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Abstract: Aerodynamic performances of ground vehicle continuously improve and a lot of both wind
tunnel measurements and Computational Fluid Dynamics (CFD) investigations contribute in the
identification of local zones where shape deformation can lead to drag force reduction. Gradient-
based optimization with optimal system involving CFD models is one of the powerful methods for
shape optimization, but a genetic algorithm applied on the surrogate model can also explore a large
design space in a reasonable period of computation time. In this paper, we present an aerodynamic
optimization technique using a Kriging model in order to perform CFD simulations of different
front air dam geometries situated below the front bumper of a reduced scale road vehicle. A first
design-of-experiment (DoE) is undertaken with Large Eddy Simulations (LES), involving height
geometric parameters for radial-basis-function of the front air dam, utilizing a Sobol algorithm.
Then, a multi-objective-genetic-algorithm (MOGA) is applied on the constituted surrogate model,
depending on the geometric parameters of the front air dam, in order to reach a minimum drag
coefficient value by considering pressure constraints. Results show that a front air dam can increase
the pressure at the rear of the tailgate, especially by slowing the airflow below the underfloor, but an
optimum balance is necessary in order to not increase the stagnation pressure on the air dam, leading
to the loss of this benefit. The Sobol technique driven by the Kriging model enables the retrieval of
optimum airdam shapes found with wind tunnel tests, even with relatively coarse numerical meshes
used for CFD simulations.

Keywords: computational fluid dynamics (CFD); lattice Boltzmann method (LBM); large eddy
simulation (LES); shape deformation; radial basis function (RBF); Sobol sampling; Kriging surrogate
model; multi-objective genetic optimization algorithm (MOGA); drag reduction

1. Introduction

In the last fifteen years, the aerodynamic forces of ground vehicle have significantly
decreased, fully contributing to gas emission reduction. Looking at the drag forces, this
reduction can be estimated between 20% and 30% depending on vehicle shapes. More
precisely, according to recent communications of automotive manufacturers, reaching drag
coefficient values of 0.27 for hatchbacks and 0.2 for fastbacks on serial models seems to be
possible. These results have been obtained thanks to large wind tunnel campaigns and to
important progress in Computation Fluid Dynamics (CFD). The implementation of reliable
turbulent models in the Lattice Boltzmann method enables the combination of precision
and speed of computations, even for large and detail vehicle serial models [1]. Recent
aerodynamic knowledge acquired with these computations helps inditfy vehicle areas where
additional drag improvements can be obtained thanks to shape optimization techniques.

Shape optimization can be performed thanks to adjoint or sensibility methods, which
enable the search of drag reduction objectives depending on the normal variations of
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selected nodes on the surface of the mesh [2–4]. The number of design variables or selected
nodes depends on the interpolation scheme used to define morphing surfaces. An alterna-
tive is to limit the numbers of nodes by switching to Radial Basis Functions (RBF), which is
one of several possible morphing techniques applied via geometric parameters [5,6].

Optimization by adjoint methods [2,7–9] has been well researched for some time now
and proves its efficiency either for finite volume [3] or for least-square Galerkin software.
However, this method is still under development for direct coupling with Lattice Boltzmann
solvers [10]. It is, therefore, necessary to choose other methods dealing with design of
experiments (statistically designed models) and with optimization techniques applied on
surrogate models [11]. The manuscript reports on work that associate radial-basis-function
(RBF) morphing techniques with a Kriging model [12] and includes guidance from a wind-
tunnel test campaign focusing on shape optimization of the front undertray to minimize
drag coefficients as the objective for a generic sport-utility vehicle (SUV).

Design of experiment methods performed on a front air dam at reduced scale have been
carried out in a wind tunnel in order to identify the most relevant parameters, leading to
minimum drag values [13]. The resultant aerodynamic trends are confirmed with a design
space performed with a Sobol sequence available in CAESES©, an optimization software
developed by Friendship Systems®, and associated with ultraFluidX©, a commercial
Graphics Processing Unit (GPU)-based Lattice Boltzmann solver developed by Altair®.

Optimization also performed in CAESES© with the MOGA technique [14], including
constraints on lateral and rear pressure values, and converges to an airdam geometry
associated with aerodynamic improvements in concordance with experimental results
available from previous wind tunnel tests. The shape of the air dam converges to a
certain height, blocking flow below the bumper, except in the middle zone where a central
indentation concentrates the flow close to the longitudinal symmetry plane.

Then, a single objective gradient technique is applied on the drag response variable in
order to find other optimized solutions. This second optimization is performed involving a
Kriging model based on available Sobol results. However, the reduction in the objective
predicted with this surrogate is not confirmed by CFD validation. An iterative process is
then necessary in order to decrease the uncertainty of this surrogate model.

2. Mockup and Experimental Setup Description

Wind tunnel measurements performed at full scale on a ground vehicle show interest
in shape modifications of the undertray. Applied on a reduced scale model (model scale of
1:7), the same relative geometrical variations of an air dam lead to the same drag reduction
values. Therefore, this study is focused on an aerodynamic optimization process performed
at reduced scales on a ground vehicle mockup.

2.1. Wind Tunnel and Mockup Description

Large flow detachments observed in the rear wake of a Sport Utility Vehicles (SUV)
lead to drag values that are much higher than those observed with other vehicle shapes.
These flow detachments can be reduced either with rear spoiler inclinations or with un-
derbody shape improvements. Therefore, a modular vehicle mockup provides the testing
availability of different geometrical combinations. Figure 1 shows the different modules
that can be changed in green. The height of the underfloor can also be modified until
reaching the lowest drag value. Front and rear height values are provided for this purpose
in the figure below, leading to a drag coefficient Cd of 0.36 for this baseline configuration.

In addition to measurements performed with an aerodynamic balance, 48 pressure
sensors mounted at the rear of the mockup enabled the quantification of aerodynamic
contributions of the slant window, the tailgate and the rear bumper surfaces. According to
the reference pressure taken at the Pitot tube, localized at a height of 1034 mm above the
floor and at 630 mm ahead the front bumper (Figure 2), pressure measurements on these
three rear surfaces lead to a partial Cd ratio between 55% and 53% with or without an air



Fluids 2022, 7, 166 3 of 15

dam (Figure 3). Therefore, the optimization objective seems to be applicable either on the
total Cd or on the rear wall pressure.
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Thanks to an experimental design-of-experiment method, it has been found that a
specific air dam geometry enables a decrease in drag force by 9%, leading to a Cd value of
0.32 and keeping the rear pressure force ratios at a level of 53% (Figure 3). This optimized
configuration is now used with the baseline configuration in order to check the grid
convergence of the numerical model before performing the optimization process.

Rear pressure and drag coefficients are defined as follows:

Cprear =
N

∑
1

1
N

(
Pn − PPitot

1
2 ρV2

Pitot

)
(1)

Cd =
Fx

1
2 ρAV2

Pitot
(2)

where N denotes the number of rear sensors equal to 48, Pn denotes the pressure measured
at sensor n, PPitot denotes the static pressure measure at the Pitot tube location, V2

Pitot
denotes the velocity measured from dynamic pressure at the Pitot tube equal to 30 m/s
and A is the projected frontal area of the mockup equal to 0.06 m2 for a model scale of 1:7.
In addition to the rear pressure sensors, several pressure taps have been introduced on
both sides of the mockup in order to capture possible asymmetries of the flow. Pressure
measurements were conducted at sensor 4 on the left side in the front door (Figure 3) but
also on the opposite side [13], and they both provide equivalent values of Cpside = −0.24
without any yaw angle.

2.2. Grid Convergence for Lattice Boltzmann Numerical Model

In a lattice Boltzmann method (LBM), velocity and pressure come from the collision
equation [15,16]. The time iteration number must be high enough in order to reach the
periodic state checked at the reference Pitot tube location. The time step must be in
concordance with the cell size in order to capture the convection phenomena respecting the
Courant number condition and the inertial slope of the power density spectrum at some
specific points situated in turbulent regions behind detachment zones. A Smagorinsky
turbulence model is used in the core region of the fluid and a wall model enables the
computation of friction velocity in the three first layers in order to match to the non-
dimensional velocity profile in the core region.

Generally, simulation time for this reduced scale model is set at 2.5 s, and the number
of iterations is set at 15,000 for a mesh size of 400 million hexahedron cells or voxels. This
numerical model definition enables frequency analysis between 2 Hz and 2500 Hz but
needs two and a half days of computation. Therefore, we decrease the simulation time to
1.35 s and the number of iterations to 4000 in order to limit computation time to 4 h for a
mesh of 50 million voxels. The cell size in the wall region must also be able to capture the
wall friction in the wall model. In this paper, we compare the velocity profiles obtained
with the standard fine mesh of 400 million voxels generally used for computations and a
coarse mesh of 50 million voxels (Table 1) defined for this optimization study to hotwire
measurements at three sensor locations (Figure 4).

Table 1. Boundary layer definition for the mesh of 50 million voxels and 400 million voxels according
to their voxel refinement (Vr) distribution.

Vr Number Cell Size per Vr [mm] nb of Layer per Vr Thickness [mm]
(50 million voxels)

7 0.78125 6 4.69

6 1.5625 12 18.75

5 3.125 6 18.75

4 6.25 8 50
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Table 1. Cont.

Vr Number Cell Size per Vr [mm] nb of Layer per Vr Thickness [mm]
(400 million voxels)

7 0.390625 5 1.95

6 0.78125 27 21.09

5 1.5625 11 17.19

4 3.125 16 50
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Velocity profiles have been measured thanks to a hotwire system for the baseline
configuration, with a step of 0.2 mm starting at 2 mm from the wall. We can notice in
Figure 5a that experimental profiles for sensors 4 and 8 (in grey) are very close to the
numerical velocity profiles (in yellow) obtained with the reference fine mesh of 400 million
voxels (see bottom view of Figure 4). This high number of voxels is due to the size of
the five first layers close to the wall, equal to 0.4 mm (see Table 1). Friction velocity U*
computed with the fine mesh is equal to 1.7 m/s on sensor 4 and 8 (see top view of Figure 4)
and used for reference in order to calculate the non-dimensional velocity profiles U+ such
as the following.

U+ = f
(
y+
)

with U+ =
U
U∗ , y+ =

U∗y
ν

and ν the cinematic viscosity (3)

Thickness of the boundary layers is estimated at the end of the logarithmic law, which
must be parallel to the analytic law (in orange in Figure 5b), and it is defined as follows.

U+ =
1
K

ln
(
y+
)
+ C with K = 0.41 and C = 5 (4)
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Figure 5. (a) Velocity profiles at different locations (on the fender for sensor 3, below the front
window for sensor 4 and below the rear window for sensor 8) thanks to hotwire measurements in
grey, with a fine mesh in yellow and with a coarse mesh in blue. (b) Experimental and numerical
non-dimensional velocity profiles at different locations. End of the logarithmic law correspond to the
end of the boundary layer. uFX Standard corresponds to the fine mesh and uFX optimization to the
coarse mesh. The theorique profiles are computed thanks to Equation (4).

This method enables the ability to find a boundary layer thickness between 12 mm
and 14 mm for sensor 4 and 8 (Figure 5a) and avoids questions about velocity acceleration
due to the blocking ratio.

Even if the resulting velocity profiles (in blue) on Figure 5a show differences with
velocity profiles of the refined mesh (in yellow), slopes in the three first layers lead to
the same friction velocity. Differences were observed to be increased at sensor 3 where
acceleration of the flow along the fender seems difficult to capture either with coarse or fine
mesh. It is, therefore, important to check if the pressure fields in the detachment regions
are well computed, especially with coarse mesh in the rear end of the mockup.

The same velocity profiles have been realized on this baseline configuration with a
coarse mesh in order to check if CFD computations are precise enough to create a database
in a reasonable time. Voxels measuring 50 million are used in this mesh, with cell sizes
of 0.8 mm in the six first layers close to the wall (Table 1). Slip boundary conditions are
imposed on the wall of the wind tunnel, and zero velocity conditions are applied on the
floor, the wheels and the surfaces of the mockup (Figure 6). An inlet velocity of 30 m/s
leads to a velocity at the Pitot tube of 30.6 m/s corresponding to a blocking rate of 1.8%. A
zero relative static pressure condition is defined at the outlet. Pressure and drag coefficients
are normalized with pressure and velocity magnitudes, measured at the Pitot tube.
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According to Figure 7, we obtain a numerical Cd value for this smaller mesh of 0.36
for the baseline and 0.332 for the optimized configurations with pressure map and velocity
measurements both averaged on the last 1000 iterations. As a remainder, experimental
Cd value is equal to 0.36 in baseline and 0.32 with airdam. These numerical results are in
concordance with wind tunnel measurements (see Figure 3).
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configuration, respectively, equal to 0.360 and 0.332. Drag coefficient gain is close to 8%. Numerical
Cprear/Cd ratio is equal to 58% when taking pressure taps and close to the ratio of 55% found in
measurements. Meanwhile, pressure ratio of the slant and the tailgate surfaces is equal to 30%.

When taking into account the pressure sensor locations (left side of Figure 7), the rear
pressure coefficient versus drag coefficient Cprear/Cd of the computed baseline configura-
tion is equal to 58%, close to the ratio of 55% found in experiments (Figure 3). When using
the slant and tailgate surfaces, this pressure ratio is equal to 30%. This difference of rear
pressure ratio found between rear pressure sensors and rear partial surfaces is due to a
higher density of the pressure sensors in the region of low-pressure values, especially in
the rear bumper region.

In relation with wall pressure map of Figure 7, streamlines in the symmetry plane
in the longitudinal direction show influence of the air dam on wake structure (Figure 8).
Without the air dam, airflow in the underfloor creates a recirculation behind the rear
bumper. With the reference air dam, this bottom recirculation disappears, increasing the
size of the remaining recirculation, which pushed itself downward. Pressure in the wake
increases, leading to drag force reduction in the tailgate. However, this benefit is balanced
by an increase in pressure on the front air dam. Nevertheless, numerical Cd reduction is
equal to 8% compared to an experimental gain of 9%.
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Thanks to the numerical model’s definition, computation takes 4 h on a DGX-1 machine
working with 8 GPU Tesla cards of 32 GByte of RAM per card for a numerical model of
50 million voxels. Depending on the number of free variables, this solver time per variant
leads to a total computation time of one month in order to build up the database for the
surrogate by running the design-of-experiments.

2.3. Shape Optimisation Process

According to the optimized configuration described above, there is an air dam ge-
ometry decreasing drag forces by 8% (Figure 6). However, the absolute total height of
this geometry limits its integration below the front bumper due to the style issues and
the reliability of the system. A design exploration of the geometric parameters must help
delivering a less intrusive shape with similar aerodynamic performance.

Starting from the most efficient air dam geometry, Radial Basis Functions (RBFs) are ap-
plied on the source curves in order to deform the shape until reaching the target curves. Target
curves, defined as NURBS, are morphed with their control points, according to geometric
parameters such as the total height of the air dam and the height and the width of the central
section. Figure 9a shows a description of the deformation process, and Figure 9b presents the
eight geometric parameters retained to morph the shape of the air dam.

The new air dam geometry is exported in the STL format and joined to the static
STL file of the numerical model. The volume hexahedral mesh, performed in the closed
volume limited by the shell mesh, enables the computation of a new aerodynamic solution
thanks to the lattice Boltzmann method with the cell size definition selected from the grid
convergence study.

There are different methods for building response surfaces (surrogates) used to search
a minimum number of objective functions. The Latin Hypercube technique is often used,
but Sobol sequence is preferred as this global sensitivity analysis method based on variance
decomposition enables adapting sampling during design space exploration. The precision
of the resulting surrogate model can be increased thanks to additional sampling, dealing
with extended geometric parameter ranges [17].
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Figure 9. (a) Source and target NURBS defined with radius basis functions. The source curve in
green corresponds to an absolute total height of the air dam of 280 mm. (b) Definition of the design
parameters related to the control points.

As mentioned in the Introduction, response variables have been chosen in order to
explore numerical solutions close to the experimental results. The objective is the drag
value and constraints dealing with pressure sensor values on the side and at the rear of the
mockup. Sampling results must show the response surface of the minimum drag value
in the range of pressure constraints. Figure 10 illustrates the process with objectives and
constraints definition. An error of Cd corresponds to the difference between a computed
Cd value and the objective value of 0.32. An error of 0.02 corresponds then to a Cd of 0.34.
Therefore, an error on Cpside4 of 4 will correspond to a value of −0.21 and an error on
Cprear/Cd of 0.1 corresponds to a value of 0.25. Results of the Sobol sequence are presented
in the next section.
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Surrogate models are often built from the available design space database, either with
artificial neural networks or with a Kriging model. This model, also called a Gaussian
process, enables the prediction of the objective of function f (x) depending on the range of
the geometric variable vector dataset x thanks to the following relation:

f̂ ≈ g(x)T β + r(x)T R−1
(

f − G β

)
(5)

with x being the vector of design variables of dimension n, g(x) is the vector of trend basis
functions, β is a vector containing the generalized least squares estimates of the trend basis
function coefficients, r(x) is the correlation vector of terms between x and the data points, R

is the correlation matrix for all of the data points, f is the vector of response values and G

is the matrix containing the trend basis functions evaluated at all data points. Correlation
vector r(x) and matrix R are computed using a Gaussian correlation function depending

on a vector of correlation parameters of dimension n, θ = {θ1, . . . , θn}T using a Maximum
Likelihood Estimation (MLE) procedure involving the Likelihood join probability function
p(y|θ). Therefore, the Kriging model allows an approximation of predictors and their
uncertainty through the mean square error (MSE). The Kriging model defined and used in
this paper has been introduced in Dakota, an optimization algorithm available from the
Sandia National laboratory [18] and implemented in CAESES©.

This CFD optimization study deals with drag coefficient reduction with pressure
constraints. Therefore, we need to solve a multi-objective problem in order to find the
global minimum of the individual objective functions defined thanks to each Kriging
model: min[ f1(x), f2(x), . . . fm(x)] with m corresponding to the number of objectives. As
CFD simulations can lead to different minimums according to flow topology change, a
multi-objective genetic algorithm (MOGA) seems to be the most appropriate in order to
find the global minimum in the objective space. This genetic algorithm uses a two-point
crossover technique, starting from 50 random design points. The result is a population
of the 10 best “parent” (elitist strategy) plus 40 new “children”. The MOGA optimization
process is finished after either 150 generations or 2000 function evaluations. We will then be
able to select the minimum drag objective value in the response surface that is associated
with pressure objective values.

Due to pressure constraints, the minimum value of the drag coefficient may be de-
creased, performing a single-objective optimization in the design space. This second
optimization process can involve a genetic algorithm on the single function of the Krig-
ing model or a gradient search (Tsearch algorithm) applied on the surrogated model and
verified with CFD computations. A gradient search on the surrogate model could help in
understanding the relation between design variables and drag values. Then, CFD com-



Fluids 2022, 7, 166 11 of 15

putations performed at specific points enables the verification of whether the resulting
CFD-computed Cd values are close to the Kriging model’s prediction. In cases where
CFD results are far from the Kriging prediction, a gradient search can be performed using
CFD computations directly without surrogate models. Figure 11 presents these different
possibilities.
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Figure 11. Different optimization methods used for drag reduction with (left) and without (right)
pressure constraints.

3. Results

Thanks to the optimization process described in Section 2.3, we focus first on the
response surface in the objective space, obtained at the end of the Sobol sequence after
80 sample computations. Figure 12 shows the Cd values versus the rear pressure ratio and
the side pressure values situated on the front doors (on the left for the driver side and on
the right for the passenger side). Both figures show that Cd error is at the minimum and
equal to 0.02, meaning that Cd = 0.34 when the error side pressure is close to 4 from the
conditions given in Figure 10, which means that Cpside = −0.21 instead of the expect value
of −0.25. This minimum Cd value of 0.34 is related to an error of the rear pressure ratio
equal to 0.10, which means that Cprear/Cd = 0.25, a ratio smaller than the expected value of
0.30 given in Figure 7.
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This Sobol sequence database helps in creating the Kriging model used to optimize the
drag objective under pressure constraints. Figure 13 shows that the MOGA algorithm, avail-
able in CAESES© via the embedded Dakota optimization kit, finds a minimum Cd error of
0.02 for a minimum side pressure error close to zero but with a minimum error on the rear
pressure ratio above 6%. It means that the best Cd reductions found in this current database
are related to a decrease in the rear pressure contribution and inversely to an increase in air
dam dam contribution. The constraint applied on the Cprear/Cd ratio seems, therefore, dif-
ficult to respect completely, meaning that the best aerodynamic performances are obtained
with airdam designs inducing important pressure forces. Nevertheless, additional samples
selected with the MOGA technique must lead to the aerodynamic performances of airdam
geometry presented in Figure 7.
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A gradient-based optimization technique is then performed based on the Kriging
model of the drag coefficient objective in order to test its prediction uncertainty. Anal-
ysis of the Pareto curves deals with Cd variation for each design parameter. Figure 14
shows that strong correlations are found for four design parameters (delta_end_height,
delta_total_height, thickness and transition), leading to the minimum value of Cd = 0.327,
which is better than the optimized value of 0.332 presented in Figure 7. However, CFD
validation for this design provides Cd = 0.348. This validation result far from expectation
shows that the surrogate model must be completed with additional computed samples,
including this final computation result. An iterative process involving predictions and CFD
computations will help find the missing samples leading to an increase in the coefficient
of determination R2, defined as the proportion of the predictable variations of the design
variables and computed thanks to Maximum Likelihood Estimation (see Section 2.3).

Even though the optimization process cannot reach any Cd value below the reference
air dam value of 0.332, a second important objective is to decreasing the maximum height
of the air dam for style and system reliability purposes. According to the available CFD
database composed of 230 Sobol and Dakota configurations, we focus now on the air
dam’s minimum height, which is related to a local minimum of the drag coefficient values
(Figure 15). Compared to the reference air dam configuration in red, there exists a local
optimized configuration in green, decreasing the air dam height of 16% for a Cd increase
of 2.6%. In addition to the total height reduction, the small height in the middle section
(right view of Figure 16) has great advantages for product reliability. The pressure force
will be lower and torque actuation smaller in cases of air dam deployment. A numerical
Cd reduction limited to 5%, compared to the potential maximum Cd reduction of 8%, still
remains interesting.
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4. Conclusions

Aerodynamic optimization with shape deformation is a research domain involving
many topics. Surrogate models such as Artificial Neural Networks and Kriging models
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become popular and can be utilized in connection with different CFD solvers. Surface
morphing with Radial Basis Functions (RBFs) are now well known, and techniques for DoE
sampling can easily be introduced in simulation processes. Gradient or genetic algorithm
methods also gain popularity for aerodynamic optimization purposes. It seems, therefore,
reasonable to create CFD databases dealing with design exploration for aerodynamic project
optimization without expending too much effort.

Most CFDs or wind tunnel databases are created thanks to discrete parameters. It
misses some optimization example feedback dealing with morphing. Optimization anal-
ysis in this paper shows some potential difficulties in order to create surrogate models
correlating precisely design parameters with aerodynamic objectives. DoE sampling is,
therefore, an important step in order to constitute response surfaces leading to reliable
Pareto curves and precise objective predictions. The sampling size of DoE is crucial: If it
is too large, the time and resources spent on simulations are prohibitive; if it is too small,
the quality of the predicted vs. the computed results is insufficient. There are methods for
placing additional simulations strategically, namely where the error between actual results
from CFD and predicted results from the surrogate are considerable and/or where very
beneficial designs are likely to occur.

In this study, we can also observe that multi-objective optimization with pressure con-
straints could help in understanding issues in the comparison method between numerical
and experimental results. Side pressure constraints are easy to respect but the averaging
process for rear pressure calculation needs to be precisely defined.

Physical analysis of the CFD database created thanks to the Sobol sequence shows
some local minimum, which might be interesting for air dam shape definition. Drag
reduction remains at a high level for significant product design advantages.
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