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Abstract: We construct a model for the turbulence near the X-point of a Tokamak device and, under
suitable assumptions, we arrive to a closed equation for the electric field potential fluctuations.
The analytical and numerical analysis is focused on a reduced two-dimensional formulation of the
dynamics, which allows a direct mapping to the incompressible Navier-Stokes equation. The main
merit of this study is to outline how the turbulence near the X-point, in correspondence to typical
operation conditions of medium and large size Tokamaks, is dominated by the enstrophy cascade
from large to smaller spatial scales.

Keywords: plasma turbulence; scrape-off-layer; Euler 2D equation

1. Introduction

The possibility to deal with a satisfactory confinement of the plasma in a Tokamak
machine [1] is strictly related to the existence of closed magnetic surfaces [2,3] (for a
discussion on the influence of dissipation effects on this feature, see Ref. [4]). However,
the anomalous transport of particles and energy toward the machine walls is an intrinsic
phenomenon in a Tokamak (or in medium or large size devices), and it deals with the
subtle question of the power exhaust [5]. Thus, the small region of plasma between the last
closed magnetic surface and the walls or the divertor (commonly dubbed Scrape-off-Layer
(SoL)) plays a very critical role in present and future Tokamak experiments. Such a plasma
portion has very different properties with respect to the plasma in the Tokamak core and
it possesses significant collisionality, up to admit (at list for low enough frequencies) a
quasi-neutral two fluid representation, in which ions and electrons are properly described
in interaction, mainly via the electromagnetic force [6].

In the SoL, the magnetic field lines are always open and the presence of an X-point in
the magnetic configuration, where the poloidal magnetic field identically vanishes, creates
two additional “legs” in the magnetic configuration. The region just between the two legs,
called “private zone”, is unavoidably particularly affected by a turbulent behavior of all
the fundamental (electromagnetic and thermodynamical) quantities and, over the years,
it increased attention to provide a satisfactory representation for the resulting turbulent
transport [7–13].

Here, we derive a local model for the turbulent dynamics of a plasma in the vicinity
of an X-point, focusing attention to the basic ingredients of a predictive scenario. In
addition to a constant magnetic field (taken along the toroidal z-direction of a Cartesian
set of coordinates), we introduce the morphology of a small poloidal magnetic field, as it
appears in the magnetic configuration of a region very close to the X-point and lying in the
poloidal (x, y) plane. The background configuration is also characterized by an equilibrium
density and pressure, the former taken as an homogeneous contribution, while all the other
dynamical variables live on the perturbation level only. Neglecting diamagnetic effects (ion
and electron pressure gradient), the perpendicular current is then expressed by means of
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the ion polarization drift velocity only. We arrive to set up a coupled dynamical system,
i.e., we have to deal with a partial differential non-linear set of equations in which the
unknowns (density, electric and magnetic potentials and temperature) influence each others
via coupling terms.

The theoretical and numerical analysis of the turbulence profile is then restricted to
the two-dimensional (ortogonal) plane (x, y), which dynamical features naturally emerge
as soon as the drift coupling (induced by the parallel divergence of the parallel current) is
neglected. Despite this reduction, the emerging electrostatic turbulence, in the presence of
ion viscosity, is then still well-individualized via a mapping with the Euler equation for a
viscous incompressible fluid (for a seminal paper, see Ref. [14]). Such a correspondence
concerns a direct isomorphism between the electric field potential and the so-called stream
function for the fluid.

We analyze in some detail the morphology of the obtained dynamics, especially in
its (truncated) Fourier representation and, for the inviscid regime, we derive an analyt-
ical solution for the (asymptotic) steady spectral morphology. This specific solution is
recognized to mimic the Kolmogorov-Kraichnan enstrophy cascade spectrum proper the
inertial range [15], for which the energy per unit wave-number behaves as the inverse
cubed wave-number (the enstrophy flux being constant). We then utilize the so-called
Arnold criterion [16] to demonstrate the stability of the analytical spectrum derived in the
inviscid case, offering also more general hints on the stability in the viscous case.

The numerical analysis confirms that, if we fix the free parameters of the obtained
Euler equation in the correspondence to the operation conditions of medium and large
size Tokamak machines, the enstrophy cascade is dominating in the inertial range, with
respect to the opposite phenomenon of an inverse cascade transferring energy from larger to
smaller wave-number values. We stress that the behavior of the large scale modes resembles
a phenomenon of condensation [17,18]. It is important to stress that the analytical solution
is obtained by imposing an upper wave-number cut-off. In the model, we consider (as
also outlined from the observed SoL turbulence phenomenology [19]) the natural cut-off
coinciding with the ion Larmor radius: the typical scale of the turbulence (from millimeters
to few centimeters) is larger than this characteristic ion scale (0.1 mm).

The paper is structured as follows. In Section 2, we outline the morphology properties
of the magnetic configuration near the X point. In Section 3, we derive the equations
describing the electromagnetic turbulence using a quasi-neutral two-fluid approach. In
Section 4, we construct a local model for the turbulence dynamics near the X point in
the form of a closed equation for the electric potential. The stability of the evolutionary
dynamics is then discussed by means of the linear dispersion relation. In Section 5, we
provide the reduced two-dimensional dynamical equation for electrostatic turbulence,
outlining the analogy with the theory of incompressible flow and we study the turbulence
spectral properties in terms of the vorticity dynamics. The relevant scaling of the steady
energy spectrum as a function of the wave number are also analyzed. We finally study the
stability of the obtained analytical spectrum specified for the inviscid case. In Section 6,
the dynamics of the two dimensional electrostatic turbulence is investigated by means of a
numerical code evolving the truncated Fourier expansion of the fluctuating potentials for
three relevant cases. Concluding remarks follow.

2. Magnetic Configuration of the Equilibrium

In this Section, we fix the basic features of the local equilibrium on which we develop
our turbulence analysis and the main assumptions regulating the addressed plasma sce-
nario. We determine the morphology of the toroidal flux function, as considered sufficiently
close to the X-point of a Tokamak device, while the toroidal component of the magnetic
field is taken constant.

In what follows, restricting our attention to a spatial region of size much smaller
than the major radius of the machine, we can neglect toroidal curvature effects and then
we adopt the Cartesian coordinates {x, y, z}. The major magnetic field contribution is
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along the z direction, mimicking the toroidal magnetic field of a Tokamak: we denote
this component by B0 (here the suffix 0 denotes background quantities). Thus, the total
magnetic configuration takes the following form:

B0 = −∂yψ0êx + ∂xψ0êy + B0êz , (1)

where B0 is taken constant and ψ0(x, y) denotes the magnetic flux function.
It is easy to realize that, if the plasma is sufficiently cold and low dense near the

X-point, then the function ψ0 must obey the (Ampère) equation [20]

∂2
xψ0 + ∂2

yψ0 = 0 . (2)

As solution of the equation above, we consider the expression ψ0 = (x2 − y2)B0p/2,
where B0p denotes an assigned constant. This form of the magnetic flux function is depicted
in Figure 1, in arbitrary units, in order to represent the X-point morphology.
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Figure 1. Contour plot of ψ0 ∝ (x2 − y2) as a function of (x, y) in arbitrary unit. Dashed red line
represents the contour ψ0 = 0.

In what follows, we will thus deal with the background magnetic field:

B0 = B0p
(
yêx + xêy

)
+ B0êz , (3)

having the directional versor b̂0. Hence, the operator ∇‖ takes the following expression:

∇‖ ≡
1
B
(

B0py∂x + B0px∂y + B0∂z
)

b̂0 , (4)

where B ≡ [B2
0p(x2 + y2) + B2

0 ]
1/2.

We also deal with two other basic assumptions: (i) since the Debye length is much
smaller than the turbulence scale, we assume the validity of quasi-neutrality, i.e., ni = ne ≡ n
(ni and ne denoting the ion and electron number density, respectively and we deal with a
Hydrogen-like plasma); (ii) we implement the so-called “drift ordering”, i.e., the smallness
of the fluctuations does not prevent that their gradients are comparable (or greater) to that
of the background while their second gradients dominate the dynamics. Finally, we are
assuming that no velocity fields are present in the local equilibrium, so that the velocity
and electric fields are pure fluctuations. Only the number density and the pressure will
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contain a background contribution, here denoted by n0 and p0, respectively, while their
fluctuation components are denoted by barred quantities, namely n̄ and p̄, respectively.

3. Dynamics of the Turbulence Fluctuations

We derive here the fundamental system of equations governing the turbulence dy-
namics and corresponding to a typical scheme for the non-linear low energy drift response.
Our analysis is based on a two-fluid description of the plasma, in which the only relevant
contribution to the ortogonal current density is provided by the ion polarization drift
velocity. The starting point of the derivation is the balance law for both the parallel and the
perpendicular momentum for ions and electrons, respectively. Here and in the following,
we refer to parallel/perpendicular with respect to the background magnetic field versor b̂0.
A basic assumption, present in the model since from the very beginning, is that the plasma
is characterized by a negligible parallel ion velocity.

We start by stressing that the perpendicular electron momentum conservation provides
the orthogonal electron velocity as coinciding with the E × B velocity (we neglect the
perpendicular pressure gradient, as well as other smaller effects), namely

vE ≡
cB0

B2

(
−∂yφêx + ∂xφêy

)
, (5)

where c is the speed of light (we adopt Gaussian units) and φ denotes the electric field
potential fluctuation. Since, the divergence of vE contains only first order gradients of the
electric potential, we will neglect it with respect to the divergence of the ion drift polarisa-
tion velocity. Thus, from now on, we consider vE as a divergence-less vector. Moreover,
we note that, for fully fluctuating quantities (which have no background counterparts), we
omit the bar notation.

The dynamics of the ion perpendicular velocity u⊥ is governed by the following
equation:

du⊥
dt

=
e

mi
(−∇⊥φ + u⊥ × B/c) + ν∇2

⊥u⊥ , (6)

where ∇⊥ ≡ ∇−∇|| and we have neglected parallel components of the viscous stress
(e denotes the elementary charge, mi the ion mass and ν the kinematical (specific) ion
viscosity). In the present analysis, the Lagrangian derivative reads

d(...)
dt

= ∂t(...) + vE · ∇⊥(...) . (7)

Since the turbulence is, in general, observed at frequencies much smaller than the
ion gyro-frequency, we can set u⊥ = vE + u(1)

⊥ (where u(1)
⊥ is a small correction to the

fluctuating velocity). Hence, Equation (6) gives at the leading order

u(1)
⊥ = − c

B0Ωi

(
d
dt
− ν∇2

⊥

)
∇φ , (8)

where Ωi denotes the ion gyro-frequency, calculated with the magnetic field intensity B0.
If we neglect the diamagnetic effects, i.e., the pressure gradient contribution to the

electron and ion velocities, the orthogonal current reads as

j⊥ ≡ n0e(u⊥ − vE) = n0eu(1)
⊥ , (9)

where we also implemented the quasi-neutrality condition for the plasma and we consid-
ered u(1)

⊥ as the only relevant difference between the two species velocity fields. In this
respect, it is worth stressing how, for the case of a constant magnetic field (as considered
below), the diamagnetic velocities would be divergenceless, so that their absence has no
consequences on the charge conservation, which is a basic dynamical equation in the
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addressed scenario. Hence, the charge conservation equation ∇ · j = 0 is rewritten via
Equation (8) as follows:

d
dt
∇2
⊥φ = 4φ

v2
A

c2

(
∇‖ · j‖ + ν∇4

⊥φ
)

, (10)

where vA denotes the background Alfvén velocity, calculated with B0. We now account for
the parallel electron momentum in the presence of a constant parallel conductivity coeffi-
cient σ and a parallel potential vector A‖ only. Such a momentum balance explicitly reads

j‖ = σ

(
1

n0e
∇‖pe −∇‖φ−

1
c

∂t A‖

)
, (11)

where pe denotes the electron pressure. Now, by calculating from this equation the quantity
∇‖ · j‖, and by implementing the Lorentz gauge condition

1
c

∂tφ +∇‖ · A‖ = 0 , (12)

then, Equation (10) rewrites as

d
dt
∇2
⊥φ =

4π

c2 v2
A

[
σ

(
1

n0e
∇2
‖pe −∇2

‖φ +
1
c2 ∂2

t φ

)
+ ν∇4

⊥φ

]
. (13)

Moreover, adopting the perfect gas law for the electron fluid and remembering that,
according with the drift ordering the second gradients are dominant, we can write the
expression

∇2
‖pe = KBTe0∇2

‖n̄ + KBn0∇2
‖T̄e , (14)

where KB denotes the Boltzmann constant and Te the electron temperature.
To solve the electric potential dynamics, we need to couple the density and electron

temperature evolution to Equation (13). The density dynamics is provided by the continuity
equation (the same for ions and electrons due to the charge conservation equation, see
Appendix A), i.e.,

dn̄
dt

+ vE · ∇n0 =
1
e
∇‖ · j‖ +Dn∇2

⊥n̄ , (15)

where we neglected the parallel ion velocity (u‖ ' 0) and the diffusion coefficient Dn is
a phenomenological tool to model different transport regimes [12]. In this same approxi-
mation scheme, the (ideal) electron temperature evolution is governed by the following
equation:

dT̄e

dt
+ vE · ∇T0e =

2
3n0eKB

∇‖ · j‖ . (16)

In the limit in which we can neglect the ion thermal conductivity, the thermal equi-
librium holds and we can speak of an equal ion and electron temperature formally both
governed by the equation above.

We conclude by observing that the assumptions underlying the system of equation
above, describing the X-point turbulence, are well-justified from a phenomenological point
of view. Clearly, we have to think of the X-point region as that one out of the plasma
separatrix, which therefore has the same qualitative morphology of the SoL. Now, the
spatial scale of the turbulence runs from few millimeters to ten centimeters, a scale surely
much greater than the plasma Debye length (justifying the quasi-neutrality assumption)
and significantly greater than the Larmor radius of the ions (allowing to speak of low
frequency dynamics). Furthermore, the mean free path of the plasma constituents is about
one meters, i.e., two orders of magnitude smaller than the parallel connection length of the
background magnetic field [21]. Thus, the plasma has a collisional nature and the two-fluid
approximation is appropriate to describe the dynamics.
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In view of these considerations, it is natural to apply, as done above, the drift ordering
assumption [12,22,23]. This paradigm can be summarized by saying that the amplitude
of the fluctuations is proportional to their scale and it is, in absolute value, of the order of
the ratio between the electrostatic energy and the thermal one, times background values.
If we denote by (...)1 and (...)0 the fluctuation value of a quantity and its background
one, respectively (the former having a spatial scale L1, while the latter L0), then the drift
ordering approximation can be stated as

(...)1

(...)0
∼ L1

L0
∼ eφ

KBT0
� 1 . (17)

The relation above says that the fluctuation gradients ∼(...)1/L1 are of the same
order of magnitude of the background gradients ∼(...)0/L0, while the second fluctuation
derivative ∼(...)1/L2

1 clearly provides the largest contribution.
Summarizing, the crucial point in order the approximations made in constructing the

dynamical system derived in this Section are valid in the SoL is that its lower temperature
and higher density make the plasma therein much more collisional than the one in the core
of a Tokamak.

4. Relevant Reduced Model

In this Section, we construct, under suitable hypotheses, a closed equation in the elec-
tric potential field only, starting from the dynamical system fixed above. The first relevant
assumption we implement on the dynamics is the possibility to neglect, in Equation (15),
the spatial gradients of the background density n0. Then, comparing the resulting equation
to Equation (10) for the electric fluctuation φ, we can easily get the following relation:

∇2
⊥φ = 4π

v2
A

c2 en̄ , (18)

where we have assumed to model the phenomenological parameter as Dn = ν [12], which
corresponds to the second hypothesis underling the present reduced model.

Now, focusing on a constant temperature model Te ≡ T0e = const., then Equation (13)
can be rewritten in the simplified closed form for the electric potential φ as

d
dt
∇2
⊥φ =

4πσv2
A

c2 ∂2
t φ +

σKBT0e

n0e2 ∇
2
‖∇

2
⊥φ−

4πσv2
A

c2 ∇2
‖φ + ν∇4

⊥φ . (19)

If we now introduce the dimensionless quantities Φ ≡ eφ/KBT0e, τ ≡ Ωit, x̄ ≡ (2π/L)x
and ȳ ≡ (2π/L)y (here L denotes a given periodicity length of the system), the equation
above reads in the following dimensionless form:

∂τ D⊥Φ + α
(
∂x̄Φ∂ȳD⊥Φ− ∂ȳΦ∂x̄D⊥Φ

)
=

= γ
(

∂2
τΦ− D‖Φ

)
+ δD2

⊥Φ + εD‖D⊥Φ , (20)

where

α ≡ (2π)2KBTe0

mΩ2
i L2

, γ ≡
4πv2

AσΩiL2

(2π)2c4 , δ ≡ (2π)2ν

ΩiL2 , ε ≡ Ωi
νie

α , (21)

here νie denotes the ion-electron collision frequency and D⊥ is the normalized orthogo-
nal Laplace operator. Furthermore, retaining the dominant contribution in the second
derivatives, we have

D‖ ≡
B2

0p

B2
0

(
ȳ2∂2

x̄ + x̄2∂2
ȳ + 2x̄ȳ∂x̄∂ȳ

)
+ (2π)2∂2

z̄ , (22)
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where z̄ ≡ (2π/L)z. Clearly, close enough to the X-point, i.e., x̄ ' ȳ ' 0, we have
D‖Φ ' (2π)2∂2

z̄Φ and D⊥Φ ' ∂2
x̄Φ + ∂2

ȳΦ.

Linear Dispersion Relation

In order to reduce the dynamics above to a coupled system of ordinary differential
equation, let us now implement the Fourier representation of the field Φ. Using the vector
notation κ = [k, kz], with k = [kx, ky], for the dimensionless wave-numbers, we can write

Φ =
1

(2π)3

∫
d3κ ξκ(τ) ei(kx x̄+ky ȳ+kz z̄) , (23)

where the integral is extended to the whole space {kx, ky, kz} and, since Φ is a real field, we
have ξ−κ = ξ∗κ. Substituting the expansion above into Equation (20), we get, close enough
to the X-point, the following equation for the Fourier component ξκ:

−k2∂τξκ +
α

(2π)3

∫
d3κ′ k′2

(
kxk′ȳ − kyk′x̄

)
ξκ−κ′ξκ′ =

= γ∂2
τξκ +

((
γ + εk2)k2

z + δ k4)ξκ , (24)

where we have drop the τ dependence.
Let us now investigate the behavior of the linearized system, i.e., we investigate

the evolution of ξκ(τ) neglecting the quadratic term regulated by the parameter α in
Equation (24). To this end, we set ξκ ∝ exp{−iΩτ}, which, once substituted in the
linearized equation, provides the following dispersion relation:

iΩk2 + γΩ2 −
(
γ + εk2)k2

z − δ k4 = 0 . (25)

If we now separate the frequency Ω into its real part Ωr and its imaginary one Γ, respectively
(i.e., Ω = Ωr + iΓ), it is easy to check that, for Ωr = 0, we get Γ = (−1±

√
1− 4γη)k2/2γ,

where η ≡ [(γ + εk2)k2
z + δk4]/k4. Conversely, for Ωr 6= 0, we easily get Γ = −k2/2γ and

Ωr = k2√4ηγ− 1/2γ. We clearly see that there is always a damping of the modes since
Γ < 0 (no linear instability is present), but two different regimes can be distinguished:
(i) when 4γη 6 1, we deal with pure damping; (ii) when 4γη > 1, we have a damped
oscillation of the mode. We observe that, since η is a function of k and kz, the two regimes
above can, in principle, co-exist but on different spatial scales.

In the case γ ≡ ε ≡ 0, the linear evolution is reduced to a pure damping behavior
with Γ = −δk2. In this respect, we observe that, introducing the turbulent behavior of
the poloidal magnetic field, via the dynamics of A‖, we significantly affect the linear
regime, simply because for small enough values of the parameter γ (in correspondence to a
fixed value of η), we can have a very small negative value of Γ, i.e., a much less damped
mode appears. In the opposite case, i.e., when γ takes sufficiently large values (a less
realistic situation than the previous one), we see the emergence of weakly damped (this is a
k-dependent feature) oscillating modes.

5. Two Dimensional Electrostatic Turbulence of the Reduced Scheme

Let us drop the parallel dependence in the local model developed in the previous Sec-
tion. If we also set A‖ = 0 (then Equation (12) loses its applicability), Equation (20) reduces
to the following form governing the two-dimensional electrostatic turbulence dynamics:

∂τ D⊥Φ + α
(
∂x̄Φ∂ȳD⊥Φ− ∂ȳΦ∂x̄D⊥Φ

)
= δD2

⊥Φ . (26)

It important to stress that this equation can be mapped into the viscous two-dimensional
Euler equation for an incompressible fluid. This equivalence can be easily checked via
the map

{vx̄, vȳ} → {−∂ȳΦ, ∂x̄Φ} , (27)
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where vx̄ and vȳ denote the velocity components of the incompressible flow (the viscous
Euler equation is obtained taking the curl of the Navier-Stokes equation). By other words,
we have a direct mapping between the electric potential Φ and the so-called “stream
function” [24]. We observe that the equation of such a function would correspond to deal
with α ≡ 1 in Equation (26), which would be immediately got by choosing the length L
coinciding to the Larmor radius (dived by 2π), or via the re-definition Φ→ Φ/α.

It is a well-established result that the dynamics of an incompressible viscous fluid is
associated to a turbulent behavior [15]. We thus focus particular attention to this reduced
two-dimensional turbulence, in order to extrapolate well-known results established in fluid
dynamics to the case of a plasma configuration very close to the X-point.

5.1. Inviscid Spectral Properties

Since viscosity effects on the ion dynamics are, to some extent, negligible in a Tokamak
edge plasma, we rewrite here the inviscid version of Equation (26), i.e.,

∂τ D⊥Φ + ∂x̄Φ∂ȳD⊥Φ− ∂ȳΦ∂x̄D⊥Φ = 0 , (28)

where we intend Φ as according to Φ/α.
It is rather immediate to check that the equation above admits two conserved quan-

tities, which, in fluid dynamics correspond to the specific (per unit mass) energy and the
specific enstrophy, respectively. The latter explicitly reads

U =
∫

dx̄dȳ (D⊥Φ)2/2 . (29)

Let us now rewrite Equations (28) and (29) in terms of the quantity Π ≡ D⊥Φ (equiva-
lent to the vorticity of the fluid theory). We get the field equation

∂τΠ + ∂x̄Φ∂ȳΠ− ∂ȳΦ∂x̄Π = 0 (30)

and the associated conserved enstrophy

U =
∫

dx̄dȳ Π2/2 . (31)

If we denote by Θk(τ) the Fourier transform of Π, the representation of Equation (30)
in the k-space reads as

∂τΘk −
1

(2π)2

∫
d2k′

(kxk′y − kyk′x)

(k− k′)2
Θk−k′Θk′ = 0 , (32)

where Θ−k = Θ∗k and we made use of the relation Θk = −k2ξk.
Since we are considering an isotropic plasma, the spectral representation must depend

on the k-modulus only, i.e., we have to deal with Θk. In order to recover statistical properties
of the electric turbulence, emerging in the time averaged asymptotic state, we consider
the steady spectrum Θk = Θ̃, where Θ̃ is a complex constant, for k 6 kmax and Θk = 0 for
k > kmax (is kmax indicates a cut-off value in the spectrum). To show that this choice of the
spectrum annihilates the second term of Equation (32), we make the change of variable in
the two-dimensional integral q = k− k′ and we adopt polar coordinates, i.e., q→ {ρ, ϕ}
(so that k→ {ρ̄, ϕ̄}). Thus, the integral term of Equation (32) rewrites

ρ̄Θ̃2
∫ ρmax

0
dρ
∫ 2π

0
dϕ(cos ϕ̄ sin ϕ− sin ϕ̄ cos ϕ) = 0 , (33)

which is clearly an identity since we have introduced the physical cut-off (now implemented
with ρmax) to the spectrum, always existing in a real systems.
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We can interpret the meaning of this constant spectrum for Π by means of the mapping
in Equation (27) between the fluid and plasma contexts which, in the Fourier space, links
the order of magnitude of the velocity component vk in the k-space to ξk, according to
the relation vk ∼ kξk. In the two-dimensional fluid turbulence [15], the basic relation
takes place

W(k) ∼ U 2/3k−3 , (34)

whereW is the energy density per k-unit (W ∼ v2
k in the fluid theory) and U denotes the

enstrophy flux. Since each k-mode has energy Wk = k2|ξk|2, then we get

W ∼ dWk/dk ∼ k|ξk|2 , (35)

(as far as |ξk| is a power law term in k) and Equation (34) yields to following relation:

U ∼ k6|ξk|3 ∼ |Θk|3 ∼ |Θ̄|3 . (36)

As shown in Ref. [25], the studied inviscid dynamics can be associated, in the Fourier
analysis, to an ensemble representation, which phase space is characterized by the real and
imaginary parts of each Fourier component of the electric field. More specifically, it is al-
ways possible to demonstrate the equivalence of the equations in the Fourier representation
to a Bose-Einstein condensate [18]. This statistical interpretation of the fluid dynamics,
in terms of an ensemble, is clearly applicable also to the potential field Equation (26).
Adopting the canonical ensemble to describe the inviscid statistical properties of the tur-
bulence, the two fundamental constants of motion (i.e., energy and enstrophy) have to
appear in the distribution function f of the fluctuations, which must take the morphol-
ogy f (ξk) ∝ exp[−∑(A + Bk2)k2|ξk|2 where A and B denote two inverse “temperatures”,
associated to energy and enstrophy, respectively [14]. The behavior corresponding to
the analytic solution in Equation (36) takes place when the enstrophy constant of motion
dominates the equilibrium, i.e., k > kc where kc is a critical values of the order O(A/B).

In the viscous case, the two dimensional turbulence tends to seek the equilibrium
trough non-equilibrium states dominated by energy and enstrophy cascades. In this
respect, the spectral feature described in Equation (36) has been identified by Kolmogorov-
Kraichnan in the inertial range when viscosity is present [15,17,18]. Instead, our solution
is exact only in the ideal case and, therefore, we can argue that this spectral shape is not
significantly modified for sufficiently high Reynolds number. We recall that, formally, two
kinds of inertial-transfer (cascade) regimes can take place in two dimensional turbulence:
vorticity-transfer range and energy-transfer range. The analysis above mimic the first
case, where indeed W ∼ k−3 and an upward enstrophy cascade, from small to large
mode-numbers, takes place. The second range is instead characterized by backward
energy cascade, from large to small wave-numbers, and by a dependence asW ∼ k−5/3

(Kolmogorov type) [15]. As we shall see below, this second shape of the spectrum is
not present in our simulations of the X-point plasma according to the absence of forcing
terms in the present dynamics which would guarantee the co-existence of the two distinct
cascades [26,27].

Furthermore, for the inertial range, the convergence of the total enstrophy transfer rate
is guaranteed by the intrinsic non-locality of in the k-space [28], leading to a logarithmic
correction of the spectral behavior of the form

W(k) ∼ k−3(ln[k/ki])
−1/3 , (37)

where ki is a typical value belonging to the bottom of the k−3 range. By other words, we
can interpret such a modification of the spectrum also as a modification of the vorticity
as a function of the wave number, i.e., its steady limit would no longer be constant but
behaving as Θk ∼ (ln[k/ki])

−1/6. These considerations suggest that the validity, i.e., the
stability of our analytical solution, become significant for sufficiently large k values.
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Actually, if a cut-off in the k-space is considered, then the physical content of the
steady spectrum constructed in Equation (36) would remain almost unaffected since the
condensation phenomenon is moderate enough. It is just in the different meaning of
imposing a cut-off that the fluid theory and the plasma dynamics remarkably deviate from
each other. In fact, in the Navier-Stokes equation, a minimal scale for the dynamics can
be reasonably inferred from the real nature of a system, but the validity of the equation is
never related to the existence of such a cut-off: any small scale is, in principle, available.
On the contrary, the validity of the low-frequency dynamics we proposed in this study is
intrinsically valid only if the spatial scales remain sufficiently larger than the ion Larmor
radius. In this respect, the Fourier truncated theory is a natural model for describing the
plasma dynamics in a Tokamak edge and it makes no physical sense to take into account
arbitrarily large k-values.

5.2. Stability of Inviscid Flows

Considering the above mentioned vorticity Π(x̄, ȳ, τ) and stream function Φ(x̄, ȳ, τ),
in the presence of viscosity Equation (30) can be rewritten as

∂τΠ + ∂x̄Φ∂ȳΠ− ∂ȳΦ∂x̄Π = δD2
⊥Φ , (38)

here we are assuming the analysis close enough to the X-point to get D⊥ ' ∂2
x̄ + ∂2

ȳ. Viscous
fluids governed by the equation above are stable because of the inequality [29]∫

Π2dx̄dȳ < −δ
∫
|D⊥Π|2dx̄dȳ . (39)

This result does not hold in general but only for viscous flows in a special basin and
under particular boundary conditions for the velocities.

Let us consider the non-viscous case above, i.e., δ = 0 in Equation (38). We can thus
use a more general result of Arnold [16] about the stability of an inviscid incompressible
flow in a two dimensional domain. Suppose that Φ satisfies the following inequality

0 < C1 6
D⊥Φ

D⊥(D2
⊥Φ)

6 C2 , (40)

in a given domain {x̄, ȳ}, where C1 and C2 are given constants. Then the stream function
Ψ(x̄, ȳ, τ) associated to the generic plane wave perturbation of Φ(x̄, ȳ, τ) is stable:∫

(|D⊥Ψ|2 + |D2
⊥Ψ|2)dx̄dȳ 6 C3 , (41)

where C3 is a positive assigned constant.
We can apply this result in our case in which the Fourier transform (dubbed Θk) of the

vorticity Π is equal to two dimensional cylindrical function circ(k) defined as follows

Θk = circ(k) ≡
{

1 i f k 6 1 ,
0 i f k > 1 .

(42)

Then the flow associated to the stream function Φ is stable in the sense above for
r̄ ∈ (r̄0, r̄1), which is included in the interval (0, 1), where we have introduced the po-
lar coordinates r̄ =

√
x̄2 + ȳ2 and θ. Let us now apply well-known properties of the

Bessel function:

Π(r̄) =
1

2π

∫ ∞

0
k circ(k)

∫ π

−π
eikr̄ cosθ dkdθ =

∫ 1

0
kJ0(kr̄)dk =

J1(r̄)
r̄

, (43)



Fluids 2022, 7, 157 11 of 23

where J0 and J1 are the Bessel functions of order 0 and 1, respectively, obtaining

D2
⊥Φ =

1
r
(∂r̄(r̄∂r̄Φ)) = − J1(r̄)

r̄
. (44)

In this scheme, Φ(r̄) is then equal

Φ(r̄) = −J1(r̄) +
∫

J0(r̄)dr̄ , (45)

and we finally get

D⊥Φ
D⊥(D2

⊥Φ)
=

∂r̄Φ
∂r̄(−J1(r̄)/r̄)

= r̄2−∂r̄ J1 + J0

J1 − r̄∂r̄ J1
≡ g̃(r̄) . (46)

The function g̃(r̄) is plotted in Figure 2, where it is evident that there is a region
A : r̄0 < r̄ < r̄1 in the interval (0, 1) where the conditions (40) are satisfied. The region is the
annulus between two circles of rays r̄0 and r̄1, a case which can be adapted to a Tokamak
profile. We remark that the flow generated by our choice of Φ is stationary. The theorem
of Arnold applies to regions of this kind if two conditions are satisfied at the boundaries
A1 : r̄ = r̄0 and A2 : r̄ = r̄1 of A {∮

A1
∂nΦ = a1 ,∮

A2
∂nΦ = a2 ,

(47)

where ∂n is the directional derivative along the normal vector and the values of a1, a2 can
be easily computed. We can interpret this result in the sense that the flow generated by a
perturbation of the stationary state is stable and this correspond to our case too.

� � � � � �
-��

-�

�

�

��

��

��
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�˜

Figure 2. Plot of the function g̃(r̄) of Equation (46),as a function of r̄. The dashed lines correspond to
the region A : r̄0 < r̄ < r̄1.

6. Numerical Analysis of the Reduced Two-Dimensional Electrostatic Turbulence

The spectral properties of the two dimensional turbulence can be analyzed by means
of the reduced model described in Section 4 by numerically integrating Equation (26) in the
(truncated) k-space. In the following, we adopt the re-definition Φ→ Φ/α and we recall
that D⊥Φ ' ∂2

x̄Φ + ∂2
ȳΦ. We also expand the electric potential fluctuation in Fourier series

as follows:
Φ(τ, x̄, ȳ) = ∑

`,m
ξ`,mei(`x̄+mȳ) , (48)

where ` and m are integer (positive and negative) numbers but not both zero and re-
versing the sign of ` or m (or both) corresponds to complex conjugation. In this scheme,
Equation (26) rewrites
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∂τξ`,m −
S`,m

(`2 + m2)
+

δ

(`2 + m2)
(`4 + m4 + 2`2m2) ξ`,m = 0 , (49)

S`,m = ∑
`′ ,m′

(`′m− `m′)((`− `′)2 + (m−m′)2)ξ`′ ,m′ξ`−`′ ,m−m′ . (50)

The numerical scheme for integrating such equations is a Runge–Kutta algorithm (4th
order) evolving in time a single component ξ`,m with (m > 0, `) or (m = 0, ` > 0). For
each cycle, the reality constraint is implemented for the corresponding counterpart. The
summation S`,m is technically evaluated by cycling out the components `− `′ (or m−m′)
outside a chosen domain.

The energy and enstrophy introduced above (of course conserved only for inviscid
fluids if δ = 0) read now as

W =
(2π)2

2 ∑
`,m

W`,m , W`,m = (`2 + m2)|ξ`,m|2 , (51)

U =
(2π)2

2 ∑
`,m

U`,m , U`,m = (`2 + m2)2|ξ`,m|2 , (52)

respectively, and we remark how the summations over (`, m) are taken on the whole
domain (in the non viscous simulations presented in this paper, they are both conserved
at the order O(10−9)). We also introduce the relation with the physical wave-number
K (in cm−1) provided by K2 = (2π/L)2(`2 + m2). In particular, for each time step, W`,m
and U`,m can be evaluated by averaging over the 8 components (or 4 if m = 0) having the
same value of K, thus providing the effective quantities WK and UK, respectively (see, for
example, the pioneering work Ref. [14]). It is important to remark the, using the analysis
presented in Section 5, the mode energy WK introduced here is defined as WK ∼ KW(K). By
means of Equation (36) and of the relevant scaling |ξK| ∼ 1/K2, it is easy to recognize that

WK ∼ 1/K2 , (53)

which, as already discussed, corresponds to an upward (from small to large mode-numbers)
enstrophy cascade.

Since we are analyzing electrostatic turbulence in a region close to a X-point of a
magnetic configuration, let us now implement realistic physical quantities specified for a
typical Tokamak machine. We consider a hydrogen like plasma with Ti = Te = T0e = 100 eV,
B0 = 3 T and ni = ne = n = 5× 1019 m−3 [30]. The viscous parameter δ in Equation (21) is
defined by means of the specific ion viscosity coefficient ν which reads [1,9]

ν =
1

mini

(3/10) niKBTi

Ω2
i τii

, with τii =
3
√

ni(KBTi)
3/2

4
√

π e4nilnΛii
, (54)

where we set lnΛii = 21. Using this setup, we get the following relevant quantities:
Ωi ' 1.4× 108 s−1 and ρi ' 0.05 cm.

It is important to remark that, since we are addressing a model locally developed in
a portion of the plasma near the poloidal null, we implement the physical condition of
having the two dimensional periodicity box with length L of the order of the centimeter. At
the same time, it is well know that the physical prediction of the spectral Fourier analysis
are dependent on the truncation order of the k-series. In this sense, since we are treating
electrostatic turbulence, as previously discussed we introduce a physical cut-off at small
spatial scales provided by the Larmor radius, i.e., 2π/K > ρi.

For all the simulations, we initialize the amplitude of the electric perturbation using
eφ ' 0.5 eV (which is then scaled by the factor α of Equation (21)) only for the modes
having 3 distinct K values; all the other ones are set to zero amplitude. This corresponds to
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initialize the system with 3 “rings” of modes in the squared space ξ`,m (we run a squared
matrix of mode numbers (`, m)). We also underline that the energy spectrum plot presented
in this Section are not instantaneous, but the relevant quantity WK is time averaged over
250 τ (the dimensionless time) in order to avoid fast statistical fluctuations. Moreover, the
considered final time corresponds to the thermal equilibrium in the sense that no systematic
deviations of the time averaged spectrum occur for the inviscid case.

6.1. Small Box (Case A)

As first case, we consider a squared box of length L = 1.25 cm which, using the plasma
parameters defined above, yields to a viscosity coefficient δ ' 4× 10−6 (and to a scaling
parameter α ' 0.06).

We first introduce (case A1) a small scale cut-off of about two Larmor radius by
considering modes with 2π/K > 2.5ρi ' 0.13 cm (together with the obvious constraint
2π/K 6 L). This yields to consider: 5 6 K 6 49.5. The initial non zero modes are set
as K ' 7, 18, 20.6 (cm−1) which corresponds to run the (`, m) mode numbers: (1, 1), (3,
2), (4, 1) (and, of course, all the other equivalent combinations). In total, we simulate 112
modes. We first analyze the inviscid regime by setting δ = 0 in Equations (49) and (50).
In Figure 3, the contour plots of the fluctuations |ξ`,m| are presented for different times
as function of the mode numbers. The initialization is clearly evident, while the spectral
evolution indicates a more intense excitation of the small mode numbers. In Figure 4, we
instead show the evolution of the modes m = 1 and ` > 0 for a small temporal scale in
order to show the saturation mechanism. The small mode number excitation is highlighted
by the energy spectrum analysis presented in Figure 5 (left-hand panel), where we plot the
time averaged mode energy (in the sense described above) normalized to the initial one,
i.e., WK/W. The chosen time corresponds to the thermal equilibrium when deviations of
the spectrum no longer take place. It is evident that, using this setup, the relation (53) is
properly satisfied. In the right-hand panel of Figure 5, we instead plot the spectral scaling
for the viscous case by including in the simulations the parameter δ. The reduction of the
amount of energy in the system is evident and we observe a deviation from the scaling
WK ∼ 1/K2 for the first few modes.
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Figure 3. Case A1—inviscid. Contour plots of |ξ`,m| (in arbitrary units) as a function of the mode
numbers scaled by 2π/L. The graphs are taken at different times as indicated over the plots.
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Figure 4. Case A1—inviscid. Early temporal evolution of |ξ`,1| with ` > 0. The final time is chosen to
highlight the mode saturation mechanism.
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Figure 5. Case A1. Left-hand panel: inviscid. Right-hand panel: viscous. Log-log plots of WK/W
(averaged over 250 time units) as a function of K2. The energy spectra are shown at τ = 2500, which
corresponds to the relaxation time of the inviscid case (thermal equilibrium). The orange dashed line
denotes the behavior ∼1/K2 of the non viscous regimes, while the gray dashed line is the viscous
counterpart.

In this first case, the inviscid simulation in Figure 5 are thus found to properly repro-
duce the behavior predicted by the analytical solution discussed in the previous section.
In this scenario, there is no trace of a process of constant rate of energy transport and the
spectral features are essentially fixed by the vorticity dynamics. As soon as we introduce
viscosity, a weak deviation from a constant vorticity spectrum is instead observed. The
dissipation effect associated to a non-zero ion-ion friction in the plasma is responsible for a
moderate energy trapping (a condensation process), i.e., small wave-number modes are
excited to some extent, but clearly, as time goes by, the whole spectrum is progressively
depressed by the viscous damping rate.

Using the same setup described above, let us now extend (case A2) the small spatial
scale cut-off to the Larmor radius, i.e., considering 2π/K > ρi ' 0.05 cm. This implies
5 6 K 6 127.3, and, in total, we run 684 modes. The contour plots of the fluctuation
evolution are depicted in Figure 6, while the early mode saturation is shown in Figure 7.
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The higher excitation (with respect to case A1 in which a more stringent cut-off was present)
of the low mode numbers is now evident. The energy spectrum is finally plot in Figure 8.
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Figure 6. Case A2—inviscid. Contour plots of |ξ`,m| taken at distinct times as indicated over
the graphs.

Figure 7. Case A2—inviscid. Evolution of |ξ`,1| with ` > 0 for small temporal scales to highlight the
mode saturation.
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Figure 8. Case A2. Left-hand panel: inviscid. Right-hand panel: viscous. Plots of the averaged
WK/W as a function of K2, at τ = 2500. As in Figure 5, the orange dashed line indicates the behavior
∼1/K2 of the non viscous regimes and the gray one corresponds to the viscous counterpart.

In particular, we can analyze the behaviour of WK for the two (non viscous) cases A1
and A2 by comparing the left-hand panels of Figures 5 and 8. A deviation from the 1/K2

behavior emerges when simulating a large set of modes in the case A2. In fact, having
increased the maximum available values of K, but maintaining fixed the ratio between the
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enstrophy and the energy, some modes in the low region of the wave-numbers deviate from
the constant vorticity spectrum, i.e., a marked condensation phenomenon is now present
according to the increase of the available K value. In fact, we observe that, even if not
initialized, such modes are pumped and their spectral behavior is not accounted by their
analytical solution Equation (36). Moreover, this analysis confirms the relevant issue of
this approach represented by the fact that the physical predictions are strongly dependent
on the Fourier series truncation order. The introduction of the viscosity in the simulations
(right-hand panel of Figure 8) emphasizes the shape predicted in the previous section and
its stability features appear significantly confirmed by the numerical investigation in its
whole set-up.

We conclude the numerical analysis of the case A2 by showing the contour plots of con-
stant Φ(x̄, ȳ) at fixed times, constructed by inverting the Fourier transform in Equation (48).
In Figure 9, we report the results at 4 distinct times for the inviscid regime. Given the form
of the energy spectrum described above, the evolutive configuration of the electric potential
well represents a commonplace effect of the discrete vortex theory (see the seminal paper
Ref. [31]): the presence of a pair of large scale vortices mainly saturating the periodicity box.
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Figure 9. Case A2—inviscid. Contour plots of Φ(x̄, ȳ) (in arbitrary units) at fixed times as indicated
over the graphs. The potential Φ is built by inverting the Fourier series.

When turning on the viscosity (see Figure 10), this feature is still present. It worth
noting how the dynamics has now a negative forcing term which results in a different
temporal evolution of Φ(x̄, ȳ) when compared to Figure 9. The relevant morphology related
to large scale vortices is clearly outlined in the viscous case, but a time phase shift is present
with respect to the inviscid regime. We also stress how viscosity yields to smooth hillsides
of the Φ profile, providing a clean picture of the vortices. This is due to the fact that viscosity
damps small-scale ripples.
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Figure 10. Case A2—viscous. Plots of constant Φ(x̄, ȳ) (arbitrary units) at fixed times.

6.2. Large Box (Case B)

For this case we now consider the squared box to have length L = 3 cm. Implementing
the plasma parameters defined above, we get, for this case, δ ' 7.6 × 10−7 (and the
scaling parameter for the fluctuation results α ' 0.01). For computational reasons, we
set the cut-off 2π/K > 2ρi ' 0.1 cm by considering 2 6 K 6 65.1. Differently from the
previous cases, non zero modes are chosen as K ' 8.6, 9.3, 11.2 (cm−1) corresponding to
the (`, m) mode numbers: (4, 1), (4, 2), (5, 2) (plus the other combinations). In total, we thus
simulate 1058 modes and we plot in Figure 11 the energy spectrum for this case (viscous
and inviscid).

Such a scenario has been obtained by pushing the model parameters up to a limit case
of validity for the underlying assumptions of the investigated dynamics. The relevance of
such a simulation is that, due to the presence of a large number of modes, it corresponds
to the more realistic situation of a nearly continuum spectrum. Here we are considering
increasingly large values of K, and the deviations from the constant vorticity spectrum for
the low K portion (due to the condensation phenomenon) is again present in both inviscid
and viscous cases.
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Figure 11. Case B. Left-hand panel: inviscid case. Right-hand panel: viscous case. Behavior of the
time averaged WK/W for τ = 2500 (the orange dashed line denotes the line ∼1/K2 for the non
viscous regimes and the gray one is the viscous counterpart.

Furthermore, in Figure 12 we plot the spectrum compared to the theoretical K−2

expectation (as in Figure 8, right-hand panel) and to the non-local logarithmic correction
of Equation (37). We remark that, in the relation WK ∼ K−2(ln[K/Ki])

−1/3, we have
considered here K2

i ' 4, which corresponds to the bottom of the K-range. It is evident from
the figure that the non-local correction ensured by the logarithmic term better reproduces
the simulated profile, especially for small K values.
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Figure 12. Case B - viscous. Time averaged WK/W as in the right-hand panel of Figure 11: the
gray dashed line is again the behavior ∼ 1/K2, while the green dotted line indicates the logarithmic
correction of Equation (37), i.e., the line ∼ K−2(ln[K/Ki])

−1/3, with K2
i ' 4.
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Conversely from the previous analyses, where we have shown the early mode evolu-
tion to underline the saturation mechanism, in Figure 13 we now plot the late temporal
behavior of the most energetic mode m = 1, ` = 0 in the viscous regime. The evolution
points out a sort of intermittency-like feature characterized by different time intervals. This
property is however not dominant and also present in the inviscid case. In fact, there are
several confirmations, both experimental and numerical, that two-dimensional turbulence
is not intermittent [26,32–34] or, if present [27,35], intermittency is found to be weak. Actu-
ally, large-scale intermittency is due to the developments of enhanced tails in the expected
Gaussian probability density function of the perturbed field. A detailed analysis should be
thus performed regarding the statistical displacements ∆ξk, but this lies outside the scope
of the present paper.
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Figure 13. Case B-viscous. Late temporal evolution of the excited mode |ξ1,0|. The selected time
range is chosen to highlight the intermittency-like behavior.

Also for this case B, we show in Figure 14 the contour plots of Φ(x̄, ȳ) at fixed times
when viscosity is turned on. The presence of the pair of rotating large scale vortices
clearly emerges form the graphs, outlining again the match with respect to the discrete
vortex model.

6.3. General Remarks

Nonetheless small deviations, we can firmly conclude that the behavior of the turbulent
plasma in the operation conditions typical of the SoL of a medium or large size machine, is
well represented by the analytical solution (36) (also according to previous analyses [9]).
Therefore, the transport of enstrophy from small to large wave-numbers is found to be
a natural feature of the Tokamak edge turbulence. According to our description of the
inviscid turbulence that accounts for a Fourier representation naturally truncated by the
ion Larmor radius cut-off, we can argue that the available wave-numbers are almost above
the critical value kc ∼

√
A/B, in the sense previously described. By other words, the SoL

of a Tokamak lives in the range of parameters such that ρi �
√

B/A, corresponding to
say that the “temperature” associated to the energy is much greater, in absolute value
(negative values of A are also available for the system), than the value of the “temperature”
associated to the enstrophy.
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Figure 14. Case B—viscous. Contour plots of Φ(x̄, ȳ) at fixed times.

This situation would be clearly significantly altered in a three dimensional analysis,
since the enstrophy constant of motion would be lost. However, the fact that a Tokamak has
an axial symmetry structure, could imply that, at least under certain operation conditions,
the three dimensional nature of the electrostatic turbulence is a weak modification of the
here discussed two dimensional spectrum, so attributing a more general character to the
numerical results discussed above. This claim requires a further discussion in view of the
peculiarities outlined by three-dimensional turbulence with respect to the two-dimensional
one [36,37]. As stated above, in the former case, the enstrophy is no longer a conserved
quantity. The spectral feature is thus governed by the Kolmogorov law associated to a
constant rate of energy transfer and to a scalingW ∼ k−5/3. Nonetheless, we can better
understand the morphology of the solution of Equation (20), by the following simple
considerations. According to the topology of a Tokamak, we can naturally assume that the
field Φ is periodic in z̄ (actually, in order to reproduce a Tokamak toroidal profile, z̄ would
have to be normalized by L′ � L), so that we can consider the Fourier expansion

Φ(τ, x̄, ȳ, z̄) = ∑
n

χn(τ, x̄, ȳ)einz̄ . (55)

Substituting the expansion above into Equation (20), we get the following dynamics
for the Fourier harmonics χn:

∂τ D⊥χn + α ∑
n′

(
∂x̄χn−n′∂ȳD⊥χn′ − ∂ȳχn−n′∂x̄D⊥χn′

)
=

= γ
(
∂2

τ + n2)χn − δD2
⊥χn + εn2D⊥χn . (56)
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To this equation we must add the gauge condition for each harmonic A||n of the
parallel magnetic potential vector.

Despite in constructing Equation (20) we neglected the number density gradients, it
is a well-known result that such a term is responsible for the linear drift wave instability.
The idea proposed in Ref. [9] is that, in the left-hand side of Equation (56) the n = 0
mode dominates. At the same time, in the right-hand side, the value of n maximizing the
linear growth rate is associated to this mode. In the spirit of this postulation we can thus
expect that the three-dimensional turbulence spectrum remains close the one discussed
above. However, since it is well-known [10] that the non-linear drift response occurs when
the linear growth rate is small enough, the investigation of the fully developed three-
dimensional turbulence, as well as its deviation from the k−3 law, constitute a valuable
field for future investigations.

We also note that, in a real Tokamak device setting, the background magnetic field
lines have non-zero curvature and this feature has a relevant impact on the turbulence
morphology. In this respect, see the analysis developed in Ref. [11] where the interaction
between ballooning mode and the non-linear drift response is discussed.

7. Conclusions

We analyzed the basic dynamical scheme regulating the turbulent behavior of the
plasma in a Tokamak SoL. We focused on low frequency phenomenology (i.e., the typical
frequency of the fluctuations is smaller than the ion gyro-frequency) and on a local model
nearby the X-point, so that the magnetic configuration of the equilibrium has been modelled
via a dominant contribution along the z-axis and a smaller poloidal contribution, exactly
vanishing in the X-point taken as origin of the (x, y) plane.

After the general set up of the problem, the theoretical and numerical analysis has
been devote to the simplified two-dimensional electrostatic turbulence, also in the presence
of ion viscosity. This formulation was investigated using the natural mapping existing with
a two-dimensional turbulent incompressible fluid: the electric potential field and the fluid
stream function are described by the same dynamics.

The inviscid turbulence was discussed on a theoretical framework by outlining the
existence of a steady analytical solution for the (truncated) spectral representation, which
corresponds to a ∼K−3 behavior. Then, the stability of this solution has been properly
investigated and, using the Arnold criterion, we arrive to conclude that such a spectral
profile is a stable configuration for the system evolution.

The numerical analysis has confirmed that, in the range of parameters available in the
SoL of a medium or large size Tokamak, the enstrophy cascade toward larger wave-numbers
dominates the asymptotic spectrum both in the inviscid and viscous cases. However, a
certain energy trapping into the larger spatial scales is observed, especially when the
viscosity contribution is considered.

Concluding, we stress how having fixed all the basic features of the turbulence due to
the advective transport of the “vorticity” offers a dynamical and physical scenario in which
the role of the non-linear drift response can be properly evaluated [11].
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Appendix A

Our analysis is based on the assumption of quasi-neutrality ni ≡ ne and with the
following requests on the two specie velocity fields:

ve = vE + v‖ , (A1)

ui = vE + u(1)
⊥ . (A2)

It is worth noting that, if the magnetic field is uniform (as de facto taken in this work),
then∇ · vE = 0, while the velocity u(1)

⊥ survives in the equations only under the divergence
operator. The electron continuity equation reads as:

∂tne + vE · ∇⊥ne +∇‖ · (nev‖) = 0 , (A3)

which, neglecting the ion parallel velocity, can be easily restated in the form:

∂tne + vE · ∇⊥ne =
1
e
∇‖ · j‖ . (A4)

The ion continuity equation takes the explicit form:

∂tni + vE · ∇⊥ni +∇⊥ · niu
(1)
⊥ = 0 . (A5)

Since the quasi-neutrality requires ni ≡ ne, the compatibility between Equations (A4)
and (A5) is provided by the relation

∇⊥ · (eneu(1)
⊥ ) = −∇‖ · j‖ , (A6)

which is noting more than the charge conservation law.
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