introducing localized myosin-driven contraction, but the focus of
this manuscript is on the locomotion due to the pressure gradients induced by blebbing.
Rear contraction leads to cortical flows that exacerbate the numerical issues previously
mentioned. We hope to comment in the future about the effect of tangential and bulk rear
local contractions and the timing of contractions in relation to bleb expansion.

In the present work, the channel is modeled as a rigid structure. In several experi-
ments of confined adhesion-independent migration, one channel wall is a glass coverslip,
and the other channel wall is agarose gel [29], which has some elastic properties. It has
been suggested that pushing and deforming the channel walls aids the cell’s ability to
migrate [24]. One possible extension of this work is to explore how the material properties
of the external environment affect cell migration without specific adhesion.

Finally, a limitation of our model is that it is 2D. The relative simplicity of a 2D model
allows us to perform simulations over a range of parameter values. Although impressive
3D simulations of amoeboid cell motility were performed in [56,57], they do not include
bleb-based motility. A long-term goal is to develop a computationally feasible 3D model
that could be used for quantitative comparison to experimental data.
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Figure A1. The centroid displacement in the horizontal direction over 60 s of a cell with a bleb neck
size of 16 µm confined in a straight rigid channel with gap width of 13 µm.
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