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Abstract: Computational methods in fluid research have been progressing during the past few
years, driven by the incorporation of massive amounts of data, either in textual or graphical form,
generated from multi-scale simulations, laboratory experiments, and real data from the field. Artificial
Intelligence (AI) and its adjacent field, Machine Learning (ML), are about to reach standardization in
most fields of computational science and engineering, as they provide multiple ways for extracting
information from data that turn into knowledge, with the aid of portable software implementations
that are easy to adopt. There is ample information on the historical and mathematical background of
all aspects of AI/ML in the literature. Thus, this review article focuses mainly on their impact on fluid
research at present, highlighting advances and opportunities, recognizing techniques and methods
having been proposed, tabulating, and testing some of the most popular algorithms that have shown
significant accuracy and performance on fluid applications. We also investigate algorithmic accuracy
on several fluid datasets that correspond to simulation results for the transport properties of fluids
and suggest that non-linear, decision tree-based methods have shown remarkable performance on
reproducing fluid properties.

Keywords: artificial intelligence; machine learning; fluid flows; computational fluid dynamics;
fluid mechanics

1. Introduction

Research in fluids spans over a wide range of sizes, from quantum to continuum, and
time scales, from picoseconds to hours or more. Traditionally, there have been distinct
groups to investigate phenomena at each scale. Multiscale simulation approaches, fueled by
high-performance computing architectures, are now a fact, bridging distinct research fields
in common platforms. Physics-based descriptions are essential in understanding fluid
behavior, as, most of the times, the electronic and atomic properties of the substance affect
its overall behavior. Advances in material science have also made possible the conduction
of laboratory experiments close to the atomic scale with increased accuracy, while industrial
and large-scale research is constantly providing real-case data to guide the research.

1.1. Data Science

Computational science has gone through various stages, from empirical methods
to the model-based theoretical paradigm, and the computational third paradigm. Our
ability to collect data from various procedures has gone beyond our understanding of it.
At present, new techniques and approaches have arisen through the data-driven fourth
paradigm, capable of overcoming the limitations of its traditional predecessors [1], based on
developing accurate predictions and discovery-based data mining tools on huge datasets.
Mathematical modeling, experiments, and computer simulations are three traditional
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scientific development models that are supported by the fourth paradigm and the evolution
of computer science, high-performance computing, ML, and data mining methods [2].

Data used nowadays for physical sciences may be categorized as: (a) material proper-
ties from experiments and simulations (physical, chemical, structural, thermodynamics, dy-
namics, etc.), (b) chemical reaction data (reaction rate, reaction temperature, etc.), (c) image
data (scanning electron microscope images of materials, photos of material surfaces, etc.),
and (d) data from the literature [3]. These data are discrete (e.g., texts), continuous (e.g.,
vectors and tensors), in the form of weighted graphs, or image/video data that represent a
phenomenon in graphical form. Derived from different sources, it may be of importance
to select and weight experimental and simulated datasets as a prerequisite step in the
development of thermodynamic property models [4].

1.2. AI/ML in Fluid Research

AI has entered fluid research and led to an explosion of relevant publications that
tried to bind together innovative algorithms with human perception [5]. ML is a branch of
AI that entails statistical approaches to analyze and build algorithms trained on data and
generate predictions about data. It is generally classified into supervised and unsupervised
learning, where supervised learning refers to finding predictions for labeled data, while
unsupervised learning is used for unlabeled data. During supervised learning, training
data provide the knowledge to map inputs to outputs. In unsupervised learning, possible
patterns of input data have to be explored first [6]. Some also categorize Reinforcement
Learning (RI) as the third ML branch. In RL, training data are not necessary, the model tries
to create its own data on the fly and the model is self-trained to improve its accuracy [7].

These ML methods were applied to address many challenges in fluid research, such
as statistical processing of experimental data, turbulence modeling, material properties
extraction, control pipelines, to mention a few, overcoming the inherent computational
burden and/or expensive experimental setups. From another point of view, ML might
be seen as a new approach to address traditional fluid mechanics problems in a different
way [8]. ML can make predictions for a fraction of the cost of the initial computation time
without sacrificing accuracy [9] and can be more computationally efficient as compared
to physics-based numerical simulations [10]. Moreover, it can capture data behavior
while eliminating irrelevant features, and explain the predictions to devise explainable
techniques [11]. The algorithms inferred follow a decision process and make predictions
that are usually validated by the same dataset [12]. Traditional numerical approaches often
range between prediction accuracy and computational efficiency. However, due to the high
computational cost, simulations are limited to small systems, for a small duration, in order
to produce findings, close to those obtained in experiments.

The successful application of ML in fluid research is based on six main components:
(i) data quality and quantity, (ii) finding input features that can appropriately describe the
process, (iii) implementing a validation scheme for the model, (iv) ensuring explainability
for the model [13,14], and, in another direction, (v) replacing conventional simulations
and reaching predictions at only a fraction of the initial computational cost, without
cutting down the accuracy, and capturing important aspects of the data while discarding
inessential details, (vi) continually generating high-quality training data [15] by using ML
in conjunction with the experiment [16]. The use of the two together complimentarily is
what can progress the material discovery.

However, big data availability does not always mean that data are ready to process and
analyze. It is a fact that ML is faced with sparse data, due to the high-dimensional space,
geometrical implications, boundary conditions, and nonlinear aspects of fluid mechanics.
The term “Intelligent Fluid Mechanics” (IFM) has emerged [17], along with the concept
of physics-informed neural networks (PINNs), where the underlying flow physics has
entered the ML process to strengthen that traditional black-box model consideration [18].
Current trends also include advances in symbolic regression techniques, where symbolic
expressions are extracted from data without prior knowledge of the inferred system and,
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along with statistical learning, dive deep into the physical meaning of data. Physics-based
data descriptions are now a fact [19].

1.3. Reviews and Perspectives on Fluid Research and ML

A number of new reviews and perspectives regarding ML and fluids have been pub-
lished lately. A historical review, spotting past and current developments, along with
predicting the future in fluid mechanics, is made by Brunton et al. [20]. ML algorithms are
grouped into the three main categories (i.e., supervised, unsupervised, semi-supervised),
and characteristics are given, while, emphasis is placed on statistical optimization tech-
niques, Bayesian inference, and the Gaussian Processes. Brenner et al. [8] highlight the need
for incorporating quantitative and qualitative training data in various ML applications. It
is also stated that ML should be used in conjunction with human intuition and physical
reasoning to address the principles of fluid mechanics.

Physics-based decisions are the driving force for trustworthy ML. To embed physical
knowledge on the models, researchers are advised to carefully choose model/problem
and available data, decide on the proper architecture, design loss functions to quantify
performance and guide the learning process, and, finally, implement an optimization
method to minimize the loss function over the training data [21]. For applications on fluid
thermophysical properties, where data are usually sparse and subject to uncertainties,
physical knowledge is also the key to dealing with this. Moreover, ML can serve as a data
analysis tool and help to create physical insights and improved understanding to overcome
the “black-box” nature of ML models [22].

Technical directions on characterizing fluid flow in pipes are given in the review of
Arief et. al, referring to multiphase flows controlled by sensor data [23]. Classical compu-
tational methods, such as the speed of sound estimation and Joule–Thomson coefficient,
are used in conjunction with ML algorithms (Convolutional Neural Networks, Support
Vector Machines, Ensemble Kalman Filter). Turbulence modeling is also a popular research
field in current ML applications, where the primary focus has been the exploration of new
routes to parametrize unresolved scales in complex flow configurations at high Reynolds
numbers. Pandey et al. [24] argue about the connection of big-data analysis, as driven by
the research in astronomy and astrophysics, with data analysis in turbulence, suggesting
that fluid research can benefit significantly from similar AI applications. Industrial applica-
tions can also benefit from large datasets, more advanced ML algorithm techniques, and
higher computational power. To obtain data from the field, better sensors with higher data
acquisition rates and higher resolution would be an asset, along with new data compression
techniques to handle huge datasets [10].

1.4. Aim and Objectives

Taking in mind all directions and perspectives presented in the current literature, in
this review, we wish to complement the discussion on ways to explore and benefit from AI
and ML in the multifactorial field of fluid research. At first, we cover issues concerning
trends and methods used in fluid flows to bridge among scales and provide new insight
into multiscale modeling with embedded ML calculations. As a vast number of simulations,
experimental, and data from the field are gathered in various databases, we describe the
process of fluid properties extraction from the microscopic to the macroscopic level with
ML. We also emphasize the concept of extracting physics-based descriptions to solve PDEs
and cover all the latest fluid research on turbulence modeling and other CFD fields. Finally,
we performed an algorithmic investigation for a number of well-established ML algorithms
that were incorporated in fluid research and concluded their performance by investigating
a simulation dataset related to the transport properties of fluids. Results have shown that
decision-based algorithms perform better on fluid datasets with non-linear behavior. Then,
finally, we highlight the fact that, by keeping pace with physical knowledge gathered
through extensive research on fluids throughout the years, AI and ML can be means of
enriching our computational “reservoir” to tackle existing and unresolved problems.
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2. Bridging across Scales

The behavior of an atom in a molecule, liquid, or solid is governed by the force it
experiences. If the dependence of this force on the atomic chemical environment can be
learned accurately by exploiting big-data techniques, then this capability can be harnessed
to speed up simulations [25]. Starting from the “bottom”, ML was used to extract classical
potential energy surfaces (PES) from quantum mechanical (QM) calculations, in order to
efficiently perform Molecular Dynamics (MD) simulations that take into account quantum
effects [26]. Moreover, ML can be used to generate samples from the equilibrium distribu-
tion of a molecular system without performing MD altogether, as proposed in the recently
introduced Boltzmann Generators, a method based on training on the energy function
of a many-body system able to provide unbiased, one-shot samples from its equilibrium
state [27].

MD simulations following the Born–Oppenheimer (BO) approximation have become
the atomistic modeling standard nowadays and fluids are no exception [28,29]. The main
steps include the construction of the PES as a function of the positions of the nuclei so that
the calculation of most thermodynamic properties becomes possible [30]. On the other hand,
Quantum Mechanics (QM) approaches have the benefit of being derived from fundamental
physics and are thus accurate for a wide variety of systems, and the incorporation of the
density functional theory (DFT) decreases their computational demand. However, their
applicability refers only to smaller time and length scales.

This is where ML has found a receptive field to beat computational barriers. For
example, Bayesian techniques, with the aid of experimental measurements, can formulate
Schrodinger’s equation for efficient quantum dynamics calculations [31]. Moreover, current
research efforts have developed alternative approaches to calculating the PES known as
interatomic potential models or force fields (FFs) [32]. The potential energy of a system
is seen as the sum of bonded (e.g., bond stretching, angle bending, dihedral torsion)
and nonbonded (e.g., van der Waals) atomic interactions to construct an FF model, with
partial contributions being calculated from positions, charges, and relative orientations.
The Gaussian Approximation Potential (GAP) model was successfully applied to build
the potential for liquid methane (CH4), which is a difficult task when approached from
first principles because its behavior is dominated by weak dispersion interactions with a
significant many-body component [33].

Multiscale modeling can integrate ML to create surrogate models to bridge between
the scales [34], as can be seen in Figure 1. Till now, MD simulations have managed to reach
a system size of twenty trillion atom simulations, but, still, this is far from representing a
real system [35]. Research has shown that the construction of ML interatomic potentials
(MLIPs) trained over ab initio MD (AIMD) trajectories could enable the design of an
efficient first-principles multiscale modeling, joining the power of DFT with classical MD
and continuum simulation methods. To this end, a complex system would be investigated
with first principles precision, at no additional computational cost [36].

By learning the dynamics across scales, one at the deterministic macroscale and the
other at the stochastic microscale regime may significantly reduce computational effort
and time [37]. Techniques were proposed to reduce the number of simulations at the
lower scales with the incorporation of the Dissipative Particle Dynamics (DPD) mesoscale
method. Data from one physical quantity are used to predict other unobserved quantities
and correlate them with aid of Deep Neural Networks (DNNs) [38]. In another example,
a DPD model is bound with the Gaussian Process Regression and Discrete Elements
Method to investigate the self-diffusion coefficients of colloids, suspension rheology, and
microstructure [39]. Another popular mesoscale particle simulation method, Smoothed-
Particle Hydrodynamics (SPH) [40,41] was bound to ML by utilizing experimental data for
hydrodynamics modeling, suggesting an integrated framework for studying the rheological
properties of complex fluids [42].
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In addition to atomistic force fields, it was recently shown that, in the same spirit,
effective coarse-grained models can be developed by ML [43] and their data projection can
be exploited to parameterize upper-scale models in the form of nonlinear PDEs consistent
with a continuum theory [44]. It was also shown that parametrization of the traditional FFs
for various materials with ML, based on the use of kernel-based methods that incorporate
physical symmetries [45], can be exploited to construct coarse-grained (CG) systems in
order to bind accurate but computationally expensive ab initio methods with approxi-
mate but computationally cheap CG methods [46]. A DNN is incorporated to learn the
relationship between the radial distribution functions (RDFs) of simple liquids at various
thermodynamic states (ρ, T) with LJ potential parameters [47]. Training data is generated
by MD and the knowledge is transferred to coarse-grain simple multiatom molecules, with
bonded and nonbonded interactions, into a single LJ particle. Details on LJ parameters are
given in Section 6.

However, we should always have in mind that fluid research is conquered by many
physical principles that restrict the possible ML predictions to those that have a physical
meaning [48].

3. Fluid Properties Extraction

Extraction of fluid properties from microscopic calculations has always been a matter
of research. Although experimental techniques are the traditional road to acquiring fluid
properties, they may be hindered in cases of complex or expensive experimental setups and
extreme conditions (e.g., high temperature or pressure). Based on relations from statistical
mechanics, empirical relations that have matured over the years, and exploiting MD
simulation results, the accuracy of the thermodynamic properties obtained is comparable
with those obtained experimentally [49,50].

Data available to the research community has faced a breakdown since the introduction
of the Materials Genome Initiative in 2011, aiming to foster material research with data
exploitation [51]. In this framework, various electronic databases and journal datasets,
containing the calculated properties of existing and hypothetical materials were created
and are available online [52–55]. These efforts have made available a vast number of
high-quality computational and experimental physical science data. As a result, a thorough
data investigation for structure, patterns, and functional relationships arising from various
processes and activities is of critical importance. Finding relationships could lead to novel
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applications for fluid research, such as, for example, the discovery of water splitting for
hydrogen production [56].

The Lennard-Jones (LJ) fluid [57] is usually incorporated in fluid simulations at the
atomistic level as the theoretical basis to investigate and calculate physical properties in
terms of speed and convenience. For example, the RDF is determined by ML methods. In
simple fluids that are dominated by pairwise interactions, structurally based macroscopic
observables can be expressed using standard thermodynamic relations containing the RDF.
Therefore, once a functional form for the RDF is known, it provides a direct route to generate
the thermodynamic properties of the LJ system [15]. The use of different ML models to
predict diffusion rates for a well-defined Lennard-Jones (LJ) fluid is also explored [58].
Current studies have shown that symbolic regression techniques, an ML method that is
based on genetic programming and proposes analytical expressions to predict the system’s
behavior [59], have also given extraordinary results on diffusion coefficient predictions [19].

In water research, density, vaporization enthalpy, self-diffusion coefficient, and viscos-
ity, were obtained from a number of MD simulations that provided the training data to feed
a neural network [60]. A general ML framework based on support vector regression (SVR)
for predicting the PVT properties of pure fluids and their mixtures is presented in [61].
More properties that can be calculated with ML modeling include solubility prediction in
organic solvents and water [62], the prediction of melting points [63], density and viscosity
of biofuel compounds [64], FCC diffusion barriers [65], and more.

A general framework for fluid properties extraction is presented in Figure 2.
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4. Physics-Based CFD

Computational Fluid Dynamics include numerical techniques that aim to increase the
speed of fine-grid simulations, develop turbulence models with different levels of fidelity,
and produce reduced-order models (ROMs). Proper Orthogonal Decomposition (POD) and
Galerkin Projection techniques are among those used to create ROMs. These methods are
sensitive to parameter changes and lack robustness, in a way that they cannot account for
transient or multi-scale phenomena [66,67]. ML techniques were used in conjunction with
PODs to reduce the system’s dimensionality [68]. Fluid behavior is mainly approached
by the Navier-Stokes equations, but solving these equations remains challenging, as it
demands increased computational cost to acquire fine spatiotemporal features.

By incorporating ML methods, such as DNNs, the equations can be solved on coarser
grids by replacing the components mostly affected by the resolution loss with better
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performing learned alternatives, such as learned solvers, learned interpolation, and learned
correction. This hybrid approach combines physical intuition with data science, and this can
be the pathway to generalization [69]. It has become common sense that in high-resolution
grids, complex network architectures, such as convolutional neural networks (CNNs) are a
powerful tool to handle big data [70].

Physics-Informed Neural Networks (PINNs) are currently becoming a standard in
computational science. This concept was introduced to describe a class of universal func-
tion approximators, capable of encoding the underlying physical laws behind a given
dataset [18], and their current advancement has brought the conservative PINNs (cPINNs)
and extended PINNs (XPINNs), which employ domain decomposition in space and in
time-space, respectively [71]. Prediction capabilities of DNNs keep pace with the physical
conservation laws of momentum, mass, and energy, in metal thermal-fluid flows, trained
by FEM simulation data and ensuring minimum loss [72].

Another application is based on the sparse regression technique, where the terms of
the governing PDE that most accurately represent the data from a large library of potential
candidate functions are calculated. In a Eulerian or a Lagrangian framework, the method
proposed in [73] is capable of rediscovering a broad range of physical laws, e.g., Navier–
Stokes, from time-series data. Physical laws originating from the Navier–Stokes equations
were accurately harnessed, as well, by Hidden Fluid Mechanics (HFM), a physics informed
deep learning framework that gives pressure and velocity fields in 2D–3D flows, even in
cases where direct measurements may not be possible [74].

Particle fluid simulations can also be accelerated by embedding ML. For example,
the derivation of a kinematic equation for finite-size particles that combines ML and
physical explanation was proposed [75]. It is based on training the model to learn the
mismatch between the implied dataset and an imperfect model containing the physical
information. Generalization is achieved as such methods are not restricted by particle size
and experimental data can be accurately incorporated and extrapolated in regions where
they are not available.

For multiphase flows, hybrid-ML applications were developed and showed a promis-
ing solution to model flow behavior. The main objective here is the prediction of flow
patterns by using pressure drop data. In a purely data-driven manner, neural network
techniques were employed [76], while, in hybrid physics-based and data-driven ML, better
accuracy and deeper understanding of the model were achieved [77]. NN techniques were
further exploited to create coarse-grained CFD models for Thermal Hydraulics, for the
design and safety of Nuclear Power Plants [78]. Purely data-driven techniques were further
incorporated for fluid flows in porous media. Artificial neural networks have been the
usual choice for training and prediction for a variety of problems in petroleum engineering,
in CO2 geological sequestration, and permeability prediction [79,80].

Reynolds Averaged Navier Stokes (RANS) turbulence models are probably the most
demanding computational field in CFD. In the last decade, DNNs have become the domi-
nant method to cope with them, and performance gains are now achieved over competing
state-of-the-art methods [81]. The incorporation of the XGBoost algorithm has also given
accurate predictions in turbulence simulations [82]. An ML-PDE, coarse-grained strategy
on a two-dimensional turbulent problem has resulted in corrected solution trajectories that
were consistent with the solutions computed at a much higher resolution in space and
time [83]. Moreover, new ML-based reconstruction techniques were developed, capable of
estimating fluid flow fields from limited measurements, which can be a valuable technique
when dealing with small data applications [84].

The new pathway to understanding complex fluid flows goes through visualization.
High-resolution images are exploited to extract and calculate system properties through
specialized DNN architectures, such as density, velocity, and vorticity. In terms of program-
ming effort, DNNs are able to capture complex features of the system under investigation,
as long as GPU or CPU clusters are carefully used in a parallel procedure [85].
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It becomes clear that when CFD is combined with ML methods, it is possible to
improve simulations without sacrificing accuracy and generalization. On the other hand,
it should be pointed out that ML is not a one-for-all solution. It is a fact that complex ML
methods, such as DNNs, are hard to implement and do not function with small datasets,
as, for example, limited data acquired from an expensive or time-consuming experiment.
Thus, it is of importance to spot fields where classical numerical methods are more accurate
and efficient [86].

5. Algorithms for Fluid Flows

Next, we present the most common ML algorithms which were successfully incor-
porated in fluid investigation. We point out that these are not the only algorithmic im-
plementations used in fluid (or, materials, in general) research, nevertheless, we chose
an indicative set that has been widely referred to in the literature. More specifically, we
employ the regression version of Multiple Linear Regression (MLR), Lasso, Ridge, Support
Vector Machines (SVM) in three different instances, the Gaussian Process (GPR), k-Nearest
Neighbors (k-NN), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), and
Multi-Layer Perceptron (MLP). In graphical form, these are shown in Figure 3. We excluded
Deep, Convolutional, and Recurrent Neural Network approaches from this study since
they demand complex implementations and can be seen as a distinct field of research for
huge datasets and/or graphical data analysis. DNNs are expected to have a central role in
future molecular representations with chemical information [87].
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Figure 3. ML algorithms incorporated in fluid research—indicative list. (a) Multiple Linear Regres-
sion, (b) Ridge Regression, (c) Lasso regression, (d) Support Vector Regression, (e) Decision tree.
Random Forest and Gradient Boosting are also based on this tree-model, (f) Neural Network for the
Multi-Layer Perceptron model and (g) the k-Nearest Neighbors idea, where neighboring points are
considered to belong to the same class.

5.1. Multiple Linear Regression

In a simple regression model, if Y is the predicted variable, X is the input variable, b is
the bias term and w is the weight of the variable, then

Y = wX + b (1)
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For a set of n independent input variables (e.g., the regressor), the multiple linear
regression model (MLR) is

Y =
n

∑
i=1

wiXi + b (2)

In the above expression, w1, w2, . . . , wn are a set of unknown parameters, representing
the impact of the respective X1, . . . . . . , Xn independent inputs on the dependent variable
Y and b is the bias term which equals the unknown error imposed in the model.

5.2. Ridge Regression

The ridge regression method was introduced in order to overcome poor predictions
when linear regression fails to capture data behavior. In cases where data have many or
highly correlated variables, then the Ordinary Least Squares (OLS) parameter estimates
have low bias but high variance, which leads to high Mean Squared Error (MSE) values [88].
This fact makes the OLS method unreliable. Regularizing methods, such as ridge regression,
are accoutering to counter this undesirable case [89].

Ridge regression shrinks the regression coefficients by imposing a penalty on their
size. The coefficients minimize a penalized residual sum of

β̂ridge = argmin
N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβij

)2

(3)

subject to ∑
p
j=1

(
β j
)2 ≤ t, where t is related to the amount of shrinkage.

In ML linear regression, a common problem is the fact that it needs a higher number
of training samples than the number of features, while ridge regression may function with
fewer training samples needed to achieve acceptable results [90,91]. Ridge regression was
successfully used for materials science, in predictions of liquid quality and craniofacial
reconstruction algorithms, among others [92–94].

5.3. Lasso Regression

The least absolute shrinkage and selection operator (Lasso) regression method is
another linear-based method that resembles ridge, with subtle but important differences. It
imposes a constraint on the model parameters, which “shrinks” the coefficients towards
zero. In this way, the sum of the absolute value for OLS coefficients is forced to be less than
a fixed value. It tries to select a small predictive feature subset out of a high dimensional
and is considered an effective technique for shrinkage and feature selection [95]. The Lasso
estimate is given by [96]

β̂lasso = argmin
N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβij

)2

(4)

subject to ∑
p
j=1

∣∣β j
∣∣ ≤ t.

In Figure 3b,c, the ridge and the Lasso regression are depicted for a general case. The
residual sum of squares is shrunk by a factor

∣∣β j
∣∣ for Lasso and β j

2 for ridge. A detailed
discussion on the methods can be found in [96].

Lasso was applied, among others, to predict fluid flow in porous media [97], oil flow
rate [98], and flow-field reconstruction from sparse data [99].

5.4. Support Vector Machines

Support Vector Machine (SVM) is an effective classification and regression analysis
method that could, under certain circumstances, replace artificial neural networks in
fluid research [100]. SVM incorporates kernel functions that map the input to a higher
dimensional feature space through kernel functions, such as Linear, Polynomial, or Radial
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Basis Functions. Although computationally demanding, SVM does not depend on the
dimensionality of the input space and can be easily generalized. It further provides the
opportunity to select the error margin [101]. In fluid research, the SVM approach was
recently implemented in the areas of hydrology and river flow forecasting [102].

5.5. Gaussian Process Regression

The Gaussian Process (GP) is a non-linear regression method that predicts the values
of an unknown function by using input data as evidence. It may deal with noisy data and
can estimate the uncertainties involved in their predictions [103]. Its basis comes from the
Bayesian probability theory and is closely connected to other regression techniques.

It was successfully introduced in the construction of the GAP model and has found
many applications in many computational demanding problems in materials science. A
very interesting review with all related theories and applications can be found in [104].

5.6. k-Nearest Neighbors

The k-Nearest Neighbor (k-NN) algorithm does not need parameters to operate and
can be used for classification and regression tasks [105]. The classifier in the (k-NN)
algorithm selects k training marks that are close to a test data point x and predicts the
approach that relies on these training sets. The Euclidean distance metric is used to compute
the distance between test and training data points. After grouping the calculated distances
from the lowest to the highest, the most prevalent outcome from the first k rows is the
predicted result [106]. The prediction begins when the k-value is chosen, and the regression
probability is averaged for the k-Nearest Neighbor. The prediction’s result can then be
computed using

g =
1
k

k

∑
i=1

gi (5)

where gi is the ith sample size of data and g is the result of query point prediction [107].

5.7. Decision Trees

The Decision Tree (DT) is a supervised ML algorithm that creates a tree-like conceptual
framework from training data. It is reminiscent of a flowchart. Each node represents a test
on a feature, and each branch represents the result of the test. The DT model’s response
is predicted by following the decisions from start to end node [106]. The feature space is
partitioned recursively based on the splitting attribute. Each final region is assigned a value
to estimate the target output. The tree can be represented as a function [108]

FΘ(x) = ∑
l∈leaves(T)

θl Il(x) (6)

The DT algorithm was successfully employed in fluids and material research to detect
water pipes that are imminent to fail [109] and to predict thermoelectrically materials
scale [6]. It is considered an easy choice to use, but it is often used along with other
methods as data may be overfitted [110].

5.8. Random Forest

Random Forest (RF) is a multiple decision tree supervised ML algorithm. The tree
classifiers are randomly chosen from the given input features and generate decision trees
from the training dataset with replacement using the bootstrap method. The RF algorithm
operates in two steps: the forest is generated in the first step, and prediction is performed
at the second step using the rule generated in the first step. There is a solid correlation
between accuracy and the number of trees in the forest, which means that more accurate
outcomes can be achieved by increasing the number of trees in the forest. As it reduces the
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problem of overfitting, RF is thought to be superior to a single decision tree. The best output
of the model is obtained by averaging the outcomes of individual decision trees using

Y =
1
B ∑b

j=1 Yb
(
X′
)

(7)

where each decision tree is indicated by Yb and is trained on X′ unknown scenarios.
The symbol B stands for the number of decision trees. This algorithm’s operation

begins with the selection of a sample number, after which a decision tree is constructed for
each sample. Following that, each decision tree predicts the outcome based on the given
input parameters, and voting is used to select the best one from all the predicted results.
Eventually, the final prediction result is determined by a majority vote. The bootstrap
procedure does not select approximately one-third of the database. This is typically referred
to as out-of-bag data. This out-of-bag data is then used by the trees to domestically validate
the states, increasing accuracy, and improving RF performance [1,2].

RF algorithms are applied in many scientific studies, and especially in fluids, they have
shown remarkable performance, such as the prediction of slip lengths [111] and diffusion
coefficients [112].

5.9. Gradient Boosting

Gradient Boosting (GB) is yet another effective method for dealing with nonlinear
classification and regression problems. In this method, a group of base learners (simple
algorithms) is combined to create a strong learner that can solve a specific problem. Among
the most renowned GB tweaks is to use regression trees as base learners, which is known
as Tree Gradient Boosting. The primary objective of gradient boosting, provided a training
dataset D, is to figure estimation of the function F(x), which maps variables x to their output
values y, by diminishing the expected value of a given loss function, Fm(x) = L(y, F(x)).
Gradient boosting generates a weighted sum of functions as an additive estimation of
F(x) as

Fm(x) = Fm−1(x) + pmhm(x) (8)

where pm is the weight of the mth function, hm(x). If the iterative process is not properly
regularized, this algorithm may suffer from over-fitting [113]. GB algorithm and its tweaks
are summarized as high-quality predictors in heat transfer of oscillating heat pipes [114], as
oil flow rate predictors from a simple subsea production system [115], and great performers
in the diagnostic classification of cancers [116].

5.10. Artificial Neural Networks

Artificial Neural Networks have taken many forms in the past years and are widely
incorporated in the case of big data applications. They are based on the Perceptron, the
digital analog to a biological neuron. The Multi-Layer Perceptron comprises internal layers
between input and output nodes, increasing the complexity, but, on the other hand, is
trained efficiently to achieve better statistics. The number of hidden layers is usually
determined by trial and error.

Furthermore, the essence of these models enables them to confront nonlinear predic-
tion problems. This method depends on discovering the ambiguous connection in the
process to learn the problem-solving method for achieving the output. For this objective, a
massive quantity of data is used in the training step, and the proper output is calculated
using the connection discovered through that stage. A neuron K can be expressed by the
following two Equations as

yk = f (uk + bk) (9)

uk =
N

∑
i=1

wkixi (10)
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where x1, x2, . . . , xn are the input data, wk1, wk2, . . . , wkn are the neuron’s connection
weights, uk is the linear output of the linear combination of weighted inputs, bk is the bias
term, f is the activation function, and yk is the neuron’s output data (signal).

5.11. Symbolic Regression

The process of understanding physical problems usually goes through a well-defined
mathematical equation, which can be interpretable and generalizable to extract meaningful
information [117]. A core challenge for both physics and ML is symbolic regression (SR):
finding a symbolic expression that matches data from an unknown function [118], by
incorporating mathematical operators from infinite space, without prior knowledge of the
system’s behavior.

The advantage of SR over other ML models is that it provides analytic expressions
which can be readily generalized, and which facilitate the understanding of the underlying
physics, with decreasing likelihood of overfitting. This is particularly applicable to the
fields of physics and material science, as most of the physical laws, when expressed as
equations, are relatively mathematically simple [119]. It also has the potential to replace
black-box ML models with simple and accurate symbolic equations.

One of the downsides of SR, however, is that the dimensionality of the input space
needs to be relatively small [120]. High data dimensionality makes the model search space
far too large for any purely data-driven approach to be tractable [121] and, sometimes, the
space of candidate equations is huge increasing the complexity of the proposed expression.

5.12. Performance Metrics

Calculations on error statistics that define the success of an algorithm under investiga-
tion method usually refer to R2, MSE, and MAE, as shown in Equations (11)–(13).

The R2 is calculated from the formula:

R2 = 1−
∑N

i=1
(
Yexp.,i −Yexp .

)2

∑N
i=1

(
Yexp.,i −Ypred.,i

)2 (11)

where Yexp. is the mean value of the expected output.
The Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(
Yi −Y

)2 (12)

where Yi = Yexp.,i −Ypred.,i and Y = 1
n ∑n

i=1 Yi.
The Mean Absolute Error (MAE) is:

MAE =
1
n

n

∑
i=1

∣∣Yi −Y
∣∣ (13)

6. Comparative Investigation

In this work, 12 regression algorithms were implemented in order to assess their
behavior on fluid simulation datasets and investigate applicable fields in fluid investigation
cases. Datasets employed refer to simulation results for LJ fluid transport properties,
such as the diffusion coefficient, shear viscosity, and thermal conductivity for bulk and
confined systems.

The LJ 12-6 potential is given by

uLJ = 4ε

( σ

rij

)12

−
(

σ

rij

)6
 (14)
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where the cut-off radius is rc = 2.5σ. Values of the characteristic length and energy, σ and ε,
and the masses of the particles are σf = σw = 0.3405 nm (w: wall and f : fluid),ε f /kB = 119.8K,
and m = 39.95 a.u. More details can be found on [122].

The transport properties for the bulk fluids are given for density–temperature (ρ-T)
inputs that cover a wide range of fluid phases, from gas to dense fluid [123–125]. The
confined transport properties refer to Poiseuille-flow model parameters, such as the distance
between the plates (h), the interaction ratio between wall/fluid particles (εw/ε f ) and the
external force that drives the flow (Fext), which is the equivalent of the driving pressure
used in MD simulations [126]. Datasets can be found from the respective references.

Although being investigated for the theoretical LJ fluid model, these results could be
easily extrapolated to real pure fluids [127], providing a macroscale value for the three
transport properties, extracted from microscopic calculations.

During preprocessing, the dataset is divided into training points to feed the ML models
and testing points to validate predictions (80/20). The normalization stage removes the
mean and scales to unit variance according to

−
x =

x− xmean

xstd
(15)

The two models investigated here are shown in Figure 4. For the Poiseuille flow model,
input parameters are the εw

ε f
ratio, the distance between the plates, h, and the external force

that drives the flow, Fext. In both systems, the outputs are the diffusion coefficient, the shear
viscosity, and the thermal conductivity.
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Figure 4. The datasets to investigate the ML algorithms refer to (a) a bulk LJ fluid system, with
density and temperature parameters as inputs, and (b) a confined Poiseuille flow model.

Metrics for diffusion coefficient data, i.e., R2, MSE, and MAE, are shown in Table 1.
It is observed that the tree-structured algorithms such as RF and DT have shown optimal
performance in all metrics for the bulk diffusion simulation dataset, followed by the GBR
model. Moreover, MLP, which is a neural network with backward calculation capability,
could also be employed for studying such datasets, as long as the proper implementation
concerning the number of nodes and hidden levels is investigated. All other algorithms
present low R2 and high residual errors.

Nevertheless, fitting on the confined diffusion data is quite different. Here, there
is an indication of linear dependence between the three inputs (h, εw/ε f , Fext) and the
output Dc and most linear and/or polynomial-based algorithms (i.e., MLR, Ridge, SVR-
LIN, SVR-POLY) show high R2 and small residual errors. The weakest choices are Lasso
and DT.

The identity plots of Figures 5 and 6 reveal and verify the findings from Table 1. We
observe that the tree-structured algorithms, such as RF and DT, fit well on the bulk diffusion
simulation dataset, with GBR, MLP, and k-NN models presenting an acceptable fit behavior.
In contrast, linear-based methods, such as MLR, Lasso, Ridge, SVR, and GP, have shown
poor fit on diffusion data. For the confined, Poiseuille flow model, we obtain the fitting
results of Figure 6a–j. The dataset employed for this case (N = 54) is significantly smaller
compared to the bulk diffusion case (N = 319). However, these data are representative of
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liquid LJ flows, extracted by the same MD method, and were previously pre-processed
and verified [126]. It was shown that most algorithmic predictions fit well-to-acceptable
on simulation data, except for Lasso, in which data points deviate significantly from the
identity line.

Table 1. Metrics and comparison of 12 ML algorithms for the datasets corresponding to simulation
data for LJ bulk fluid diffusion (Db) and LJ liquid diffusion in Poiseuille flow (Dc). Bold-type cells
indicate the best metrics achieved for each dataset.

Db Dc

R2 MAE MSE R2 MAE MSE

MLR 0.371 1.936 9.767 0.882 0.418 0.593

Lasso 0.299 1.990 10.877 0.409 1.135 2.963

Ridge 0.371 1.934 9.768 0.878 0.433 0.610

SVR-LIN 0.204 1.465 12.358 0.864 0.472 0.682

SVR-RBF 0.410 1.037 9.155 0.587 0.874 2.070

SVR-POLY 0.450 1.060 8.530 0.962 0.246 0.191

GP 0.369 1.903 9.801 0.881 0.422 0.597

k-NN 0.716 0.587 4.405 0.916 0.260 0.421

DT 0.971 0.284 0.446 0.564 0.766 2.185

RF 0.982 0.203 0.281 0.708 0.589 1.462

GB 0.962 0.385 0.595 0.913 0.331 0.435

MLP 0.878 0.395 1.901 0.943 0.284 0.287
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Figure 6. Simulation versus predicted values for diffusion coefficient in Poiseuille flow model of the
LJ fluid, being the output of 12 different algorithms (a–l). Data points include both training and test
data. The 45◦ identity line denotes the perfect match.

In Table 2 we observe that most of our models, with the exception of Lasso, fit well
on shear viscosity for the bulk LJ fluid dataset, reaching R2 = 99.7% for the k-NN. We note
that, after investigation, it is concluded that the number of nearest neighbors that gives this
result is k = 2 (Figure 7). On the contrary, k-NN fails to incorporate shear viscosity behavior
in confined systems (Figure 8), and only GB, RF and DT show acceptable fit.

Table 2. Metrics and comparison of 12 ML algorithms for the datasets corresponding to simulation
data for LJ bulk fluid shear viscosity (ηb) and LJ liquid shear viscosity in Poiseuille flow (ηc). Bold-type
cells indicate the best metrics achieved for each dataset.

ηb ηc

R2 MAE MSE R2 MAE MSE

MLR 0.697 0.661 0.578 0.111 0.236 0.075

Lasso 0.327 0.849 1.285 −0.368 0.283 0.116

Ridge 0.698 0.659 0.577 0.126 0.233 0.074

SVR-LIN 0.626 0.505 0.714 0.013 0.250 0.083

SVR-RBF 0.958 0.132 0.080 0.067 0.164 0.079

SVR-POLY 0.983 0.115 0.032 −0.726 0.278 0.146

GP 0.698 0.660 0.577 0.114 0.236 0.075

k-NN 0.997 0.031 0.006 −0.022 0.166 0.086

DT 0.973 0.080 0.052 0.730 0.072 0.023

RF 0.978 0.067 0.042 0.831 0.079 0.014

GB 0.984 0.109 0.031 0.859 0.061 0.012

MLP 0.996 0.051 0.008 0.296 0.159 0.059
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fluid, being the output of 12 different algorithms (a–l). Data points include both training and test
data. The 45◦ identity line denotes the perfect match.
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In Table 3, thermal conductivity metrics are presented. As in shear viscosity, most of
the models, with the exception of Lasso, fit well on simulation data for the bulk LJ fluid
dataset. Choices of good performance, for both bulk and confined data, seem to be RF, DT,
GB, and MLP. These findings are also verified by the identity plots in Figures 9 and 10.

Table 3. Metrics and comparison of 12 ML algorithms for the datasets corresponding to simulation
data for LJ bulk fluid thermal conductivity (λb) and LJ liquid thermal conductivity in Poiseuille flow
(λc). Bold-type cells indicate the best metrics achieved for each dataset.

λb λc

R2 MAE MSE R2 MAE MSE

MLR 0.489 1.617 3.466 0.327 0.150 0.032

Lasso −0.000 2.127 6.787 −0.250 0.220 0.059

Ridge 0.483 1.632 3.509 0.337 0.149 0.031

SVR-LIN 0.348 1.629 4.424 0.249 0.157 0.035

SVR-RBF 0.640 0.700 2.442 0.808 0.088 0.009

SVR-POLY 0.735 0.639 1.798 0.621 0.114 0.018

GP 0.450 1.700 3.734 0.328 0.150 0.032

k-NN 0.649 0.517 2.379 0.802 0.051 0.009

DT 0.960 0.332 0.271 0.996 0.004 0.000

RF 0.980 0.182 0.135 0.960 0.024 0.002

GB 0.949 0.404 0.347 0.994 0.015 0.000

MLP 0.988 0.208 0.083 0.741 0.090 0.012
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The application of 12 widely used algorithms on LJ fluid transport properties data
has shown a general motive that may be extrapolated to other datasets as well. In most
cases, RF, DT, GB, and MLP methods perform well and can be incorporated in cases where
ML predictions could effectively replace timely and hardware demanding simulations or
expensive experimental procedures. Linear-based models, such as MLR, Lasso, Ridge,
SVR-linear may be used only in some cases.

In terms of performance, our findings have shown fine agreement with the literature
results. There are many references that focus only on the performance of ANN and DNN
architectures, with various hidden levels, weights, and node functions [128–130]. Never-
theless, RF is, most of the time, an algorithmic choice that finds hidden data patterns (see,
for example, LJ fluid properties extraction in [111,112]), performs better than SVR and Ad-
aboost DT on RANS simulation results [131] and fluid drilling challenging problems [132].
Gradient-boosting methods have been found to perform better on relatively small datasets
compared to ANN, while ANNs are usually the best choice for large datasets concerning
dense gas-particle flows [133].

The algorithmic computational cost has not been a subject of investigation of this
review. All algorithms showed fast response to input data since datasets are relatively
small. We focused on highlighting the increase in computational speed when ML data-
driven methods are applied compared to classical simulation methods. The literature
results suggest that MLPs and RFs are computationally intensive when the input is multi-
parametric, in contrast to SVR, which is faster [70]. However, fast execution is not always
preferrable to choose since the additional computational cost may be evidence of robustness,
and this is something that was verified by our results.

We conclude that non-linear and, especially, tree decision-based methods can repro-
duce the initial dataset effectively. However, one has to be very skeptical when suggesting
a universal approach that could replace, partially or totally, well-established theoretical,
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empirical, or other simulation methods that were incorporated for fluid research insofar.
Our investigation wishes only to reveal trends and behaviors and open the road towards
embedding ML techniques and procedures to classical numerical approaches.

7. Conclusions and Future Perspectives

ML algorithms, although being massively incorporated only in the last few years,
have been well-defined and the research community supports their application in most
fields of science and engineering. The literature research in this work has revealed that
the majority of fluid dynamics and mechanics applications are currently investing in Deep
Neural Network applications on classical CFD problems, from finding solutions to PDEs
to analyzing high-fidelity fluid-related images. Nevertheless, we showed that there is an
alternative way to facilitate ML for fluids. Non-linear, tree-based algorithms, much simpler
than DNNs and easy to implement, will continue to attract research interest, providing a
fast and accurate framework that can go through every fluid application that infers some
amount of data.

We expect that AI and ML methods will become standard computational tools to assist
simulations and experimental analysis in the future, without the need to emphasize their
use. As available data continues to grow, fluid mechanics have only to benefit from ML
and novel AI techniques. Data availability and coupling with experimental, theoretical,
empirical, simulation, and novel ML methods offer the potential to significantly boost fluid
mechanics to a new direction. Therefore, it is of critical importance to keep all databases
open to research. Data science is now part of fluid research and synergistic platforms will
keep gaining ground.
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Nomenclature

English Symbols
b bias term
B number of decision trees in RF method
D diffusion coefficient
Fext external driving force
FΘ DT function estimation
Fm GBR function estimation
gi ith sample size of data for k-NN regression
g the result of query point prediction for k-NN regression
h channel width
hm(x) function for GBR method
Il DT indicator function
k number of neighbors for k-NN regression
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kB Boltzmann constant
m particle mass
MAE Mean Absolute Error
MSE Mean Squared Error
N number of particles
pm weight for GBR method
R2 coefficient of determination
rij distance vector between ith and jth atom
T temperature
u(rij) LJ potential of atom i with atom j
w weight of the variable
X’ number of unknown scenarios in RF method
X input variable
Y predicted variable
Yb decision tree in RF method
Yexp . mean expected output
Ypred. mean predicted output
Greek Symbols
β̂ridge penalized residual sum for Ridge regression
β j shrinkage factor
β̂lasso Lasso regression estimate
ε energy parameter in the LJ potential
θl DT decision path
λ thermal conductivity
µ coefficient of shear viscosity
ρ fluid density
σ length parameter in the LJ potential

References
1. Agrawal, A.; Choudhary, A. Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in

Materials Science. APL Mater. 2016, 4, 053208. [CrossRef]
2. Agrawal, A.; Deshpande, P.D.; Cecen, A.; Basavarsu, G.P.; Choudhary, A.N.; Kalidindi, S.R. Exploration of Data Science

Techniques to Predict Fatigue Strength of Steel from Composition and Processing Parameters. Integr. Mater. Manuf. Innov. 2014, 3,
90–108. [CrossRef]

3. Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials Science. InfoMat 2019, 1,
338–358. [CrossRef]

4. Paulson, N.H.; Zomorodpoosh, S.; Roslyakova, I.; Stan, M. Comparison of Statistically-Based Methods for Automated Weighting
of Experimental Data in CALPHAD-Type Assessment. Calphad 2020, 68, 101728. [CrossRef]

5. Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation
2020, 8, 15. [CrossRef]

6. Wang, T.; Zhang, C.; Snoussi, H.; Zhang, G. Machine Learning Approaches for Thermoelectric Materials Research. Adv. Funct.
Mater. 2020, 30, 1906041. [CrossRef]

7. Alexiadis, A. Deep Multiphysics: Coupling Discrete Multiphysics with Machine Learning to Attain Self-Learning in-Silico Models
Replicating Human Physiology. Artif. Intell. Med. 2019, 98, 27–34. [CrossRef]

8. Brenner, M.P.; Eldredge, J.D.; Freund, J.B. Perspective on Machine Learning for Advancing Fluid Mechanics. Phys. Rev. Fluids
2019, 4, 100501. [CrossRef]

9. Schmid, M.; Altmann, D.; Steinbichler, G. A Simulation-Data-Based Machine Learning Model for Predicting Basic Parameter
Settings of the Plasticizing Process in Injection Molding. Polymers 2021, 13, 2652. [CrossRef]

10. Goh, G.D.; Sing, S.L.; Yeong, W.Y. A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges. Artif.
Intell. Rev. 2021, 54, 63–94. [CrossRef]

11. Kailkhura, B.; Gallagher, B.; Kim, S.; Hiszpanski, A.; Han, T.Y.-J. Reliable and Explainable Machine-Learning Methods for
Accelerated Material Discovery. npj Comput. Mater. 2019, 5, 108. [CrossRef]

12. Sofos, F. A Water/Ion Separation Device: Theoretical and Numerical Investigation. Appl. Sci. 2021, 11, 8548. [CrossRef]
13. Roscher, R.; Bohn, B.; Duarte, M.F.; Garcke, J. Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access

2020, 8, 42200–42216. [CrossRef]
14. Vasudevan, R.K.; Choudhary, K.; Mehta, A.; Smith, R.; Kusne, G.; Tavazza, F.; Vlcek, L.; Ziatdinov, M.; Kalinin, S.V.; Hattrick-

Simpers, J. Materials Science in the Artificial Intelligence Age: High-Throughput Library Generation, Machine Learning, and a
Pathway from Correlations to the Underpinning Physics. MRS Commun. 2019, 9, 821–838. [CrossRef]

http://doi.org/10.1063/1.4946894
http://doi.org/10.1186/2193-9772-3-8
http://doi.org/10.1002/inf2.12028
http://doi.org/10.1016/j.calphad.2019.101728
http://doi.org/10.3390/computation8010015
http://doi.org/10.1002/adfm.201906041
http://doi.org/10.1016/j.artmed.2019.06.005
http://doi.org/10.1103/PhysRevFluids.4.100501
http://doi.org/10.3390/polym13162652
http://doi.org/10.1007/s10462-020-09876-9
http://doi.org/10.1038/s41524-019-0248-2
http://doi.org/10.3390/app11188548
http://doi.org/10.1109/ACCESS.2020.2976199
http://doi.org/10.1557/mrc.2019.95


Fluids 2022, 7, 116 21 of 25

15. Craven, G.T.; Lubbers, N.; Barros, K.; Tretiak, S. Machine Learning Approaches for Structural and Thermodynamic Properties of a
Lennard-Jones Fluid. J. Chem. Phys. 2020, 153, 104502. [CrossRef]

16. Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A.A.; Wu, Z.; Sun, Y.; Feng, L.; Chen, D.; Xiao, Z.; et al. Machine Learning-Assisted
Molecular Design and Efficiency Prediction for High-Performance Organic Photovoltaic Materials. Sci. Adv. 2019, 5, eaay4275.
[CrossRef]

17. Zhang, W.-W.; Noack, B.R. Artificial Intelligence in Fluid Mechanics. Acta Mech. Sin. 2022, 1–3. [CrossRef]
18. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving

Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
19. Papastamatiou, K.; Sofos, F.; Karakasidis, T.E. Machine Learning Symbolic Equations for Diffusion with Physics-Based Descrip-

tions. AIP Adv. 2022, 12, 025004. [CrossRef]
20. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]
21. Brunton, S.L. Applying Machine Learning to Study Fluid Mechanics. Acta Mech. Sin. 2022, 1–9. [CrossRef]
22. Jirasek, F.; Hasse, H. Perspective: Machine Learning of Thermophysical Properties. Fluid Phase Equilib. 2021, 549, 113206.

[CrossRef]
23. Arief, H.A.; Wiktorski, T.; Thomas, P.J. A Survey on Distributed Fibre Optic Sensor Data Modelling Techniques and Machine

Learning Algorithms for Multiphase Fluid Flow Estimation. Sensors 2021, 21, 2801. [CrossRef]
24. Pandey, S.; Schumacher, J.; Sreenivasan, K.R. A Perspective on Machine Learning in Turbulent Flows. J. Turbul. 2020, 21, 567–584.

[CrossRef]
25. Botu, V.; Ramprasad, R. Learning Scheme to Predict Atomic Forces and Accelerate Materials Simulations. Phys. Rev. B Condens.

Matter Mater. Phys. 2015, 92, 094306. [CrossRef]
26. Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev.

Lett. 2007, 98, 146401. [CrossRef] [PubMed]
27. Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann Generators: Sampling Equilibrium States of Many-Body Systems with Deep

Learning. Science 2019, 365, eaaw1147. [CrossRef] [PubMed]
28. Sofos, F.; Karakasidis, T.E.; Liakopoulos, A. Fluid Flow at the Nanoscale: How Fluid Properties Deviate from the Bulk. Nanosci.

Nanotechnol. Lett. 2013, 5, 457–460. [CrossRef]
29. Sofos, F.; Karakasidis, T.E.; Giannakopoulos, A.E.; Liakopoulos, A. Molecular Dynamics Simulation on Flows in Nano-Ribbed

and Nano-Grooved Channels. Heat Mass Transf./Waerme Stoffuebertragung 2016, 52, 153–162. [CrossRef]
30. Mueller, T.; Hernandez, A.; Wang, C. Machine Learning for Interatomic Potential Models. J. Chem. Phys. 2020, 152, 050902.

[CrossRef] [PubMed]
31. Krems, R.V. Bayesian Machine Learning for Quantum Molecular Dynamics. Phys. Chem. Chem. Phys. 2019, 21, 13392–13410.

[CrossRef]
32. Mishin, Y. Machine-Learning Interatomic Potentials for Materials Science. Acta Mater. 2021, 214, 116980. [CrossRef]
33. Veit, M.; Jain, S.K.; Bonakala, S.; Rudra, I.; Hohl, D.; Csányi, G. Equation of State of Fluid Methane from First Principles with

Machine Learning Potentials. J. Chem. Theory Comput. 2019, 15, 2574–2586. [CrossRef]
34. Peng, G.C.Y.; Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.;

Perdikaris, P.; et al. Multiscale Modeling Meets Machine Learning: What Can We Learn? Arch. Comput. Methods Eng. 2021, 28,
1017–1037. [CrossRef]

35. Tchipev, N.; Seckler, S.; Heinen, M.; Vrabec, J.; Gratl, F.; Horsch, M.; Bernreuther, M.; Glass, C.W.; Niethammer, C.; Hammer, N.;
et al. TweTriS: Twenty Trillion-Atom Simulation. Int. J. High Perform. Comput. Appl. 2019, 33, 838–854. [CrossRef]

36. Mortazavi, B.; Podryabinkin, E.V.; Roche, S.; Rabczuk, T.; Zhuang, X.; Shapeev, A.V. Machine-Learning Interatomic Potentials
Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures. Mater.
Horiz. 2020, 7, 2359–2367. [CrossRef]

37. Holland, D.M.; Lockerby, D.A.; Borg, M.K.; Nicholls, W.D.; Reese, J.M. Molecular Dynamics Pre-Simulations for Nanoscale
Computational Fluid Dynamics. Microfluid. Nanofluid. 2015, 18, 461–474. [CrossRef]

38. Lin, C.; Li, Z.; Lu, L.; Cai, S.; Maxey, M.; Karniadakis, G.E. Operator Learning for Predicting Multiscale Bubble Growth Dynamics.
J. Chem. Phys. 2021, 154, 104118. [CrossRef]

39. Wang, Y.; Ouyang, J.; Wang, X. Machine Learning of Lubrication Correction Based on GPR for the Coupled DPD–DEM Simulation
of Colloidal Suspensions. Soft Matter 2021, 17, 5682–5699. [CrossRef]

40. Sofos, F.; Chatzoglou, E.; Liakopoulos, A. An Assessment of SPH Simulations of Sudden Expansion/Contraction 3-D Channel
Flows. Comput. Part. Mech. 2022, 9, 101–115. [CrossRef]

41. Albano, A.; Alexiadis, A. A Smoothed Particle Hydrodynamics Study of the Collapse for a Cylindrical Cavity. PLoS ONE 2020, 15,
e0239830. [CrossRef] [PubMed]

42. Bai, J.; Zhou, Y.; Rathnayaka, C.M.; Zhan, H.; Sauret, E.; Gu, Y. A Data-Driven Smoothed Particle Hydrodynamics Method for
Fluids. Eng. Anal. Bound. Elem. 2021, 132, 12–32. [CrossRef]

43. Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; De Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of
Coarse-Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5, 755–767. [CrossRef]

http://doi.org/10.1063/5.0017894
http://doi.org/10.1126/sciadv.aay4275
http://doi.org/10.1007/s10409-021-01154-3
http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1063/5.0082147
http://doi.org/10.1146/annurev-fluid-010719-060214
http://doi.org/10.1007/s10409-021-01143-6
http://doi.org/10.1016/j.fluid.2021.113206
http://doi.org/10.3390/s21082801
http://doi.org/10.1080/14685248.2020.1757685
http://doi.org/10.1103/PhysRevB.92.094306
http://doi.org/10.1103/PhysRevLett.98.146401
http://www.ncbi.nlm.nih.gov/pubmed/17501293
http://doi.org/10.1126/science.aaw1147
http://www.ncbi.nlm.nih.gov/pubmed/31488660
http://doi.org/10.1166/nnl.2013.1555
http://doi.org/10.1007/s00231-015-1601-8
http://doi.org/10.1063/1.5126336
http://www.ncbi.nlm.nih.gov/pubmed/32035452
http://doi.org/10.1039/C9CP01883B
http://doi.org/10.1016/j.actamat.2021.116980
http://doi.org/10.1021/acs.jctc.8b01242
http://doi.org/10.1007/s11831-020-09405-5
http://doi.org/10.1177/1094342018819741
http://doi.org/10.1039/D0MH00787K
http://doi.org/10.1007/s10404-014-1443-6
http://doi.org/10.1063/5.0041203
http://doi.org/10.1039/D1SM00250C
http://doi.org/10.1007/s40571-021-00396-z
http://doi.org/10.1371/journal.pone.0239830
http://www.ncbi.nlm.nih.gov/pubmed/32991631
http://doi.org/10.1016/j.enganabound.2021.06.029
http://doi.org/10.1021/acscentsci.8b00913


Fluids 2022, 7, 116 22 of 25

44. Wang, W.; Gómez-Bombarelli, R. Coarse-Graining Auto-Encoders for Molecular Dynamics. npj Comput. Mater. 2019, 5, 125.
[CrossRef]

45. Scherer, C.; Scheid, R.; Andrienko, D.; Bereau, T. Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids. J.
Chem. Theory Comput. 2020, 16, 3194–3204. [CrossRef] [PubMed]

46. Ye, H.; Xian, W.; Li, Y. Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities,
and Challenges. ACS Omega 2021, 6, 1758–1772. [CrossRef] [PubMed]

47. Moradzadeh, A.; Aluru, N.R. Transfer-Learning-Based Coarse-Graining Method for Simple Fluids: Toward Deep Inverse
Liquid-State Theory. J. Phys. Chem. Lett. 2019, 10, 1242–1250. [CrossRef] [PubMed]

48. Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
361–390. [CrossRef] [PubMed]

49. Giannakopoulos, A.E.; Sofos, F.; Karakasidis, T.E.; Liakopoulos, A. A Quasi-Continuum Multi-Scale Theory for Self-Diffusion and
Fluid Ordering in Nanochannel Flows. Microfluid. Nanofluid. 2014, 17, 1011–1023. [CrossRef]

50. Allers, J.P.; Garzon, F.H.; Alam, T.M. Artificial Neural Network Prediction of Self-Diffusion in Pure Compounds over Multiple
Phase Regimes. Phys. Chem. Chem. Phys. 2021, 23, 4615–4623. [CrossRef] [PubMed]

51. De Pablo, J.J.; Jackson, N.E.; Webb, M.A.; Chen, L.Q.; Moore, J.E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D.G.;
Toberer, E.S.; et al. New Frontiers for the Materials Genome Initiative. Npj Comput. Mater. 2019, 5, 41. [CrossRef]

52. Jakob, J.; Gross, M.; Günther, T. A fluid flow data set for machine learning and its application to neural flow map interpolation.
IEEE Trans. Vis. Comput. Graph. 2020, 27, 1279–1289. [CrossRef]

53. Curtarolo, S.; Setyawan, W.; Hart, G.L.W.; Jahnatek, M.; Chepulskii, R.V.; Taylor, R.H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.; et al.
AFLOW: An Automatic Framework for High-Throughput Materials Discovery. Comput. Mater. Sci. 2012, 58, 218–226. [CrossRef]

54. Draxl, C.; Scheffler, M. NOMAD: The FAIR Concept for Big Data-Driven Materials Science. MRS Bull. 2018, 43, 676–682.
[CrossRef]

55. Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The
Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [CrossRef]

56. Wang, W.; Xu, M.; Xu, X.; Zhou, W.; Shao, Z. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical
Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 136–152. [CrossRef]

57. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017; ISBN 9780198803195.
58. Allers, J.P.; Harvey, J.A.; Garzon, F.H.; Alam, T.M. Machine Learning Prediction of Self-Diffusion in Lennard-Jones Fluids. J. Chem.

Phys. 2020, 153, 034102. [CrossRef]
59. Udrescu, S.-M.; Tan, A.; Feng, J.; Neto, O.; Wu, T.; Tegmark, M. AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting

Graph Modularity. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver,
BC, Canada, 6–12 December 2020; pp. 1–12.

60. Ye, H.F.; Wang, J.; Zheng, Y.G.; Zhang, H.W.; Chen, Z. Machine Learning for Reparameterization of Four-Site Water Models:
TIP4P-BG and TIP4P-BGT. Phys. Chem. Chem. Phys. 2021, 23, 10164–10173. [CrossRef]

61. Liu, Y.; Hong, W.; Cao, B. Machine Learning for Predicting Thermodynamic Properties of Pure Fluids and Their Mixtures. Energy
2019, 188, 116091. [CrossRef]

62. Boobier, S.; Hose, D.R.J.; Blacker, A.J.; Nguyen, B.N. Machine Learning with Physicochemical Relationships: Solubility Prediction
in Organic Solvents and Water. Nat. Commun. 2020, 11, 5753. [CrossRef]

63. Wang, K.; Xu, H.; Yang, C.; Qiu, T. Machine Learning-Based Ionic Liquids Design and Process Simulation for CO2 Separation
from Flue Gas. Green Energy Environ. 2021, 6, 432–443. [CrossRef]

64. Saldana, D.A.; Starck, L.; Mougin, P.; Rousseau, B.; Ferrando, N.; Creton, B. Prediction of Density and Viscosity of Biofuel
Compounds Using Machine Learning Methods. Energy Fuels 2012, 26, 2416–2426. [CrossRef]

65. Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D. Robust FCC Solute Diffusion Predictions from
Ab-Initio Machine Learning Methods. Comput. Mater. Sci. 2017, 134, 160–165. [CrossRef]

66. Amsallem, D.; Farhat, C. Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA J.
2008, 46, 1803–1813. [CrossRef]

67. Amsallem, D.; Deolalikar, S.; Gurrola, F.; Farhat, C. Model Predictive Control under Coupled Fluid-Structure Constraints Using a
Database of Reduced-Order Models on a Tablet. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference,
Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, San Diego, CA, USA, 24–27
June 2013.

68. Ooi, C.; Le, Q.T.; Dao, M.H.; Nguyen, V.B.; Nguyen, H.H.; Ba, T. Modeling Transient Fluid Simulations with Proper Orthogonal
Decomposition and Machine Learning. Int. J. Numer. Methods Fluids 2021, 93, 396–410. [CrossRef]

69. Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine Learning–Accelerated Computational Fluid
Dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [CrossRef] [PubMed]

70. Fukami, K.; Fukagata, K.; Taira, K. Assessment of Supervised Machine Learning Methods for Fluid Flows. Theor. Comput. Fluid
Dyn. 2020, 34, 497–519. [CrossRef]

71. Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel Physics-Informed Neural Networks via Domain Decomposition. J. Comput.
Phys. 2021, 447, 110683. [CrossRef]

http://doi.org/10.1038/s41524-019-0261-5
http://doi.org/10.1021/acs.jctc.9b01256
http://www.ncbi.nlm.nih.gov/pubmed/32282206
http://doi.org/10.1021/acsomega.0c05321
http://www.ncbi.nlm.nih.gov/pubmed/33521417
http://doi.org/10.1021/acs.jpclett.8b03872
http://www.ncbi.nlm.nih.gov/pubmed/30818949
http://doi.org/10.1146/annurev-physchem-042018-052331
http://www.ncbi.nlm.nih.gov/pubmed/32092281
http://doi.org/10.1007/s10404-014-1390-2
http://doi.org/10.1039/D0CP06693A
http://www.ncbi.nlm.nih.gov/pubmed/33620369
http://doi.org/10.1038/s41524-019-0173-4
http://doi.org/10.1109/TVCG.2020.3028947
http://doi.org/10.1016/j.commatsci.2012.02.005
http://doi.org/10.1557/mrs.2018.208
http://doi.org/10.1063/1.4812323
http://doi.org/10.1002/anie.201900292
http://doi.org/10.1063/5.0011512
http://doi.org/10.1039/D0CP05831A
http://doi.org/10.1016/j.energy.2019.116091
http://doi.org/10.1038/s41467-020-19594-z
http://doi.org/10.1016/j.gee.2020.12.019
http://doi.org/10.1021/ef3001339
http://doi.org/10.1016/j.commatsci.2017.03.052
http://doi.org/10.2514/1.35374
http://doi.org/10.1002/fld.4888
http://doi.org/10.1073/pnas.2101784118
http://www.ncbi.nlm.nih.gov/pubmed/34006645
http://doi.org/10.1007/s00162-020-00518-y
http://doi.org/10.1016/j.jcp.2021.110683


Fluids 2022, 7, 116 23 of 25

72. Zhu, Q.; Liu, Z.; Yan, J. Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid
Dynamics Using Physics-Informed Neural Networks. Comput. Mech. 2021, 67, 619–635. [CrossRef]

73. Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-Driven Discovery of Partial Differential Equations. Sci. Adv. 2017, 3,
e1602614. [CrossRef] [PubMed]

74. Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualiza-
tions. Science 2020, 367, 1026–1030. [CrossRef]

75. Wan, Z.Y.; Sapsis, T.P. Machine Learning the Kinematics of Spherical Particles in Fluid Flows. J. Fluid Mech. 2018, 857, R2.
[CrossRef]

76. Seong, Y.; Park, C.; Choi, J.; Jang, I. Surrogate Model with a Deep Neural Network to Evaluate Gas–Liquid Flow in a Horizontal
Pipe. Energies 2020, 13, 968. [CrossRef]

77. Rastogi, A.; Fan, Y. Machine Learning Augmented Two-Fluid Model for Segregated Flow. Fluids 2022, 7, 12. [CrossRef]
78. Hanna, B.N.; Dinh, N.T.; Youngblood, R.W.; Bolotnov, I.A. Machine-Learning Based Error Prediction Approach for Coarse-Grid

Computational Fluid Dynamics (CG-CFD). Prog. Nucl. Energy 2020, 118, 103140. [CrossRef]
79. Amini, S.; Mohaghegh, S. Application of Machine Learning and Artificial Intelligence in Proxy Modeling for Fluid Flow in Porous

Media. Fluids 2019, 4, 126. [CrossRef]
80. Tian, J.; Qi, C.; Sun, Y.; Yaseen, Z.M.; Pham, B.T. Permeability Prediction of Porous Media Using a Combination of Computational

Fluid Dynamics and Hybrid Machine Learning Methods. Eng. Comput. 2021, 37, 3455–3471. [CrossRef]
81. Kutz, J.N. Deep Learning in Fluid Dynamics. J. Fluid Mech. 2017, 814, 1–4. [CrossRef]
82. Li, B.; Yang, Z.; Zhang, X.; He, G.; Deng, B.-Q.; Shen, L. Using Machine Learning to Detect the Turbulent Region in Flow Past a

Circular Cylinder. J. Fluid Mech. 2020, 905, A10. [CrossRef]
83. Pathak, J.; Mustafa, M.; Kashinath, K.; Motheau, E.; Kurth, T.; Day, M. Using Machine Learning to Augment Coarse-Grid

Computational Fluid Dynamics Simulations. arXiv 2020, arXiv:2010.00072.
84. Dubois, P.; Gomez, T.; Planckaert, L.; Perret, L. Machine Learning for Fluid Flow Reconstruction from Limited Measurements. J.

Comput. Phys. 2022, 448, 110733. [CrossRef]
85. Ghasemi, F.; Mehridehnavi, A.; Pérez-Garrido, A.; Pérez-Sánchez, H. Neural Network and Deep-Learning Algorithms Used in

QSAR Studies: Merits and Drawbacks. Drug Discov. Today 2018, 23, 1784–1790. [CrossRef] [PubMed]
86. Vinuesa, R.; Brunton, S.L. The Potential of Machine Learning to Enhance Computational Fluid Dynamics. arXiv 2021,

arXiv:2110.02085.
87. Zhang, J.; Lei, Y.-K.; Zhang, Z.; Chang, J.; Li, M.; Han, X.; Yang, L.; Yang, Y.I.; Gao, Y.Q. A Perspective on Deep Learning for

Molecular Modeling and Simulations. J. Phys. Chem. A 2020, 124, 6745–6763. [CrossRef] [PubMed]
88. Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge Regression: Some Simulations. Commun. Stat. 1975, 4, 105–123. [CrossRef]
89. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67.

[CrossRef]
90. Gareth, J.D.W.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY,

USA, 2013.
91. Bibas, K.; Fogel, Y.; Feder, M. A New Look at an Old Problem: A Universal Learning Approach to Linear Regression. In

Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2304–2308.
92. Zhao, J.; Zhao, C.; Zhang, F.; Wu, G.; Wang, H. Water Quality Prediction in the Waste Water Treatment Process Based on Ridge

Regression Echo State Network. IOP Conf. Ser. Mater. Sci. Eng. 2018, 435, 012025. [CrossRef]
93. Wang, T.; Zhang, K.; Thé, J.; Yu, H. Accurate Prediction of Band Gap of Materials Using Stacking Machine Learning Model.

Comput. Mater. Sci. 2022, 201, 110899. [CrossRef]
94. Mansour, R.F. Evolutionary Computing Enriched Ridge Regression Model for Craniofacial Reconstruction. Multimed. Tools Appl.

2020, 79, 22065–22082. [CrossRef]
95. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
96. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,

USA, 2001.
97. Moon, C.; Mitchell, S.A.; Heath, J.E.; Andrew, M. Statistical Inference Over Persistent Homology Predicts Fluid Flow in Porous

Media. Water Resour. Res. 2019, 55, 9592–9603. [CrossRef]
98. Behesht Abad, A.R.; Tehrani, P.S.; Naveshki, M.; Ghorbani, H.; Mohamadian, N.; Davoodi, S.; Aghdam, S.K.; Moghadasi, J.;

Saberi, H. Predicting Oil Flow Rate through Orifice Plate with Robust Machine Learning Algorithms. Flow Meas. Instrum. 2021,
81, 102047. [CrossRef]

99. Callaham, J.L.; Maeda, K.; Brunton, S.L. Robust Flow Reconstruction from Limited Measurements via Sparse Representation.
Phys. Rev. Fluids 2019, 4, 103907. [CrossRef]

100. Li, X.; Zhou, J.; Li, H.; Zhang, S.; Chen, Y. Computational Intelligent Methods for Predicting Complex Ithologies and Multiphase
Fluids. Pet. Explor. Dev. 2012, 39, 261–267. [CrossRef]

101. Chen, H.; Zhang, C.; Jia, N.; Duncan, I.; Yang, S.; Yang, Y. A Machine Learning Model for Predicting the Minimum Miscibility
Pressure of CO2 and Crude Oil System Based on a Support Vector Machine Algorithm Approach. Fuel 2021, 290, 120048.
[CrossRef]

http://doi.org/10.1007/s00466-020-01952-9
http://doi.org/10.1126/sciadv.1602614
http://www.ncbi.nlm.nih.gov/pubmed/28508044
http://doi.org/10.1126/science.aaw4741
http://doi.org/10.1017/jfm.2018.797
http://doi.org/10.3390/en13040968
http://doi.org/10.3390/fluids7010012
http://doi.org/10.1016/j.pnucene.2019.103140
http://doi.org/10.3390/fluids4030126
http://doi.org/10.1007/s00366-020-01012-z
http://doi.org/10.1017/jfm.2016.803
http://doi.org/10.1017/jfm.2020.725
http://doi.org/10.1016/j.jcp.2021.110733
http://doi.org/10.1016/j.drudis.2018.06.016
http://www.ncbi.nlm.nih.gov/pubmed/29936244
http://doi.org/10.1021/acs.jpca.0c04473
http://www.ncbi.nlm.nih.gov/pubmed/32786668
http://doi.org/10.1080/03610927508827232
http://doi.org/10.1080/00401706.1970.10488634
http://doi.org/10.1088/1757-899X/435/1/012025
http://doi.org/10.1016/j.commatsci.2021.110899
http://doi.org/10.1007/s11042-017-5015-0
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1029/2019WR025171
http://doi.org/10.1016/j.flowmeasinst.2021.102047
http://doi.org/10.1103/PhysRevFluids.4.103907
http://doi.org/10.1016/S1876-3804(12)60041-X
http://doi.org/10.1016/j.fuel.2020.120048


Fluids 2022, 7, 116 24 of 25

102. Samadianfard, S.; Jarhan, S.; Salwana, E.; Mosavi, A.; Shamshirband, S.; Akib, S. Support Vector Regression Integrated with Fruit
Fly Optimization Algorithm for River Flow Forecasting in Lake Urmia Basin. Water 2019, 11, 1934. [CrossRef]

103. Morita, Y.; Rezaeiravesh, S.; Tabatabaei, N.; Vinuesa, R.; Fukagata, K.; Schlatter, P. Applying Bayesian Optimization with Gaussian
Process Regression to Computational Fluid Dynamics Problems. J. Comput. Phys. 2022, 449, 110788. [CrossRef]

104. Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and
Molecules. Chem. Rev. 2021, 121, 10073–10141. [CrossRef] [PubMed]

105. Lee, T.R.; Wood, W.T.; Phrampus, B.J. A Machine Learning (KNN) Approach to Predicting Global Seafloor Total Organic Carbon.
Glob. Biogeochem. Cycles 2019, 33, 37–46. [CrossRef]

106. Rahman, J.; Ahmed, K.S.; Khan, N.I.; Islam, K.; Mangalathu, S. Data-Driven Shear Strength Prediction of Steel Fiber Reinforced
Concrete Beams Using Machine Learning Approach. Eng. Struct. 2021, 233, 111743. [CrossRef]

107. Adithiyaa, T.; Chandramohan, D.; Sathish, T. Optimal Prediction of Process Parameters by GWO-KNN in Stirring-Squeeze
Casting of AA2219 Reinforced Metal Matrix Composites. Mater. Today Proc. 2020, 21, 1000–1007. [CrossRef]

108. Khosravi, P.; Vergari, A.; Choi, Y.; Liang, Y.; Van den Broeck, G. Handling Missing Data in Decision Trees: A Probabilistic
Approach. In Proceedings of the The Art of Learning with Missing Values Workshop at ICML (Artemiss), Online, 17 July 2020.

109. Winkler, D.; Haltmeier, M.; Kleidorfer, M.; Rauch, W.; Tscheikner-Gratl, F. Pipe Failure Modelling for Water Distribution Networks
Using Boosted Decision Trees. Struct. Infrastruct. Eng. 2018, 14, 1402–1411. [CrossRef]

110. Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent Advances and Applications of Machine Learning in Solid-State
Materials Science. npj Comput. Mater. 2019, 5, 83. [CrossRef]

111. Sofos, F.; Karakasidis, T.E. Nanoscale Slip Length Prediction with Machine Learning Tools. Sci. Rep. 2021, 11, 12520. [CrossRef]
112. Wei, Z.; Yu, J.; Lu, Y.; Han, J.; Wang, C.; Liu, X. Prediction of Diffusion Coefficients in Fcc, Bcc and Hcp Phases Remained Stable or

Metastable by the Machine-Learning Methods. Mater. Des. 2021, 198, 109287. [CrossRef]
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