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Abstract: We present experimental results on a fluctuation-induced force observed in Faraday wave-
driven turbulence. As recently reported, a long-range attraction force arises between two walls that
confine the wave-driven turbulent flow. In the Faraday waves system, the turbulent fluid motion is
coupled with the disordered wave motion. This study describes the emergence of the fluctuation-
induced force from the viewpoint of the wave dynamics. The wave amplitude is unaffected by
the confinement while the wave erratic motion is. As the wall spacing decreases, the wave motion
becomes less energetic and more anisotropic in the cavity formed by the walls, giving rise to a
stronger attraction. These results clarify why the modelling of the attraction force in this system
cannot be based on the wave amplitude but has to be built upon the wave-fluid motion coupling.
When the wall spacing is comparable to the wavelength, an intermittent wave resonance is observed,
and it leads to a complex short-range interaction. These results contribute to the study of aggregation
processes in the presence of turbulence and its related problems such as the accumulation of plastic
debris in coastal marine ecosystems or the modelling of planetary formation.

Keywords: Faraday waves; turbulence; Casimir-like effect; fluctuation-induced forces

1. Introduction

An interaction force might arise between two walls that locally confine a fluctuating
medium. The generation of such force depends on the way that the fluctuations of the
medium are modified by the presence of the walls [1]. The seminal work of Casimir
describes the emergence of an attractive force between two conducting plates confining the
quantum fluctuations of the electromagnetic field [2]. Analog effects to the Casimir force,
also called fluctuation-induced forces, have been observed in numerous systems spanning
from the quantum to macroscopic scale, and showing fluctuations of very diverse nature in
equilibrium or in non-equilibrium conditions [3–9].

Hydrodynamic turbulence is a classic example of a chaotic motion observed in macro-
scopic flows [10]. Turbulent fluctuations are usually conceived as eddies mingling with
each other, in a process that transfers kinetic energy over a broad range of scales [11].
This transfer of energy is dominated by the fluid inertia and referred to as the energy
cascade. The interaction of turbulent eddies with solid boundaries is an active domain of
research. Interesting discoveries concern the control of turbulence by its destabilisation in
pipe flows [12], the existence of a relation linking the turbulent energy spectrum and wall
friction drag [13,14], and the turbulence-driven propulsion [15–17]. Recent numerical stud-
ies have shed light on the existence of fluctuation-induced forces between two walls locally
confining ideal hydrodynamic turbulence [18]. Experimental evidence of an attraction force
mediated via turbulent fluctuations was reported in Faraday wave-driven turbulence [19].
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Faraday waves are nonlinear parametrically excited waves observed at a liquid
surface [20]. In highly dissipative fluids, these waves can self-organise into various motifs
which have been extensively studied [21–27]. Such analysis based on the viewpoint of wave
patterns is very fruitful; however, there are reasons to study the motion of the fluid particles
of which the Faraday waves are comprised, i.e., to study wave-driven flows in this wave
system. On one hand, relating the dynamic of nonlinear waves to the underlying fluid
motion is a notoriously difficult problem of free surface hydrodynamics [28–30]. On the
other hand, Faraday waves produce an erratic fluid motion at the surface of weakly viscous
liquids [31–33]. It has been shown that those wave-driven turbulent flows resemble in
many respects two-dimensional (2D) turbulence [34–36]. A mechanism has been uncovered
that explains the unexpected emergence of 2D turbulence in this system: the energy initially
injected into the vertical motion of the wave is converted into chaotic horizontal fluid
motion via the generation and interaction of horizontal surface vortices [37–39]. In fully
developed turbulence, it was shown that the turbulent fluid motion is directly coupled
with the disordered wave motion [40].

In a previous study, a force mediated via turbulent fluctuations was reported and
studied from the viewpoint of the wave-driven turbulent flow [19]. This long-range
interaction depends on several features of the confined turbulent flow: its kinetic energy,
its anisotropy and the energy injection rate. The attraction mechanism was shown to rely
on the coupling of the cavity with coherent flow structures resembling meandering rivers.

Here, we exploit the coupling of the wave horizontal motion and turbulent flow in the
Faraday waves to present original results describing the fluctuation-induced force from the
viewpoint of the wave dynamics. The attraction force is directly related to the reduction
and growing anisotropy of the turbulent wave agitation in the bounded region. The wave
chaotic motion depends directly on the kinetic energy of the confined turbulent flow, and
it is not simply related to the wave amplitude. We discuss how these findings offer new
insights into the modelling of Casimir-like effects induced by turbulent waves. For the
narrowest cavities studied, the relation between the wave motion and the wave-driven
flows becomes complex due to a wave resonance; in that case, the presence of the attraction
force is better understood from the flow viewpoint.

2. Materials and Methods
2.1. Generation of Faraday Waves and Wave-Driven Flows

Faraday waves are nonlinear parametrically excited waves that appear at the surface
of a liquid vertically shaken [20]. The waves are generated in a circular container with an
inner diameter of 290 mm. The container is filled with water up to its brim (the contact
line is pinned to the wall edge with no meniscus, and the water depth is 85 mm). The
container is vertically vibrated by a computer-controlled electrodynamic shaker. The
forcing is monochromatic with a frequency set at fs = 60 Hz. At this frequency, the Faraday
wavelength is λ = 8.8 mm. The vertical acceleration a is fixed at a = 1 g. The onset of the
Faraday wave instability is observed at at = 0.5 g.

At the surface of water, Faraday waves produce horizontal chaotic flows. The low
viscosity of water enables the observation of these chaotic flows at relatively low values
of the acceleration a above the threshold at. The wave-driven turbulent motion shows
Gaussian velocity statistics, it has no mean flow component and its dynamics is slow
compared to the wave frequency. This wave-driven turbulence shows striking similarities
with 2D turbulence [34,39,41,42]. Different aspects of the transfer of energy and enstrophy
in this system have been studied [34,35,39,43–45]. One essential aspect is the presence at the
fluid surface of an inverse energy cascade, or the transfer of energy from an intermediate
forcing length scale L f towards larger length scales. This process determines the kinetic
energy U2

f of the horizontal flow. It is fueled by the generation and nonlinear interaction
of horizontal vortices whose size is L f = λ/2, where λ is the Faraday wavelength [37,38].
In these experiments, the Faraday wavelength is set to λ = 8.8 mm. The energy injection
rate ε in the horizontal turbulent flow is controlled by the vertical acceleration a imposed
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by the shaker [46]. One essential feature of this wave-flow system is the coupling of the 2D
turbulent flow with the chaotic wave motion [40].

2.2. Characterisation of the Wave Field Topography and of the Wave-Driven Flows

To visualise the surface elevation, we employed the technique of diffusive light imag-
ing. The fluid surface is illuminated by an LED panel placed underneath the transparent
bottom of the container; 2% percent of milk added to water provides sufficient contrast to
obtain a high-resolution reconstruction of the topography of the wave field (see Figure 1c,d).
In these experiments, the dynamic range of our images (16 bits) allows us to resolve a
20 µm change in the fluid elevation.

The liquid surface is seeded with floating tracers (50 µm diameter) to visualise the
horizontal fluid motion. We use surfactant to reduce the particle propensity to aggregate.
A high-resolution video camera (Andor Zyla) is used to record the motion of the micro-
scopic fluid tracers. Videos are recorded at a 16-bit resolution and at a high frame rate.
The typical field of view is a 8× 8 cm2 domain, imaged at 120 Hz with a resolution of
100 µm. Images of particle streaks are used to show qualitatively the turbulent flow field in
the cavity (see Figure 1e). This figure has been produced by processing raw images using
basic functions of the ImageJ software (version 1.52a), and the trajectories are followed
over 4 wave periods. The quantitative data analysis of the flow is performed using particle
imaging velocimetry (PIV) and particle tracking velocimetry (PTV) algorithms as described
in [37].
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Figure 1. (a) Schematics of the experimental setup; (b) attraction force F versus non-dimensional
mean separation W/λ at fixed vertical acceleration a = 1 g. Both quantities are time averaged. (c) 3D
instantaneous visualization of the wave field topography for a beam spacing W > 2.5× λ; (d) top
view of the Faraday waves using diffusive light imaging technique. Peaks and troughs appear as
dark and white blobs. The floating beams appear as black rectangles (beam width = 10 mm). (e) the
wave-driven flow, fluid particle streaks reveal the interacting eddies of the turbulent flow. Wave
number spectral analysis of the flow kinetic energy reveals a k−5/3 scaling indicating the presence of
an energy cascade.

2.3. Manufacturing of the Floating Beams

Floating beams are used to confine locally the turbulent flow. The beams are 3D-
printed on an Ultimaker 2 printer (Ultimaker B.V., Utrecht, Netherlands) and made of
thermoplastic (ABS). The beam dimensions are: length Lb = 100 mm, width wb = 10 mm
and thickness tb = 2 mm. The ratio of the beam width over the Faraday wavelength is
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wb/λ ≈ 1. The beams are printed with solid exterior walls and a patterned inner structure.
The exterior walls are 2 mm thick. The inner pattern is a honeycomb motif of which the
volume fraction can be changed from 25% to 80%. This allowed us to adjust the buoyancy
of the beam so that, when it is placed on the liquid surface, there is no meniscus on the
beam edges. A beam is printed with a 2-mm-diameter hole at each of its extremity. These
holes are required to couple the beam to the force probes.

2.4. Force Measurements

In these experiments, we use optical fiber cantilevers as force probes to measure
hydrodynamic forces exerted on one of the walls forming the confining cavity. The cavity
is formed of two floating beams. One beam is held in place by two rigid posts while the
other is connected to two flexible optical fibers (see Figure 1a). Both the posts and fibers
pass through holes printed in the beams, and the diameter of the holes is large compared to
the diameter of the post and that of the fiber; this ensures that no vertical force is exerted
on the beams.

The optical fiber cantilever has been used as a velocimetry probe in turbulent soap
film channels [47], and also as a force probe in the context of microscale rheology of
flowing polymer solutions [48,49]. Here, this technique is used to measure hydrodynamics
attraction force mediated by turbulent fluctuations; in our experiments, these forces are
typically in the µN range. A schematic of the force measurement setup is shown in
Figure 1a. The fiber deflection d = W0−w(t) is measured over time, where W0 is the initial
width of the cavity. To ensure accurate measurements of the time-averaged deflection
〈d〉, the instantaneous gap w(t) is measured at a 60 Hz sampling rate for 5 min. The
measurement of 〈d〉 gives access to the mean elastic force 〈Fe〉 exerted by the fiber cantilever
on the moving beam.

The two glass fibers are 75 mm long and have a diameter d f of 125 µm. The de-
flection 〈d〉 of the fiber is in the range 0.2 mm < 〈d〉 < 20 mm and is measured with a
spatial resolution of 0.1 mm. Since the deflection is smaller than the fiber length, we
use Hooke’s law to derive the time averaged elastic force exerted by the two fibers:
〈Fe〉 = 2× 3πEd4

f 〈d〉/(64L3) with the Young modulus of glass E = 75 GPa and L = 75 mm
the fiber length. (Given these parameters, the inverse of the fiber resonance frequency
is smaller than the average time scale of the hydrodynamics fluctuations; therefore, we
can neglect fiber inertia effects.) In these conditions, the time averaged elastic force 〈Fe〉
balances the hydrodynamic attraction force F acting on the beam.

The features of the fibers (length, diameter) are chosen according to two criteria:

• a high-resolution measurement of forces typically in the range of (2–200) µN.
• to ensure the fluctuations of the position of the moving beam are smaller than the

mean beam spacing W.

We can measure the evolution of the mean hydrodynamic attraction force F over a
broad range of cavity width W by starting each experimental run from a different initial
gap W0. The fibers are connected to magnetic supports that allow for controlling precisely
the value of the initial gap W0. Given the geometry of the fiber cantilever and the size of our
statistical sampling of the beam position, the resolution of the measurement of the mean
attraction force is 1 µN. There is a region in the centre of the container where we could
not detect any attraction between an isolated beam and the edge of the container. This
region is circular with a diameter of ≈100 mm. This observation allowed us to measure the
attraction between the beams and neglect the influence of the finite size of the container
by using the following protocol. During an experiment, the moving beam is placed in this
central region at the surface of the water while the fixed beam is placed at a distance W0
away. The smallest attraction force was measured for a beam separation of 90 mm and its
magnitude was 3 µN.
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3. Results
3.1. Long-Range Attraction Force

We observe that two floating rigid beams placed in the turbulent flow attract each
other. To characterise this attraction force, we have used the experimental setup shown in
Figure 1a and described in Section 2. The cavity formed by the beams confines the turbulent
fluctuations, and it is also dynamically coupled with the external turbulent flow via the
moving beam. We investigated the evolution of the hydrodynamic interaction force as the
beams are brought closer to each other. Figure 1b shows the interaction force F as a function
of the beam spacing W. Both F and W are time-averaged quantities. The force is attractive
(positive values) and shows a monotonic increase for decreasing values of the mean gap.
The force is detected for beam spacings much larger than the typical autocorrelation length
of the unbounded turbulent velocity field, which is ∼λ/2 [19,36]. This highlights the
long-range nature of the interaction mediated by the turbulent fluctuations. In wave-driven
turbulence, there is a strong coupling between the wave horizontal dynamics and the fluid
particles dynamics. Figure 1c–e show snapshots capturing the typical topography of the
wave field and its flow counterpart, the wave-driven turbulent flow. The typical wave
number spectrum of the flow kinetic energy shows a k−5/3 scaling, indicating the presence
of an energy cascade [37,39].

To relate the attraction force to the wave dynamics, several features of the wave field
have been measured such as the wave amplitude and the wave horizontal motion (see
Figure 2). The r.m.s value of the wave amplitude is measured outside and within the
cavity formed by the beams. The statistical averaging of both quantities (r.m.s values called
hout and hin, respectively) is computed both over time and space. Figure 2e shows the
evolution of hin as a function of the beam separation W/λ. When the gap is larger than
W/λ > 2.5, the wave amplitude measured within the cavity is identical to that measured
in the unconfined domain: hin ≈ hout. At smaller beam spacing, hin becomes larger than
hout. A peak value of the wave elevation was measured at W/λ ≈ 1.2, and it corresponds
to the wave resonance discussed in Section 3.2.

To characterise the horizontal dynamics of the waves, we followed the method de-
scribed in [40]. We track over time the position of wave peaks (e.g., local maxima of the
wave field as shown in Figure 2a). The motion of these maxima is analysed by using particle
tracking velocimetry. In a sense, we track the horizontal motion of the local wave phase.
Trajectories of the local wave peaks are shown in Figure 2b,c, and those trajectories were
measured respectively within and outside the cavity. It clearly appears that the horizontal
wave motion is erratic on both sides of the moving beam. When the gap is larger than
W/λ > 2.5, the wave amplitude is unaffected by the confinement, but the wave erratic
motion is. This is detected on the variance of the fluctuations of the wave horizontal velocity
U2

w. Figure 2d shows that the turbulent horizontal motion of the wave is weaker in the
cavity while the wave elevation measured within and outside the cavity is identical.

The effect is also identified on the frequency power spectrum of the horizontal wave
velocity (see Figure 2f). Such power spectra measured in the unconfined domain present
a broad band at frequencies lower than the subharmonic frequency fs/2 = 30 Hz. This
band indicates a transfer of energy towards slower temporal scales and is related to the
inverse energy cascade [50]. The energy stored in this low-frequency band is reduced by
the geometrical confinement. Figure 3a shows how the total wave kinetic energy U2

win in
the bounded domain decreases as the beam spacing W is reduced. In the confined domain,
we note (see inset Figure 3a) that the wave kinetic energy U2

win is directly proportional to
the turbulent kinetic energy U2

f in of the wave-driven flow. This reduction of the energy
fluctuations of a wave field invites analogies with Casimir-like effects.
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Figure 2. (a) An image of the Faraday waves using the diffusive light imaging technique. Peaks and
troughs appear as dark and white blobs. Local wave maxima are detected (white crosses within the
dark blobs), and their motion is tracked using PTV techniques (scale bar = 10 mm). (b,c) trajectories
of the wave peaks tracked over 50 Faraday wave periods; (d) variance of the wave horizontal velocity
U2

w and r.m.s wave elevation h versus the turbulent flow energy U2
f measured inside (index in, blue

color) and outside (index out, red color) of the cavity; (e) r.m.s value of the wave amplitude hin

measured in the cavity versus gap width W/λ at fixed vertical acceleration a = 1 g. The red dotted
line indicates the r.m.s value of the wave amplitude in the unbounded domain; (f) Frequency power
spectrum of the fluctuations of the wave horizontal velocity.
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In Figure 4, we compare the force F to the derivative of the wave kinetic energy U2
w

with respect to the separation ρ∂U2
win/∂W (which is the typical functional used to describe

a Casimir effect [1]). The two quantities are linearly dependent. From the viewpoint of
the wave-driven flow, it was shown in [19] that the attraction force appears as a result of
both the reduction of kinetic energy and the symmetry breaking of the confined turbulent
flow. To quantify the presence of an asymmetry in the wave motion, we use the parameter
β = (U2

wy −U2
wx)/U2

w, which is zero in the unbounded wave field. When computed in the
cavity, β increases exponentially with the decrease in the separation as β ≈ exp(−W/Lw) as
shown in Figure 3b, where Lw is a characteristic length scale. The parameter β characterises
quantitatively a reduced activity of the wave motion in the direction transverse to the walls.
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Figure 4. Experimentally measured force F versus ρ∂U2
win/∂W.

On the basis of the model introduced in [19], the attraction force can be modelled as:
Ft = αALw(ρ∂U2

win/∂W), where A = Lbtb is the area of the beam’s vertical cross section
and α is a constant factor describing the coupling of the wave dynamics with the turbulent
fluid motion. We found α ≈ 50, which originates from two factors: (1) the wave kinetic
energy is related to the flow kinetic energy via the relation U2

w ≈ U2
f /10 [40], and (2) the

length scale Lw is roughly five times smaller than the length scale characterising the flow
anisotropy [19]. The collisions of the waves with the two sides of the beam produce a
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momentum transfer. In our modelling, the force reads as Ft ∼ Lw × ∂U2
win/∂W. The second

factor describes the imbalance between the momentum carried by the external waves
versus that of the confined waves. The length Lw conveys a reduced wave agitation in the
direction transverse to the walls and implies a less efficient momentum transfer by the
confined waves, giving rise to a stronger attraction.

3.2. Short-Range Interaction at the Faraday Wavelength

As the separation decreases to values close to the Faraday wavelength, a phenomenon
of wave resonance is observed as shown in Figure 5a. More precisely, we observe successive
transitions in the wave spatial structure between a disordered and an ordered state. The
latter consists of a periodic wave pattern, which is reminiscent of a resonant mode of an
optical cavity (see Figure 5a,b). The disordered state is characterised by unstable waves
of which a transient motif is shown in Figure 5c. The onset of these resonant events can
clearly be identified in the evolution of the wave amplitude versus the beam spacing (see
Figure 2e). It is also observed on changes in the wave horizontal motion. Figure 5d,e
show trajectories of the local wave peaks measured for resonant and disordered waves,
respectively. The resonant waves show a much-reduced horizontal mobility compared to
the disordered waves. Quantitatively, we measured U2

w = 3.7e−6 m2.s−2 during a resonant
event and U2

w = 8.7e−6 m2.s−2 for the disordered state. The succession of resonant events
and disordered states conspires to produce a complex short-range interaction between the
beams as shown in Figure 5f. The inset of Figure 5f illustrates the typical dynamics of the
instantaneous separation distance w(t) between the beams in this regime. It shows that
the moving wall remains stable around w1 ≈ 1.2× λ or w2 ≈ 0.8× λ for extended periods
of time. The position w1 corresponds to the wave resonance. This dynamic results in a
bimodal probability density function (PDF) of the distance w(t). It is important to note that
our previous model of the attraction force based on the wave horizontal dynamics breaks
down in this high-confinement regime (W ∼ λ). Indeed, it predicts the opposite of our
observations: the largest beam spacing w1 should have corresponded to the disordered
waves, which show the strongest wave agitation.

To understand the attraction force in a resonant cavity, one has to turn back to the
point of view based on the wave-driven flows [19]. Each wave state has a clear signature on
the structure of the confined flow. The resonant mode generates a periodic alley of vortices
while the disordered state produces a chaotic flow as shown in Figure 5g,h. There is a
direct connection between the two flow states and the metastable positions of the moving
beam. The periodic flow has a high kinetic energy and generates the largest separation w1,
and it is associated with a weaker attraction than the less energetic chaotic flow observed
when the beam separation is w2. We conclude that the direct relation between the velocity
fluctuations of the wave and that of the turbulent flow, measured in unbounded flows
in [40] and exploited here for large beam spacings, does not hold anymore in the case of a
resonant cavity; indeed, the almost immobile resonant waves generate periodic flows with
higher energy than the flow produced by the disordered waves.
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Figure 5. (a) 3D instantaneous visualisation of a resonant wave field for a beam spacing W = 1.2× λ.
(b,c) diffusing light images of the resonant wave mode and disordered waves in the high-confinement
regime; (d,e) trajectories of the wave peaks measured inside the cavity for the resonant waves and
the chaotic waves at fixed vertical acceleration a = 1 g; (f) PDF of the instantaneous gap w(t) when
the mean separation is W ∼ λ. The PDF can be modelled by two Gaussian distributions centred
on w1 and w2 with different variances. Inset: Dynamics of the time-varying gap w(t). (g,h) Fluid
particle streaks show the wave-driven flows in disordered waves and during a wave resonance at
high-confinement.

4. Discussion

In Faraday wave-driven turbulence, there is a strong coupling between the wave
horizontal dynamics and the fluid particles dynamics. This coupling has been exploited to
shed light on the presence of a fluctuation-induced force in this wave system. Actually, the
results presented here extend the observations made in [40] to the case of partially confined
surface flows and confirm that the wave turbulent agitation (characterised by the horizontal
phase velocity) is directly dependent on the fluid kinetic energy accumulated over the
inertial range by the inverse energy cascade (see the inset of Figure 3a). Consequently, the
modelling of the attraction force in this system cannot be based on the wave amplitude
only but has to be built upon the wave–fluid motion coupling.

These results highlight fundamental differences with a previous work concerning
a pure wave effect observed in Faraday waves [8]. In this previous study, a model was
proposed for an attraction force mediated by the fluctuations of the wave amplitude. In
our experiments, according to the model developed in [8], there should be no interaction
between the beams when the beam separation is larger than W/λ > 2.5 because the r.m.s
wave amplitude measured within the cavity is identical to that measured in the unconfined
flow domain. In stark contrast, we do observe an attraction force that is directly related to
the changes in the kinetic energy of the wave horizontal motion. The latter is decoupled
with the wave amplitude fluctuations and actually coupled with the kinetic energy of the
2D turbulent flow.
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We also emphasise that no wave-driven hydrodynamic turbulence could be generated
in the experiments reported in [8]. Indeed, the confinement of the wave field at the container
size inhibits the inverse energy cascade and therefore prevents the development of a 2D
turbulent flow. In [8], the ratio of the diameter of the container Dc to the wavelength
λ is Dc/λ = 4.5 while fully developed 2D turbulence is observed when this ratio is
larger than 15 [37]. Note that Dc/λ ≈ 35 in our experiments for which λ = 8.8 mm.
Hence, the attraction force reported in [8] is a pure wave effect. The latter is studied for
separation distances W/λ < 0.5 when the wave motion is negligible between the beams.
The study reports a force dependent on the external wave amplitude and independent of
the separation W. The absence of a turbulent flow is reflected in the fact that no attraction
force is reported when the plates are separated by a distance W larger than a wavelength
and a half: W/λ > 1.5.

In contrast, the turbulence-driven attraction force is a long-range effect observed for
separation distances of up to W/λ ≈ 12, and we report in Figure 1b that the attraction
is strongly dependent on W. This dependence reflects the link between the force and the
flow kinetic energy stored by the inverse energy cascade within the cavity [19]. In our
experiments, as shown in [37,40], 2D turbulence governs both the fluid particle motion and
the disorder in the wave field. In these conditions, the emergence of the Casimir-like effect
can be described from both the flow viewpoint and the wave viewpoint.

This wave-flow dual picture holds until the wall spacing becomes comparable to
the wavelength and a wave resonance within the cavity produces a complex short-range
interaction. Interestingly, from the flow viewpoint, the counterpart of a resonant wave field
is an alley of periodic highly-energetic vortices. The latter can be interpreted as a resonance
of the forcing mechanism of the 2D wave-driven flow [37].

5. Conclusions

In summary, these experiments shed light on an interaction force mediated by the
chaotic motion of hydrodynamic waves. In Faraday wave-driven turbulence, the emer-
gence of a Casimir-like attraction force can be described from both the wave and the flow
viewpoint. Moreover, its modelling requires understanding the wave–flow coupling. The
attraction force reported here echoes different self-propulsion phenomena reported recently
and observed when wave-driven turbulence is only partially confined [15–17]. This hydro-
dynamic analog of the Casimir effect also contributes to the growing body of research on
hydrodynamic analogs of quantum effects observed in the Faraday wave system [51,52].
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