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Abstract: Error in the method of regularized Stokeslets is highly dependent on the choice of the
blob or regularization function that is utilized to handle singularities in the flow. In this work,
we develop a general framework to choose regularizations at the level of the vector potential via
smoothing factors. We detail the derivation for radial smoothing factors and specify properties which
ensure that the solution is a regularized flow satisfying the incompressible Stokes equations. Error
analysis is completed for both the far-field flow (away from the location of the forces) as well as at the
location of the forces, relating our newly derived smoothing factors to commonly used blob functions
and moment conditions. When forces are on a surface, we extend the radial smoothing factor case
to the case of non-radial regularizations that are surface-oriented. We illustrate the utility of this
framework by computing the forward and inverse problems of a translating sphere using radial and
surface-oriented regularizations.

Keywords: regularized stokeslets; regularization error; smoothing factor; boundary integral methods

1. Introduction

There are many low Reynolds number biological flows at the microscale where
viscous forces dominate. Such examples include flows due to swimming bacteria or
sperm [1–4], those created within the cytoplasm of a living cell by molecular motors or
microtubules [5–9], as well as those within microfluidic devices [10,11]. In this regime,
when stresses are linearly related to strain, we assume that these flows are governed by the
incompressible Stokes equations, given by

µ∇2u−∇p + f = 0, (1a)

∇ · u = 0, (1b)

where µ is the fluid viscosity, u is the fluid velocity, p is the pressure, and f is the external
force density on the fluid. In this work, we restrict our focus to three-dimensional fluid
flows and assume µ = 1.

The fundamental solution to (1), known as a “Stokeslet”, represents the response of
an unbounded, otherwise quiescent fluid, to a singular point force F exerted at position y
with corresponding force density f = Fδ(x− y) [12,13]. Here, x represents a point within
the fluid, and δ is the Dirac delta distribution. Since (1) is linear, general Stokes flows
can be obtained by superposing Stokeslets distributed at different points throughout the
fluid domain and/or at domain boundaries. Utilization of the Stokeslet has led to many
pioneering studies on flagellar beating [14–16], as well as the development of slender body
theory [15,17]. In the case of an immersed structure in a flow, the force density f in (1) may
be a function of time and/or space; when point forces are concentrated on surfaces that are
not smooth, or curves in R3, the velocity is singular.

Many numerical approaches have been developed to approximate the flow due to
structures immersed in a fluid governed by (1). Boundary integral methods, such as the
boundary element method or boundary collocation methods, are particularly advantageous
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because they reduce computation of a flow in R3 to the evaluation of surface integrals on
the domain boundaries. One challenge, though, is that these integrals are singular, and
some effort must be expended to evaluate them properly [12,13]. The immersed boundary
(IB) method, though not limited to Stokes flows, was developed to handle immersed elastic
structures that deform in response to the flow and/or other conditions [18]. In the IB
method, regularized point forces on the (discretized) structure interact with a “background”
fluid; a moving Lagrangian grid and a fixed Eulerian grid are employed for the structure
and fluid, respectively. A major advantage of the IB method is that the Eulerian (fluid)
grid can be regular, and re-meshing of the fluid domain is therefore unnecessary when the
Lagrangian grid of the structure deforms.

The method of regularized Stokeslets (MRS) [19,20] draws from both the IB method
and classic boundary integral methods. It was developed to handle structures immersed in
a fluid with a Lagrangian grid, paralleling the IB method, but for applications governed
by the Stokes equations [19,20]. Like other methods in the boundary-integral family, the
MRS may be derived from the boundary integral form of the Stokes equations, where the
Stokeslet appears as the kernel. The approach of the MRS is to replace the singular Stokeslet
with a regularized approximation, so, similar to the IB method, forces exerted at boundary
points are regularized and spread into the fluid. Like other boundary-integral methods,
there is no need for a Eulerian grid for the fluid. The use of a regularized Stokeslet also
regularizes the singular boundary integrals that appear in boundary integral methods,
simplifying the treatment of these integrals.

There are several ways in which the Stokeslet may be regularized. For example, one
may replace the singular force density f = Fδ with f = Fφε, where φε is a mollifier
or “blob” function that spreads force over a small characteristic distance ε; a regularized
Stokeslet is given by the resulting solution to (1) [19,20]. Another method involves directly
multiplying the singular terms of the Stokeslet by appropriate smoothing factors [21,22];
flow properties such as incompressibility are not guaranteed with this approach, but
corrections can be derived.

The MRS has gained popularity for modeling structures immersed in a Stokesian flow
due to its relative ease of implementation. To date, the MRS has been effectively applied to a
wide range of applications such as sperm motility [23–25], bacterial motility [26], and other
cellular flows. Through the use of regularized image systems, the MRS can be adapted to
different types of fluid domains, including triply and doubly periodic domains, or domains
that are bounded by a plane-wall or a spherical boundary [27–32].

As with all numerical approaches, there are different types of errors that can accrue.
In the MRS, error accrues from quadrature rules for approximating the boundary integral,
force and structure discretizations, and time-stepping algorithms [19,30,33–35]. At the core
of the MRS is the choice of the blob function φε, the properties it satisfies, and the size of
the parameter ε that controls the size of the region to which the point force is spread. As an
example, a very popular blob function originally proposed by Cortez [19] is

φε(r) =
15ε4

8π(‖r‖2 + ε2)7/2 , (2)

where r = x− y measures position relative to the location of forcing y. The blob function
given by (2) is a radially symmetric function with infinite support that approximates
the Dirac delta distribution when ε is small. Since the spreading parameter ε controls
the region to which the force is spread, studies have been completed to understand the
relation between the discretization of immersed structures and the parameter ε for the blob
function φε in (2) [36]. Other studies have focused on derivations and properties of other
blob functions, including infinitely supported φε’s with algebraic decay and exponential
decay [34,37], as well as φε’s with compact support [28,34,37].

Accuracy of the MRS depends heavily on φε, which induces regularization error in
the computed velocity field with magnitude that is different close to (near-field) and far
away from (far-field) the structure or location of forces. The far-field regularization error is
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generally O(εn), where n is the order of the first non-vanishing moment of φε, excluding
the zeroth moment [20]. If φε has three planes of symmetry, then all odd moments vanish,
and the error is generally O(ε2). In the radially symmetric case, Zhao et al. [37] show that
the far-field error is dominated by a potential dipole whose strength is proportional to
the second moment of φε. A far-field correction canceling this potential dipole is derived,
leading to regularized Stokeslets with far-field error that decays at a rate similar to φε, and
this rate may be faster than algebraic. On the other hand, near-field regularization error is
O(ε) for a general blob function [20]. Corrections to this error have been derived via local
analysis of flow near the boundary [21,22,34]; specifically, near-field error can be reduced
to O(ε3) with a correction to the blob function, e.g., that given by (2) [34].

Here, instead of generating regularized Stokeslets by choosing a blob function φε, we
develop regularizations by appropriately smoothing potentials obtained from a Helmholtz
decomposition of the Stokeslet velocity field. Potentials derived via Helmholtz decomposi-
tion have often proved useful for decomposing Stokes flows for different purposes. For
example, Tran-Cong and Blake [38] express solutions to the Stokes equations in terms of
Papkovich–Neuber potentials, and this formulation has been utilized to construct formulas
for Stokes flows in a half space or in periodic domains [39,40]. The potentials that we use
are not Papkovich–Neuber potentials, but they do appear as intermediate quantities in the
derivation of the Papkovich–Neuber solutions to the Stokes equations [38,41].

For radially symmetric regularizations, we utilize a direct smoothing factor approach,
similar to Tlupova and Beale [22], but our formulation has the advantage that it automati-
cally ensures that fluid incompressibility is maintained. Far-field regularization error is
easily controlled; for smoothing factors that decay sufficiently quickly in the far field, we
find that the resulting blob functions have a second moment that vanishes automatically,
and explicit correction is not required as in Zhao et al. [37]. It is also straightforward to
derive regularized Stokeslets that satisfy certain near-field correction conditions, which
offer improved accuracy. Another advantage of our newly derived framework is that the
corresponding blob functions need not be radially symmetric, and we consider vector
potentials which generate regularized Stokeslets associated with an axisymmetric force
distribution. The orientation of these Stokeslets can be chosen to spread force predom-
inantly along the surface of a structure. We illustrate the utility of these approaches by
demonstrating how error can be reduced for the problem of a translating, rigid sphere
through different choices of smoothing factors. Both forward and inverse problems are
considered, where in the former case the surface traction on the sphere is known, but the
fluid velocity is not. In the inverse problem, the velocity of the structure is known, and we
seek the forces acting on the boundary.

2. Methods

At the heart of the method of regularized Stokeslets is the appropriate choice of
a regularization to ensure that flow velocities of structures are nonsingular and have a
controllable error that we can quantify. We first start by reviewing the singular fundamental
solution and the solution for an assumed regularized force. Our new approaches are then
presented for regularizing the biharmonic function at the vector potential level for both
radial and surface oriented (non-radial) regularizations.

2.1. The Stokeslet and Regularized Stokeslet

Let F be a point force at y with corresponding force density f (r) = Fδ(r) where
r = x− y. Restricting ourselves to r ∈ R3 where u(r) → 0 and p(r) → 0 as r → ∞, the
fundamental solution to (1) is called the Stokeslet and is given by

uS(r) = G(r) · F =
1

8π

(
I
r
+

rr
r3

)
· F, (3)

pS(r) = P(r) · F =
r

4πr3 · F, (4)
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where r = ‖r‖, and we have a quiescent flow in the absence of a point force. Noting that F
is arbitrary and that (1) is linear in F, the second-order velocity tensor field G and pressure
vector field P satisfy

∇2G−∇P + Iδ = 0, (5a)

∇ ·G = 0, (5b)

where I is the identity tensor.
As can be seen in (3), the solution is singular at r = 0, which is an issue that must

be overcome by any numerical method based on Stokeslets. The method of regularized
Stokeslets avoids this issue by utilizing a mollifier or blob function φε. This function is
generally taken to be a smooth and bounded function that approximates the Dirac delta
distribution δ, satisfying

lim
ε→0

φε(r) = δ(r) and
∫
R3

φε(r)dr = 1. (6)

We also require that φε satisfies the scaling property

φε(r) = ε−3φ1(r/ε), (7)

where φ1 is the blob function with ε = 1. A widely used φε is given in (2). Importantly, the
parameter ε controls the region over which the singularity is regularized; physically, one
may think of ε as the length scale over which the point force on the fluid at y is spread.
Given a regularized force density f (r) = Fφε(r) where we have a point force at y and
r = x− y, the corresponding regularized Stokeslet satisfies

∇2Gε −∇Pε + φε I = 0, (8a)

∇ ·Gε = 0. (8b)

Again, solving (8) for Gε and obtaining the regularized flow as uε = Gε · F gives an exact
solution for a given regularization of the forces.

A general Stokes flow u(x) can be approximated using regularized Stokeslets via
the boundary integral formulation of (1) [13,20,42]. Assume we have a solid structure
immersed in a fluid that does not change volume and that there are no (non-conservative)
external body forces acting on the fluid. Let ∂D denote the set of points on the fluid–solid
boundary. We can approximate the velocity at a point x as

u(x) ≈ uε(x) =
∫∫∫

y∈R3
u(x) φε(x− y)dV =

∫∫
y∈∂D

Gε(x− y) · q(y)dS, (9)

where the integral over the boundary ∂D is referred to as the single-layer potential, and q
is a surface force density. If the solid structure moves as a rigid body, q(y) is the negative
of the surface traction vector on the surface. The regularization error is the error incurred
by approximating u by its convolution with φε, denoted uε. Recall that, for general φε,
this error can be shown to be O(εn) at points far from ∂D, where n is the order of the first
nonvanishing moment of φε, and O(ε) at points near ∂D [20]. We introduce the boundary
integral equation given in (9) because we will exploit the idea of smoothing factors for
integrand kernels to explore regularizations with specified properties.

2.2. A Regularization Approach Utilizing the Vector Potential of the Stokeslet

To solve for the regularized Stokeslet Gε, the solution to (8a,b), we first take the
divergence of (8a). Then, using (8b), a Poisson equation for Pε is obtained,

∇2Pε = ∇φε.
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Applying the Laplace operator∇2 to both sides of (8a) and using the previous result shows
that Gε satisfies

∇4Gε = (∇∇− I∇2)φε. (10)

Similar to Cortez [19], we assume that our blob function φε (not necessarily radial) can be
written in terms of a scalar function Bε that satisfies

∇4Bε = −φε. (11)

Substituting (11) into (10) and solving for Gε gives

Gε = (I∇2 −∇∇)Bε + BH ,

where BH is an arbitrary second-order-tensor satisfying ∇4BH(r) = 0 for all x ∈ R3.
However, since we require Gε to vanish as r → ∞ (where r = ‖x− y‖), BH must also vanish,
since regular solutions to ∇4BH = 0 are either constant or diverge as r → ∞. Therefore,

Gε = (I∇2 −∇∇)Bε, (12)

and we can use the identity (∇∇− I∇2)B = ∇×∇× (IB), to rewrite (12) as

Gε = ∇× Aε (13)

where Aε is given by
Aε = −∇× (IBε) = −ε ·∇Bε (14)

and ε is the permutation tensor. Equation (13) follows from the Helmholtz decomposition
of the divergence-free vector field Gε · F for some force F. Thus, we refer to Aε as the
“vector potential” of Gε. We highlight that neither of the “potentials” Bε nor Aε are unique
for a given regularization of the Stokeslet Gε. For example, an arbitrary curl-free vector
field may be added to Aε without changing the form of Gε.

We now consider a particular solution to (11) in the limit ε → 0, i.e., with φε = −δ,
given by B(r) = r/8π. This solution can be used to derive the singular Stokeslet using (12)
with φε = δ [13]. Using (14), the vector potential A derived from B is given by

A(r) = −ε ·∇B = − ε · r
8πr

. (15)

Though A(r) is bounded, it is undefined at the origin because ∇B = r/8πr fails to exist
there, leading to singular terms in the corresponding velocity field in (3).

This observation suggests that generating a regularized Stokeslet can be accom-
plished by first regularizing the vector potential Aε(r) and then applying (13). We reg-
ularized A by replacing ∇B in (15) with a smoothed approximation ∇Bε that is de-
fined everywhere and satisfies limr→∞[∇Bε(r)−∇B(r)] = 0. We do not strictly require
limr→∞[Bε(x)− B(x)] = 0 because we may add any constant to Bε without affecting the
corresponding form of Gε. Once Bε is selected, we may generate a corresponding regular-
ized Stokeslet according to (13) and (14).

An advantage of this approach is that the resulting regularized Stokeslet will auto-
matically be divergence free, which is not necessarily true if the singular factors of (3) are
considered separately. Moreover, we need not restrict ourselves to radial regularizations,
and we may therefore consider surface-oriented distributions. One may also solve (8) using
a particular choice of φε, but closed-form solutions may not be available, especially if one
considers non-radial choices of φε.
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2.3. Radially Symmetric Regularizations
2.3.1. Formulation of Smoothing Factors

Radial regularizations, those which are associated with a radially symmetric blob
function, are by far the simplest and most common type used in the MRS. If we assume
that Bε is radially symmetric, we find from applying the chain rule to (14) that

Aε(r) = −
ε · r

r
dBε(r)

dr
= 8πA(r)

dBε(r)
dr

, (16)

where, in the last equality, we have recognized the appearance of the singular vector
potential A given in (15). This observation suggests letting sε(r) = 8π dBε/dr, where sε is
a “smoothing factor” that suitably regularizes A and only depends on r = ‖r‖. Using the
smoothing factor, we can rewrite Aε as

Aε(r) = −
ε · r
8πr

sε(r). (17)

Substituting (17) into (13) gives the regularized Stokeslset in terms of sε as

8πGε(r) = h1(ε; r) I + h3(ε; r) rr, (18)

where

h1(ε; r) =
1
r

d(rsε)

dr
and h3(ε; r) = −1

r
d(r−1sε)

dr
.

The subscripts are indicative of the rates at which h1 and h3 decay as r → ∞, which are r−1

and r−3, respectively. Using (11), φε can be written in terms of sε as

8πφε(r) = −∇2∇ ·
( r

r
sε(r)

)
=

d3sε

dr3 −
4
r

d2sε

dr2 . (19)

There are properties that the smoothing factor sε must satisfy so that, when used
in (18), it produces a regularized Stokeslet that is suitable for use with the MRS. A suitable
regularization is one in which Gε is bounded everywhere (including at r = 0), approximates
G for r � ε, and which has an associated blob function φε that satisfies (6). The necessary
properties are stated by the following theorem:

Theorem 1. Let the smoothing factor sε ∈ C3+k for k > 0 be a function that satisfies the
following properties:

sε(r) = s1(r/ε), (20a)

s1(r) = s′′1 (r) = O(rm) for m ≥ 1 as r → 0, (20b)

lim
r→∞

s1(r) = 1, (20c)

where the primes indicate differentiation. Then, sε gives a regularized Stokeslet that is suitable for
the MRS by satisfying the following criteria:

1. The regularized velocity field scales as Gε(r) = ε−1G1(r/ε) and blob function scales accord-
ing to (7).

2. The regularized velocity field Gε is bounded and the blob function φε is also bounded.
3. φε integrates to unity over R3, as required by (6).

Proof. Equation (20a) is a scaling property which guarantees that the blob function φε

obeys the related scaling property (7), as can be seen by substituting (20a) into (19). The
similar scaling property of Gε follows from substituting (20a) into (18). That s and s′′ vanish
at a linear rate as r → 0, as required by (20b), ensuring that Gε and φε are bounded at the
origin, which can be shown by examining (18) and (19) in the limit of r → 0. In addition,
Gε and φε are bounded and continuous for r > 0 since we have assumed that sε is bounded
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and has continuous derivatives up to the third order. Proof that φε integrates to unity
is contained within Appendix A, where we relate the moments of φε to sε. In particular,
from (A4), we find that φε integrates to unity as long as the properties of Theorem 1 are
satisfied.

2.3.2. Error Analysis

At this point, there are a large number of smoothing functions sε that could be utilized
that satisfy the three properties given in (20). We would like to choose sε such that the
effect of the regularization error is as small as possible. We define the regularization error
of the Stokeslet velocity field as Eε = G−Gε, which is found from (18) to be

Eε(r) = [1− sε(r)]G(r) +
s′ε(r)
8π

(
I − rr

r2

)
, (21)

where, as we recall, G is the singular Stokeslet.
The far-field regularization error is the error at points where r � ε, far from the point

of forcing. From (18), we find that the magnitude of Eε for fixed r � ε simply mirrors the
rate at which 1− sε vanishes for fixed r as ε→ 0. Due to (20a), 1− sε and s′ε vanish at similar
rates; if 1− sε(r) = 1− s1(r/ε) = O(εn) for fixed r � ε, then s′ε(r) = ε−1s′1(r/ε) = O(εn)
too, since s′1(r/ε) = O(εn+1). A similar fact holds if 1− sε(r) vanishes at an exponential
rate, in which case Eε represents an exponentially small correction for r � ε. In principle,
one could also define a smoothing factor that is exactly unity beyond a distance ε, in
which case Gε = G for r � ε and the far-field error vanishes exactly. In this case, the
corresponding blob function will have compact support on a ball of size ε according to (19).
Others have dealt with compactly supported blobs [28,34,37], and we restrict ourselves to
blobs with infinite support.

A detailed far-field error analysis by Zhao et al. [37] of the flows produced by general
blob functions φε shows that a potential dipole generally dominates the error for r � ε; this
error is O(ε2) regardless of how quickly φε decays. To achieve better accuracy, an explicit
correction is needed to eliminate the potential dipole contribution, with the corrected blob
having a vanishing second moment. In our framework, an explicit far-field correction is
unnecessary; as shown in (A4) in Appendix A, the second moment of φε vanishes identically
whenever 1− sε(r) vanishes at a sufficient rate. In particular, we find from (A2) that, if

1− sε(r) = O(ε2+α) (22)

where α > 0, then contributions to Eε that are O(ε2) or larger are filtered out.
Equation (21) describes the error for a single regularized Stokeslet at some point in the

fluid, but we would also like to know the error in the global velocity field u(x) produced by
the regularized boundary integral equation given in (9). This equation produces an exact
result when ε→ 0 and Gε is essentially replaced by G. Since the singular Stokeslet is given
by “adding back” the error term in (21) to the regularized Stokeslet, G = Gε + Eε, we find
that the error in the velocity field associated with a known q is

eε(x) = u(x)− uε(x) =
∫∫

y∈∂D
Eε(x− y) · q(y)dS. (23)

At points near the boundary, near-field regularization error dominates eε and is known
to generally be O(ε) [20]. However, (21) does not yield useful information about the near-
field error due to the singular nature of Gε. Thus, it is necessary to perform a local analysis
of the velocity error given in (23) at points near the boundary, as is detailed in several
previous works [21,22,34,43–45]. We keep our discussion of this correction brief and restrict
our attention to eε for points exactly on the boundary, since we will find this helpful in
accurately computing the drag on a rigid sphere. Since the kernel Eε(r) of (23) is highly
localized, one may expand the integrand in (23) using a local set of coordinates for a chosen
point y = y0 ∈ ∂D centered on a small patch on the boundary. Integration over a radial set
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of coordinates ($, ϑ) in the pre-image space, where y0 = y|$=0, yields the leading terms of
the velocity error as

eε =
ε

8π

∫ 2π

0

∫ ∞

0
[1− s1($)](I + $̂$̂) · q(y0)d$ dϑ

+
ε

8π

∫ 2π

0

∫ ∞

0
$s′1($)(I − $̂$̂) · q(y0)d$ dϑ + O(εmin (3,β)),

(24)

where we assume 1− sε(r) is O(εβ) for β > 0 as ε→ 0. All of the angular dependence of
the integrands on ϑ in (24) is contained in the radial unit vector $̂. Factoring the nested
integrals, we see that the O(ε) contributions to eε vanish to O(ε3) at y = y0 if sε satisfies
the additional property ∫ ∞

0
[1− sε($)]d$ =

∫ ∞

0
$s′ε($)d$ = 0. (25)

Note that the two integrals above are actually equivalent; one can show this fact by integrat-
ing the second integral by parts and using the properties of the smoothing factor (20). The
near error field analysis of Nguyen and Cortez [34] produced a similar correction condition
that

∫ ∞
0 $3φε($)d$ = 0. Indeed, this condition can be shown to be equivalent to (25) by

using (A3). Note that (25) is purely a property of the smoothing factor and does not depend
on the geometry of the boundary.

We now have a framework to generate several different smoothing factors sε that result
in regularized fluid flows with known error properties. In Section 3.1, we demonstrate how
this framework leads to several useful regularized Stokeslets that have already appeared in
the literature and also formulate several new ones that perform well in accurately resolving
the drag on a translating sphere. We now develop a related framework for regularizations
that have symmetry about an axis but are not radially symmetric.

2.4. Surface-Oriented Regularizations

The method of regularized Stokeslets most commonly employs radial regularizations,
which distribute force evenly in all directions at each discretization point. Regularized
Stokeslets associated with non-radial distributions of force density (blob functions) have
been employed much less frequently. Cortez [46] considered the use of “Stokeslet seg-
ments”, non-radially regularized Stokeslets derived by continuously distributing a radially
regularized Stokeslet along a line segment with a linearly varying force. In the case of a
rigidly translating slender rod, Stokeslet segments are shown to produce lower error in
the no-slip boundary condition placed on the centerline of the rod as well as improved
agreement in the computed drag with slender body theory. Tyrrell et al. [47] considered
“Stokeslet rings” for use with axisymmetric bodies, which, similar to Stokeslet segments,
distribute regularized forces along a circle. Stokeslet segments and Stokeslet rings are
advantageous because the forces are in some sense distributed more evenly along the
boundary of the structure (and hence the fluid domain). Compared to the standard method
employing radial regularizations, these modified distributions of forces on segments and
rings reduce the discretization error of (9), where the “exact” surface force density q(y)
typically varies continuously along points y on the boundary of the structure ∂D.

Here, we introduce a different modification to the method of regularized Stokeslets
guided by similar intuition but based on using non-radial regularized Stokeslets that are ori-
ented along the surface normal of the structure boundary in the fluid at each discretization
point. We see from (9) that, for a given point on the fluid boundary, force is spread locally
over a plane normal to the boundary rather than isotropically. This observation suggests
using a regularization that spreads force more widely along this plane (along the boundary)
than normal to it (away from the boundary). Therefore, we consider an axisymmetric (but
non-radially symmetric) regularization about a line which passes through a point on the
surface and is parallel to the surface normal at that point. Thus, the regularized Stokeslet
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has an orientation that varies from point to point and coincides with the orientation of
the boundary.

In Section 2.3, we illustrated how we could generate regularized Stokeslets with
radial φε by multiplying the singular vector potential given by (14) by a smoothing factor.
Unfortunately, we cannot apply exactly the same approach in the non-radial case; while
the vector potential still exists according to (14), it is more difficult to regularize directly
without violating (8a) by inducing a forcing term that is not of the form φε I. Recall
that the smoothing factor arose in (17) as sε = dBε/dr, where Bε is assumed to be radially
symmetric. Our approach in this case will be to develop an approximation Bε to B, where Bε

is not necessarily radially symmetric, such that the associated regularized flow is bounded
and approximates the singular Stokeslet as ε→ 0. This will require that Bε be sufficiently
smooth. We also require that the associated blob function is an approximate Dirac delta
distribution. To this end, we employ the following theorem.

Theorem 2. Suppose that the biharmonic potential Bε obeys the scaling property

Bε(r) = εBε(r/ε) (26)

and satisfies
lim
ε→0

(I∇2 −∇∇)[Bε − B] = lim
ε→0

Gε −G = 0, (27)

where the first equality follows from (12) and B(r) = r/8π. Additionally, suppose that
Bε ∈ Ck for k ≥ 5. Then, Gε, as given from Bε by (12), is a bounded, Ck−2 approximation
to the singular Stokeslet, and φε, given by (11), satisfies the properties expected of a blob function,
given by (6) and (7).

Proof. Plugging (26) into (11) renders a blob function that satisfies the scaling property
given by (7). Then, we can show that φε satisfies (6) as follows. Taking the trace of both
sides of (10) yields

φε = −1
2
∇2 tr Gε. (28)

Since φε is continuously differentiable, we can integrate (28) over a volume VR that contains
all points within a sphere of radius r = R from the origin and then apply the divergence
theorem to the right-hand side to give∫

r∈VR

φε(r)dV = −1
2

∫
r∈∂VR

(n̂ ·∇) tr Gε(r)dS, (29)

where n̂ is the outward facing unit normal vector of ∂VR. Taking the limit as ε→ 0 of (29)
and using (6), φε is replaced by δ and Gε with G in (29), giving the identity∫

r∈VR

δ(r)dV = −1
2

∫
r∈∂VR

(n̂ ·∇) tr G(r)dA = 1. (30)

Now, for small but finite ε, we may consider (29) in the limit R → ∞ of (29). Since
the difference between Gε(r) and G(r) becomes arbitrarily small as r/ε → ∞, we may
replace Gε on the right-hand side of (29) by G to within an arbitrarily small error. Then,
comparing (30) and (29) and taking the integrals to be over R3 shows that φε satisfies (6).

While there are a large number of potential choices for Bε that will produce suitably
regularized flows associated with non-radial blob functions, we focus on one example that
possesses a single axis of symmetry, assumed here to be the z-axis, and distributes more
force along the plane normal to the axis than along the axis. We start by letting

Ba(r) =
1

16π

(√
z2 + (ρ− a)2 +

√
z2 + (ρ + a)2

)
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where r = ρρ̂ + zẑ with ρ2 = x2 + y2 and ρ̂ and ẑ denoting the unit vectors in the ρ and z
directions. Ba is symmetric about the z-axis, has isosurfaces that are oblate spheroids with a
“focal circle" of radius d lying in the xy-plane, and satisfies (27). On the focal circle at z = 0
and ρ = ±d, ∇Ba fails to exist, but this is similar to ∇B (which has spherical isosurfaces)
failing to exist at the origin for a singular Stokeslet. Since we want the Stokeslet velocity
field and force profile φε to be bounded at all points, we regularize Ba as

Ba
ε(r) =

1
16π

(√
z2 + (ρ− aε)2 + ε2 +

√
z2 + (ρ + aε)2 + ε2

)
(31)

where ε is the regularization parameter and a is an O(1) constant. The biharmonic potential
given in (31) approaches the singular biharmonic potential B(r) = r/8π as ε→ 0 up to an
O(ε2) regularization error for r � ε. Note that (31) reproduces the 7/2-power-law blob
given by (2) if a = 0. Without loss of generality, we hereafter let a = 1/2. An explicit
formula for Ga

ε is given in Appendix B.

2.5. Test Case: A Translating Sphere

To test the accuracy of the regularized Stokeslets we have thus far constructed, we
apply them to the problem of a sphere of radius R = 1 translating at unit velocity in an
otherwise unbounded, quiescent fluid. A no-slip condition is imposed on the sphere as
u|r=1 = U, where ‖U‖ = 1. Since the sphere translates as a rigid body, −q is equal to
the surface traction on the sphere surface. The analytical solution is well known to be
q = 3µU/2R, which simplifies to q = 3U/2 since we assume viscosity, velocity, and sphere
radius are all unity. The drag D on the sphere is found by integrating q (a constant in this
case) over the sphere surface, giving the classic Stokes drag result of D = 4πR2‖q‖ =
6πµR‖U‖ = 6π.

We employ a Fibonacci lattice to generate a discrete set of n points on the sphere that
has approximately equal spacing and is therefore convenient to use as a set of numerical
quadrature points [48]. The k-th point is given by the formula

(ϕk, θk) =

[
2πk

τ
, cos−1

(
1− 2k− 1

n

)]
, (32)

where the sphere is parameterized by polar angle ϕ and azimuthal angle θ.
As is standard in the method of regularized Stokeslets, (9) is approximated by letting

uε = u, inducing a regularization error, and the integral on the right-hand side is replaced
with a discrete sum, inducing a discretization error. Thus, we have

u(x) =
n

∑
k=1

Gε(x− yk) · Fk, (33)

where Fk = wk q(yk), and wk is the quadrature weight for point k. Note that Fk has units
of force and represents the discrete force exerted on the fluid by a regularized Stokeslet
placed at point k. In the case of the surface-oriented Stokeslet described in Section 2.4,
(33) is slightly modified as

u(x) =
n

∑
k=1

Ga
ε(n̂(yk), x− yk) · Fk, (34)

where Ga
ε(n̂, r) = (I∇2 −∇∇)Ba

ε(n̂, r) depends on the outwards unit normal vector n̂ to
the sphere at point yk. Recall that (31) expresses Ba

ε in terms of ρ and z, where we assumed
that n̂ was aligned with the z-axis. Here, the dependence of Ba

ε on n̂ is made explicit by
letting z = n̂ · r and ρ = ‖(I − n̂n̂) · r‖ in (31).

We address both the forward and inverse problem. In the forward problem, we assume
that the quadrature weights are uniform, wk = w = 4π/n. In this case, the quadrature
error associated with the Fibonacci grid defined by (32) is ∼ n−2 [49]. The velocity field
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may be computed for any point x by directly using (33) with qk = q = 3/2. In the inverse
(Dirichlet) problem, we instead assume that the fluid velocity is known, u(yj) = U, while
the forces Fk are unknown. The inverse problem is solved by evaluating (33) at x = yj to
form a linear system of n equations given by

u(yj) =
n

∑
k=1

Gε(yj − yk) · Fk, (35)

which are solved for the forces Fk. When surface-oriented Stokeslets are used, Gε(yj − yk)

in (35) is replaced with Ga
ε(n̂(yk), yj − yk).

The linear systems produced by (35) are symmetric. They were solved using the Bunch–
Kaufman [50] factorization routine (also called block LDLT) provided by the LinearAlgebra
module of the Julia v1.8 standard library, which internally calls the LAPACK routine
dsytrf. Condition numbers of the matrices resulting from (35) are reported in Appendix C,
Figure A1. Note that explicit formation of the matrix is only required in the inverse problem.

3. Results
3.1. Radial Regularizations
3.1.1. Example Smoothing Factors

There are many choices of the smoothing factor sε that satisfy the three conditions
given by (20) of Theorem 1. Recalling that sε(r) = s1(r/ε), Table 1 summarizes four
smoothing factors s1 hereafter employed as examples. These smoothing factors were
chosen due to their simplicity and for their differing behavior for r � ε.

Table 1. Radially symmetric smoothing factors s1 in use in (17) and their corresponding blob functions
φ1. Here, r = ‖r‖ = ‖x− y‖ for a point force at y. The “label” corresponds to that used in figure
captions for the particular regularized Stokeslets and blobs that correspond to these smoothing factors.
Smoothing factors are given with ε = 1; recall that sε = s1(r/ε). The correction is the term added to
the original smoothing factor (in the second column) to satisfy (25) at discretization points on the
boundary. Formulas for h1 and h3 from (18) are given separately in Appendix B, Table A1.

Label s1 Correction Term φ1 Correction Term

alg2 r√
r2+1

r
(r2+1)3/2

15
8π(r2+1)7/2 − 15(4r2−3)

8π(r2+1)9/2

alg4
r(2r2+3)

2(r2+1)3/2
3r

(r2+1)5/2
15(5−2r2)

16π(r2+1)9/2
15(8r4−40r2+15)

16π(r2+1)11/2

tanh tanh(r) 2 ln 2 tanh r sech2 r (r+4 tanh r−3r tanh2 r) sech2 r
4πr See (*) below.

erf erf(r) 2re−r2
√

π

(5−2r2)e−r2

2π3/2
(4r4−20r2+15)e−r2

2π3/2

ln 2
πr (−15r sech2 r tanh2 r + 2r− 12 tanh3 r + 8 tanh r) sech2 r. (*)

Smoothing factors labeled “alg2” and “alg4” approach unity at an algebraic rate; the
numerals 2 and 4 correspond to the power p where 1− salgp

ε is O(εp) for fixed r � ε.
Coincidentally, we find that salg2

ε leads to the the commonly employed 7/2 power-law blob
given in (2). We also find that salg4

ε leads to an algebraic blob function previously derived by
demanding that the blob have a vanishing second moment and therefore a far-field regular-
ization error of O(ε4) [37]. In our framework, recall that the second-order moment of φ

alg4
ε

vanishes identically because 1− salg4
ε = O(ε2+α) where α = 2 > 0. We note that, in the case

of the alg2 regularization, the second moment of φ
alg2
ε is nonvanishing and equal to 3/8π.

In this case, one finds that (A4) with s1 = salg2
1 leading to a divergent integral, and thus (A4)

cannot be used to directly evaluate the second moment of φ
alg2
ε . The regularizations labeled
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“tanh” and “erf” are named for smoothing factors equal to the hyperbolic tangent function
and error function, respectively. The erf smoothing factor is related to the exponential blob
derived by [51], and the tanh smoothing factor appears to lead to a regularization that is
novel. We emphasize that many additional smoothing functions sε (and corresponding
blob functions φε) can be readily derived from this framework. In practice, evaluation
of the regularized Stokeslet requires formulas for the functions h1 and h3, which appear
in (18) and are derived from the smoothing factor of a particular regularization. Formulas
for these functions are given in Appendix B, Table A1.

The corrections given in Table 1 are additional terms added to the original smoothing
factors to satisfy the boundary velocity correction condition in (25). For example,

salg2-c
1 (r) =

r√
r2 + 1

+
r

(r2 + 1)3/2

is the algebraic decay smoothing factor alg2 where we append a “-c” to the label to indicate
a smoothing factor including the boundary velocity correction. These corrections must
be chosen such that the original smoothing factor plus correction continues to satisfy the
conditions of Theorem 1. For example, the correction terms must vanish at the origin and
approach unity for r → ∞. The corresponding blob functions, given by (19), are also shown
in Table 1. To our knowledge, these blob functions have not appeared in previous literature.

Unless otherwise noted, we hereafter normalize the regularizations given in Table 1 by
making the substitution r → 3

√
φ1(0) r in the arguments to s1. The normalized regulariza-

tions have blob functions that satisfy φ1(0) = 1 and continue to satisfy (6) due to the scaling
property (7). The former property is convenient because it makes the force distribution
represented by each of the blobs easier to compare. Note that φ1(0) is generally O(1) before
normalization, ranging from about 0.4 to 6 for all regularizations considered.

Plots of the normalized smoothing factors and blob functions specified in Table 1 are
shown in Figure 1. All of the uncorrected smoothing factors increase monotonically to unity
as r → ∞, while the corrected smoothing factors increase above one and reach a maximum
before approaching their limiting value in the far field. As is characteristic of blob functions
that integrate to unity, φ1’s with a higher maximum at r = 0 decay faster. Additionally,
most of the blob functions (all except alg2) are not monotonically decreasing but rather
become negative and then increase, vanishing as r → ∞. This feature is characteristic of
blob functions which have a vanishing second moment, or, equivalently, are derived from a
smoothing factor that vanishes faster than O(ε2) as ε→ 0.
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Figure 1. Behavior of the radially symmetric smoothing factors s1 (a,b) and blob functions φ1 (c,d)
given in Table 1, plotted as a function of r = ‖r‖. All smoothing factors have been normalized by
substituting r → r 3

√
φ1(0) in the arguments to s1, and the blob functions correspond to the normalized

smoothing factors. No boundary corrections are utilized in (a,c) whereas (b,d) incorporates the
boundary-velocity correction given by (25).
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3.1.2. Forward Problem

We now apply the radial regularizations described in Section 2.3 to the problem of a
translating sphere described in Section 2.5. Unless otherwise noted, calculations in this
section were performed using n = 4096 discretization points. We also need to choose a value
for ε. Given that the surface area of the unit sphere is 4π and that the discretization points
are distributed close to evenly, setting ε . ε0 = 2n−1/2 ≈ 0.03 will prevent significant
overlap of blobs at neighboring points, while ε & ε0 will induce strong interaction between
neighboring blobs. Thus, we may use ε0 as a reference value when considering different
choices for ε.

First, we consider the forward problem and compute the fluid velocity at each of the
discretization points yk using (33) given the known surface traction of qk = 3/2 at each
point. We then evaluate the error e(x) = u(x)−U and report the sup-norm (maximum)
of ‖e‖ as ε is varied from 0.02 to 0.1 (Figure 2). The error can be considered as a sum of
the regularization error and the quadrature error. The regularization error eε depends on
ε as given by (23). The quadrature error is also known to depend on the regularization
parameter for a fixed number of quadrature points as ε−3, and increases as ε is made small,
in contrast to the regularization error, which decreases with ε [20]. Thus, we expect that
the regularization error is small and the quadrature error dominates for smaller values
of ε, whereas the regularization error dominates for larger values of ε. As a result, MRS
calculations often exhibit a value of ε = ε∗ where the error is minimized for a given
problem [20], which is apparent in Figure 2. The precise point at which this minimum
occurs depends on the regularization used.

Figure 2. Error (sup-norm) in the computed velocity field on the sphere boundary versus the
regularization parameter ε for the forward problem of a unit sphere translating at unit velocity
U in a fluid with unit viscosity. Here, the surface traction is prescribed as the constant vector
q = 3U/2. The error is given as the sup-norm of u(x)−U for x in the set of discretization points
on the sphere surface. The regularizations listed in the legend are those derived from the radial
smoothing factors given by Table 1. Smoothing factors utilized in (a) leave the boundary velocity
uncorrected whereas in (b), corrections according to (25) are included. In (b), a log-log scale is used
to show the power-law dependence (dashed lines) of the error on ε in the discretization-error- and
regularization-error-dominated regimes.

Regularizations derived from uncorrected smoothing factors—those that do not
satisfy (25)—exhibit error minima at ε = ε∗ ≈ ε0 = 0.03 (Figure 2a), whereas corrected
regularizations exhibit minima ε∗ > ε0 (Figure 2b). The near-field regularization error is
reduced in the corrected case, shifting the transition from quadrature- to regularization-
dominated error—and hence ε∗—to larger values of ε and reducing the overall error at all
but the smallest values of ε. We also observe approximate power-law dependence of eε
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on ε when regularization error is dominant (ε > ε∗), as predicted by (23). For uncorrected
regularizations, we find an O(ε) scaling in this regime, while, for corrected regularizations,
we find an O(ε3) dependence, except in the case of the alg2-c regularization where it
is O(ε2). This latter scaling is due to the fact that 1− salg2−c

ε = O(ε2), and thus β = 2
in (23). On the other hand, β = 4 for the alg4-c regularization and, for the exponentially
decaying erf and tanh regularizations, β is effectively infinite. Finally, we find that e ∼ ε−3

in the quadrature-error-dominated regime (ε � ε∗), which is an error scaling predicted
previously by Cortez et al. [20].

3.1.3. Inverse Problem

We now consider the corresponding inverse problem and compute the drag on a sphere
assuming rigid body translation at unit velocity, as described in Section 2.5. Recalling that
the analytical result for the drag is 6π, we define the error in the numerically computed
drag as Derr = D/6π − 1. Figure 3a shows the error in the drag for the four uncorrected
regularizations, while Figure 3b shows the error for the corrected regularizations. We
find that the drag is generally under-predicted for small ε and over-predicted for large ε.
Over-prediction in the case where ε is large can be rationalized by imagining that the blobs
produce a sphere of effective radius Reff > 1 and recalling that the drag D = 6πµR‖U‖
increases with the radius. For smaller values of ε, under-prediction of the drag is due
to insufficient overlap of the blob functions; a significant portion of the surface of the
sphere exerts no force on the fluid, and the sphere therefore becomes “leaky”. While
u|r=1 = U is enforced exactly at the discretization points, fluid is allowed to penetrate the
sphere boundary at points in between the dicretization points. We note that these error
trends further motivate the potential use of surface-oriented regularizations described in
Section 2.4. The rate at which the minimum is approached as ε is made smaller is dependent
on the smoothing factor.

Figure 3. Similar to Figure 2, but for the corresponding inverse problem. Here, the error is the
relative error with respect to the analytical result for the drag on the sphere, Derr = D/6π− 1, where
D is the drag. Results for uncorrected and corrected smoothing factors are shown in (a) and (b),
respectively. In (b), a log-log scale is used, and the absolute value of Derr is plotted. We use ‘H’s to
indicate under-prediction (Derr < 0) and ‘N’s to indicate drag over-prediction (Derr > 0). The dashed
lines indicate the power-law scaling of Derr in the regularization-error-dominated regime.

Like in the forward problem, quadrature error dominates for small ε and regularization
error dominates for large ε. Hence, we similarly observe error minima at some particular
value of ε = ε∗ for each regularization (Figure 3). The value of ε∗ and the rate at which the
error increases with ε for ε > ε∗ depends on the specific regularization used. Note, however,
that ε∗ and the scaling behavior of the error with ε in the inverse problem generally differ
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from those found for the forward problem. The uncorrected regularizations give error
minima of ε∗ ≈ ε0 = 0.03, and for ε > ε0, the error depends linearly with ε, as it did in
the forward problem (Figure 3a). The results for the corrected regularizations are more
interesting. In Figure 3b, we find that, except at the smallest values of ε, the drag error
is significantly smaller than that of the uncorrected smoothing factors. The error quickly
decreases with ε until a minimum is reached and then increases at rates that approximately
obey power laws, with the alg2-c regularization following a ε7/2 trend and the tanh-c
and erf-c Stokeslets following an ε6 trend. In the regularization-error-dominated regime,
the drag is over-predicted, while it is under-predicted for smaller ε, similar to the trends
observed for the uncorrected regularizations. The alg4-c regularization is unique in that
it only ever under-predicts the drag for the entire range of ε considered. It also does not
exhibit a clear power law scaling. Overall, the erf-c regularization exhibits the smallest
error followed by the tanh-c regularization, both generally producing smaller error than
the algebraic regularizations (alg2-c and alg4-c). This observation suggests that there is
a benefit to using smoothing factors whose far-field regularization error vanishes very
rapidly, especially for inverse problems.

The effect of varying the number of discretization points n is shown in Figure 4 for
the erf-c regularization. As more discretization points are used, the numerical quadrature
represented by the summation in (35) becomes more accurate, and we expect the error
to decrease. This reduction in error occurs mostly as expected, and the value of ε where
the error is minimized shifts to smaller ε as the number of discretization points increases.
Interestingly, past the respective error minimum for each value of n, the error collapses
onto a common line that follows the same ε6 scaling as is shown in Figure 3. These
observations indicate that regularization error is strongly dominant over quadrature error
in the power-law scaling regime, where the error is apparently independent of the number
of discretization points used. Using more discretization points does nothing to improve
accuracy beyond the value of ε where the error minimum occurs.

Figure 4. Error in the computed drag versus number of discretization points n using the erf-c
regularization. The absolute value of the error is shown, but the direction of the triangle indicates the
sign, following the same convention as that in Figure 3.

3.2. A Surface-Oriented Regularization

Cross sections of the blob function φa
ε associated with Ba

ε (with ε set to unity), given
by (31), are plotted in Figure 5a,b,e,f. There, we find that the force density on the fluid near
the point of forcing has an annular profile with the majority of the force concentrated near
a circle of radius ε/2. The annular shape is not completely unexpected; we know from (31)
that the gradients of Ba

ε are nearly singular on the circle ρ = ε/2 and z = 0 for ε � 1.
Force is distributed more widely on the xy-plane than along the z-axis, as desired. One
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might guess that the corresponding flow is that due to regularized Stokeslets distributed
evenly along a ring. However, this flow is known to involve elliptic integrals [47], while
that derived from Ba

ε has an algebraic form.

Figure 5. Force density profiles of the surface-oriented regularized Stokeslets, derived from (31), with
ε = 1. The orientation is along the z-axis. (a,b) plot the cross section of φa

1 through the xy- and xz-
planes, respectively, and (c,d) similarly plot φc

1. A detailed profile of φa
1 along the x- (or y-) axis is

shown in (e), as well as parallel to the z- axis for ρ = 0 and ρ = 1 in (f). Similar plots of φc
1 are shown

in (g,h). Values sampled along particular lines in (e–h) are indicated by dashed lines in (a–d), where
there is a correspondence between columns of figures. For example, the blue and orange dashed lines
in (b) respectively correspond to the blue and orange force density profiles in (f).

The regularization does not evenly spread force along the plane. For example, φε is not
maximized at the origin as was true of the radial regularizations described in Section 2.3.
In terms of the numerical method, φa

ε , though not uniform, still leads to well behaved
regularized flows. In the case that one desires a more even spread to the force density, we
can “fill in” the region of lower force at the origin by using a linear combination of Ba

ε with
the biharmonic potential Br

ε of a radially regularized Stokeslet centered at the origin. Thus,
we let Br

ε = Balg2
ε =

√
r2 + ε2/8π, which corresponds to the “alg2” entry of Table 1, and

combines with Ba
ε as

Bc
ε = crBr

ε + caBa
ε . (36)

The corresponding blob function is φc
ε = crφr

ε + caφa
ε , and therefore we require cr + ca = 1

so that φc
ε integrates to unity. The empirical choice of cr = 3/11 and ca = 8/11 produces a

monotone force density φc
ε that has a global maximum at the origin and distributes force

nonradially but in a uniform manner (see Figure 5c,d,g,h).
The drag on a translating sphere is resolved as an inverse problem, as described in Sec-

tion 2.5, and compared to the radial alg2 regularization using n= 1024 discretization points.
That is, we prescribe the velocity u(yk) = U at the discretization points yk and solve (34) for
the forces Fk exerted at each point. The results, shown in Figure 6a, indicate reduced drag
error for the surface-oriented regularizations compared to the radial regularization for the
calculations performed for smaller values of ε. Here, the drag is under-predicted, but less
so for the surface-oriented regularizations. For larger values of ε, the drag is over-predicted
by all three of the regularizations. However, this over-prediction is not significantly worse
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for the surface-oriented regularizations than that of the radial regularization. Interestingly,
the drag error is generally lower for the annular regularization than for the annular+radial
regularization, which, as we recall, produces a more even distribution of force along the
surface. This observation is a consequence of the linearity of the Stokes equations; linearly
combining two regularizations in a “weighted average” results in a drag that is the same
weighted average of the drag values.

Figure 6. Error of surface oriented regularizations versus the radial alg2 regularization. The error in
the drag is shown in (a) and the error in the boundary condition or “leak” at points on the surface of
the sphere but in between the discretization points is shown in (b).

We also examine the error in the no-slip boundary condition on the sphere surface.
This error effectively vanishes at the discretization points because it is at these points where
the boundary condition u|r=1 = U is prescribed. However, away from the discretization
points, this boundary condition is only satisfied approximately, and we refer to this kind
of error as the “leak”, defined as u|r=1 −U. Therefore, we define another set of points
on the sphere y′k that are in between the discretization points by using (32), except where
the θk are offset by an angle of π. The fluid velocities at these points are computed by
reusing the forces Fk that have already been determined from solving the inverse problem
(using the original set of discretization points) and solving the corresponding forward
problem by evaluating (34) for each x = y′k. The sup-norm of the leak measured at these
points is shown in Figure 6b. We again find a reduced error for the surface-oriented
regularizations, which have a smaller leak than the radial regularization. Intuitively, this
follows from the fact that more of the force is spread along the boundary than normal
to it, allowing less fluid to leak into the sphere. The annular regularization produces the
lowest error, with the annular+radial regularization falling in the middle according to the
weighted-average argument.

4. Discussion

We have developed a convenient framework for generating both radial and non-
radial regularized Stokeslets for use with the MRS, which are automatically divergence-
free and have easily controlled regularization error. Thus, we generate several examples
expected to have different error properties. As a test case, we solved the forward and
inverse problems of a steadily translating sphere using a selection of regularized Stokeslets
generated from radially symmetric smoothing factors. We also solve the inverse problem
using a regularized Stokeslet that distributes force in a surface-oriented manner. In general,
we found the error in the fluid velocity at the sphere boundary (in the forward problem)
and the drag (in the inverse problem) to depend heavily on the regularization used. For
radial regularizations, the smoothing factors incorporating near-field error corrections for
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points on the boundary given by (25) proved valuable in reducing the overall regularization
error, often by orders of magnitude.

For the forward problem of a translating sphere, the error in the velocity at the
sphere boundary depends on ε in a manner consistent with previous error analyses of the
MRS [20–22,34]. These error analyses, as well as our own discussion of error in Section 2.3.2,
assume that the surface force density (or single-layer potential) q is the known input and
that the velocity field is the output. For the inverse problem, the roles of input and output
are reversed. Still, by using smoothing factors that correct for the “input” error in the
velocity at the discretization points, the computed drag is much more accurate. Indeed, our
results verify a claim by Nguyen and Cortez [34] that blobs including near-field correction
terms will perform significantly better in inverse problems. However, there is no reason to
expect that the error dependence on ε in the inverse problem is the same as in the forward
problem, and our results reflect this fact. While the O(ε) error of the drag calculations
performed using the uncorrected smoothing factors is the same as the expected O(ε) error
in the velocity, the Derr ∼ O(ε7/2) scaling of the corrected alg2 smoothing factor and
Derr ∼ O(ε6) scaling of the tanh and erf smoothing factors are not the same as in the
forward problem, which, as we recall, gives u(x) ∼ O(ε2) and u(x) ∼ O(ε3), respectively.
Thus, our results highlight the need for further error analysis of MRS inverse problems.

We find that surface-oriented regularizations, which distribute force density in a
way that is predominantly tangent to the boundary, also reduce error in the test problem
of determining the drag on a sphere, especially when using smaller values of ε. The
no-slip boundary condition on the sphere is also more effectively enforced away from
the discretization points. Applying near-field corrections to surface-oriented blobs may
allow for further reduction of error. We leave a detailed error analysis of surface-oriented
regularizations to future work.

Aside from accuracy, computational expense is also an important factor when choosing
a regularization. There are two main sources of computational expense. The first is the
time necessary to evaluate the regularized Stokeslet at the discretization points. For time-
dependent problems, Stokeslet evaluations must be repeated at each time step. We therefore
assess the computational expense of Stokeslet evaluations via the method described in
Appendix B. For the radial regularizations, whose smoothing factors appear in Table 1,
Table A1 gives the time to compute the functions h1 and h3, which change in (18) depending
on the regularization used. Unsurprisingly, the alg2 regularization is the simplest and the
fastest to evaluate. The algebraic regularizations (alg2 and alg4) are fastest, followed by the
tanh and then erf regularizations. The corrected regularizations are more computationally
expensive than their uncorrected counterparts, but only by a factor of two or less. Given
our results for both forward and inverse problems, the (corrected) alg2-c, alg4-c, and tanh-c
regularizations provide a good trade-off between accuracy and computational cost. The erf-
c regularization achieves the best accuracy but is comparatively more expensive. Near-field
error limits the accuracy of all uncorrected regularizations, so there is less benefit for the
added computational cost of the alg4, tanh, and erf regularizations even though they have
smaller far-field errors. The surface-oriented regularization Ga

ε takes about twice as long to
compute as the radial alg2 regularization in our testing. This may seem surprising given its
relatively lengthy formula, given in Appendix B by (A5). However, many common terms
appear in (A8) and (A9) which do not need to be repeatedly calculated for each evaluation
of Ga

ε.
The second major source of computational expense is the time necessary to solve

the linear system given by (35), which applies only to the inverse problem. For our test
problem of a translating sphere with n = 4096 points, allocation and assembly of the matrix,
which requires n2 Stokeslet evaluations, took approximately 5 s (25% of the computational
time), while the solution of the linear system took approximately 15 s (75%) when using
the (relatively expensive) erf-c regularization. Thus, the cost of Stokeslet evaluations is
relatively small for inverse problems, and the added cost of using a more expensive but
accurate regularization is likely well worth the improved accuracy.
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The condition number of the linear system in (35) is also considered for the different
regularizations. We report these condition numbers in Appendix C, Figure A1. The
condition numbers that we observe for the uncorrected regularizations are similar to
those reported previously in the literature [33,42]. The condition number increases with
ε, indicating that interaction between different discretization points increases sensitivity
to errors. For the radial regularizations, condition numbers for the corrected blobs are
larger than those for the uncorrected blobs. Interestingly, for larger values of ε, the erf and
erf-c regularizations have significantly larger condition numbers than those of the other
regularization choices. The condition numbers of the surface-oriented regularizations are
slightly larger than that of the radial alg2 regularization (Figure A1c), except at ε = 0.1,
the largest value considered, where it is significantly larger. In general, though, condition
numbers remain unproblematic for values of ε where the error in the drag is minimized,
indicated by the shaded regions in Figure A1.

Among the radial regularizations, our results suggest that the tanh-c regularization
may be a good general choice, which maintains a good balance between low computational
expense, low condition number, and high accuracy for both forward and inverse problems.

We note that regularized Brinkman flows have been derived at the level of a bihar-
monic potential function, analogous to B that appears in (11) [28,52,53]. This regularization
was achieved by replacing singular terms containing factors of 1/r with terms containing
factors of 1/

√
r2 + ε2. Our method generalizes and formalizes this approach, and the same

methodologies could be applied to Brinkman flows.
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Appendix A. Moments of Radial Blob Functions

We would like to relate the radial smoothing factors discussed in Section 2.3 to the
moments of the corresponding blob function. We assume that sε satisfies the properties
given in Theorem 1. Due to the scaling relation in (7), we may let ε = 1 without loss of
generality. Since φ1 is radially symmetric, we may transform to spherical coordinates and
write the n-th moment of φ1 as

Mn φ1 := Cn

∫ ∞

0
rn+2φ1(r)dr (A1)
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for n ≥ 0. Note that we simplify notation by writing φ as a function of r = ‖r‖ rather than
the vector r. Due to radial symmetry, we have that Cn = 0 for odd n and only the even
moments of φε are nonzero. Multiplying both sides of this equation by rn+2, integrating by
parts, and utilizing (19), we find that

8π
∫ ∞

0
rn+2φ1(r)dr = − rn+2s′′1 (r)

∣∣∣∞
0
+ (n− 2)

(
rn+1s′1(r)

∣∣∣∞
0
− (n + 1)

∫ ∞

0
rns′1(r)dr

)
,

where a prime indicates differentiation with respect to r. ForMn φ1 to be convergent, we
require that

1− s1(r) = O(r−n−α) (A2)

for α > 0 as r → ∞. In this case, all terms being evaluated at the integration limits
vanish and

8π
∫ ∞

0
rn+2φ1(r)dr = −(n− 2)(n + 1)

∫ ∞

0
rns′1(r)dr.

Replacing s′1 with −(1− s1)
′ in this equation, integrating by parts once more, and using

(20b) and (A2), we obtain

8π
∫ ∞

0
rn+2φ1(r)dr =

{
2 n = 0
−n(n− 2)(n + 1)

∫ ∞
0 rn−1[1− s1(r)]dr n ≥ 1.

(A3)

Equation (A3) combines with (A1) to yield

Mn φ1 =

{
1 n = 0
− 1

8π Cnn(n− 2)(n + 1)
∫ ∞

0 rn−1[1− s1(r)]dr n ≥ 1,
(A4)

where we have used the fact that C0 = 4π. As expected, (A4) shows thatM0 φ1 = 1 for
any appropriate smoothing factor that satisfies the properties in (20) and (22). It also shows
thatM2 φ = 0 as long as (A2) with n = 2 holds.

Appendix B. Expressions and Computational Cost of Regularized Stokeslets

The regularized Stokeslets derived from the smoothing factors described in Section 2.3
and summarized by Table 1 require the evaluation of the functions h1 and h3 that appear in
(18). These functions are given in Table A1. We also give the time taken to evaluate h1 and h3
relative to the alg2 regularization, which corresponds to the commonly used 7/2-blob given
by (2). All of the functions were implemented in Julia v1.8 and time trials were conducted
using BenchmarkTools.jl v1.3.1. Note that the times reported reflect computation of both h1
and h3 together in the same Julia function h1h3. A sample of 1000 evaluations of h1h3 for
the alg2 regularization took 3.49 µs to complete on an AMD Ryzen™ 7 PRO 4750U CPU,
which is used as the reference value in Table A1. All reported performance measurements
use the minimum time out of 10,000 samples.

We also consider the explicit formula for Ga
ε, given by (12) as

Ga
ε = (I∇2 −∇∇)Ba

ε . (A5)

Recall that Ba
ε = Ba

ε(ρ, z), given by (31), is symmetric about the z-axis, where ρ, θ, and z
define a cylindrical polar coordinate system. In this case, we may write

∇∇Ba
ε(ρ, z) =

∂2Ba
ε

∂ρ2 ρ̂ρ̂ +
1
ρ

∂Ba
ε

∂ρ
θ̂θ̂+

∂2Ba
ε

∂ρ ∂z
(ρ̂ẑ + ẑρ̂) +

∂2Ba
ε

∂z2 ẑẑ, (A6)
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where ρ̂, θ̂, and ẑ are the unit vectors in the ρ-, θ-, and z-directions, respectively. Taking the
trace of (A6) gives the Laplacian of Ba

ε as

∇2Ba
ε =

1
ρ

∂

∂ρ

(
ρ

∂Ba
ε

∂ρ

)
+

∂2Ba
ε

∂z2 . (A7)

The derivatives that appear in (A6) and (A7) are given by

∂Ba
ε

∂ρ
=

ρ− εa√
ε2 + z2 + (ρ− εa)2

+
(ρ + εa)2√

ε2 + z2 + (ρ + εa)2
(A8a)

∂2Ba
ε

∂ρ2 =
ε2 + z2(

ε2 + z2 + (ρ + εa)2
)3/2 +

ε2 + z2(
ε2 + z2 + (ρ− εa)2

)3/2 (A8b)

∂2Ba
ε

∂ρ ∂z
=

z(εa− ρ)(
ε2 + z2 + (ρ− εa)2

)3/2 −
z(ρ + εa)2(

ε2 + z2 + (ρ + εa)2
)3/2 (A8c)

∂2Ba
ε

∂z2 =
ε2 + (ρ− εa)2(

ε2 + z2 + (ρ− εa)2
)3/2 +

ε2 + (ρ + εa)2(
ε2 + z2 + (ρ + εa)2

)3/2 (A8d)

and the Laplacian is given by

∇2Ba
ε =

ε2ρ + (2ρ + εa)
(

ε2 + z2 + (ρ + εa)2
)

ρ
(

ε2 + z2 + (ρ + εa)2
)3/2 +

ε2ρ + (2ρ− εa)
(

ε2 + z2 + (ρ− εa)2
)

ρ
(

ε2 + z2 + (ρ− εa)2
)3/2 . (A9)

Substitution of (A6) and (A9) into (A5) gives an explicit expression for Ba
ε .

Table A1. Functions h1 and h3 that are used in (18) to generate regularized Stokeslets by differentiat-
ing the radial smoothing factors given in Table 1. We have set ε = 1 for simplicity, but note that these
functions obey the scaling properties hm(ε; r) = ε−mhm(1, r/ε) for m = 1, 3. The last column gives
the time needed to evaluate both h1 and h3 together, relative to the alg2 regularization.

Label h1(1; r) h3(1; r) Time

alg2 r2+2
(r2+1)3/2

1
(r2+1)3/2 1.00

alg4 2r4+5r2+6
2(r2+1)5/2

2r2+5
2(r2+1)5/2 1.06

tanh tanh2 r
r + sech2 r tanh r

r2 − sech2 r
r3 2.07

erf erf r
r + 2e−r2

√
π

erf r
r3 − 2e−r2

√
πr2 5.26

alg2-c r4+2r2+4
(r2+1)5/2

r2+4
(r2+1)5/2 1.06

alg4-c 2r6+7r4+2r2+12
2(r2+1)7/2

2r4+7r2+20
2(r2+1)7/2 2.04

tanh-c
(2 ln 2 sech2 r + 1)

tanh r
r

+ (6 ln 2 sech2 r− 4 ln 2 + 1) sech2 r

(2 ln 2 sech2 r + 1)
tanh r

r3

− (6 ln 2 sech2 r− 4 ln 2 + 1)
sech2 r

r2

2.56

erf-c erf r
r −

(4r2−6)e−r2
√

π
erf r
r3 + (4r2−2)e−r2

√
πr2 5.31
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The blob function, φa
ε = −∇4Ba

ε , is given by taking the Laplacian of (A9). The resulting
expression is quite lengthy but straightforward to obtain using, e.g., a computer algebra
system. We therefore do not render it here.

Appendix C. Matrix Condition Numbers

Skeel’s condition number of the matrices resulting from the linear system given by (35)
are reported in Figure A1. Skeel’s condition number is defined for a matrix M as

κS(M) = ‖|M| |M−1|‖∞

where | · | denotes the componentwise absolute value, |M|ij = |Mij|, and ‖·‖p denotes
the matrix p-norm. Generally, κS(M) is of the same order of magnitude as the usual
condition number, defined by κ(M) = ‖M‖2 ‖M−1‖2, but has the advantage of being
faster to compute for large matrices. For example, using the erf-c blob with n = 4096
discretization points and ε = 0.07, κ = 3.68× 107 and κS = 2.73× 107.

Figure A1. Skeel’s condition number for the inverse problem of a translating sphere described in
Section 2.5 using (a) uncorrected radial, (b) corrected radial, and (c) surface-oriented regularizations.
For the radial (a,b) and surface-oriented (c) regularizations, n = 4096 and n = 1024 discretization
points are used, respectively. The shaded regions indicate the values of ε where the error in the drag
is approximately minimized.
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