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Abstract: The effects of Mach number on the skin friction and velocity fluctuations of the turbulent
boundary layer are considered through a sonic eddy model. Originally proposed for free shear flows,
the model assumes that the eddies responsible for momentum transfer have a rotation Mach number
of unity, with the entrainment rate limited by acoustic signaling. Under this assumption, the model
predicts that the skin friction coefficient should go as the inverse Mach number in a regime where
the Mach number is larger than unity but smaller than the square root of the Reynolds number. The
velocity fluctuations normalized by the friction velocity should be the inverse square root of the Mach
number in the same regime. Turbulent transport is controlled by acoustic signaling. The density field
adjusts itself such that the Reynolds stresses correspond to the momentum transport. In contrast, the
conventional van Driest–Morkovin view is that the Mach number effects are due to density variations
directly. A new experiment or simulation is proposed to test this model using different gases in an
incompressible boundary layer, following the example of Brown and Roshko in the free shear layer.
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1. Introduction

It has long been known that the skin friction in a turbulent boundary layer declines
with increasing Reynolds and Mach numbers. Prandtl’s universal law of skin friction
describes the Reynolds number effect for incompressible flow. Not so clear is the physical
mechanism for the effect of the Mach number.

Mach number plays a confusing dual role, affecting both the density through the
energy equation and the acoustic signaling speed [1]. In a perfect gas, it is difficult to
distinguish the physical mechanism controlling compressible turbulence.

In this short communication, a heuristic model for compressible turbulence is pursued.
It assumes that Mach number effects on turbulence are solely attributable to acoustic
signaling rather than to changes in density. This approach contrasts with the prevailing
view that density changes are important [2,3]. In order to apply this model to the boundary
layer, it is instructive to first consider the case of free shear flows.

A simple model [4] of compressible turbulent entrainment makes two assumptions:

(i) an eddy must complete a rotation to do anything, such as entrain or transport mo-
mentum, and

(ii) entrainment is an intrinsically non-steady process.

Consider the implications of these two assumptions in a fluid with a relatively low
speed of sound compared to the speed of the turbulent motions. The information that
a non-steady event has occurred on one side of a vortex propagates across the diameter
of the vortex at the local speed of sound. For relatively low speed of sound, this process
takes a finite amount of time. If the propagation time is greater than the rotation period
of the vortex, then the information concerning the non-steady event will not reach the
opposite side of the eddy within the critical time window for influencing the dynamics
of the vortex. So, the non-steady event can have no effect on the dynamics. As far as
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that vortex is concerned, the non-steady event might as well never have happened. The
vortex can neither entrain mass nor transport momentum. From a dynamical viewpoint,
the vortex is inert.

The eddy Mach number is defined as an eddy’s rotational speed divided by the local
average speed of sound. The factor of pi is suppressed, both for simplicity and to avoid
implying a precision in the vortex rotation angle required for momentum transport that is
unwarranted. In addition, there may be a large uncertainty in the local speed of sound. All
eddies with an eddy Mach number greater than unity rotate too fast for signal propagation
across their diameter during the time interval that matters, one rotation period. They
are impotent.

There is a special, distinguished eddy size. The acoustic signaling time across its
diameter is just equal to one eddy rotation period. Such a “sonic” eddy has a rotational
Mach number of unity. In a Kolmogorov spectrum, all eddies smaller than the sonic
eddy have rotational Mach numbers less than unity, so their dynamics are essentially
incompressible, i.e., unconstrained by a finite signaling speed. Since it is the largest active
eddy, the sonic eddy determines the rates of entrainment and momentum transport.

The sonic eddy concept is consistent with the underlying instability that drives the
basic turbulence. First defined by [5], the convective Mach number is essentially the eddy
Mach number of the largest vortices.

The original model asserted that the spreading angle for the free shear layer would
undergo a sudden decrease as the Mach number increased through M = 1. However, this
is inconsistent with the smooth and progressive decrease in the size of the sonic eddy
with increasing Mach number, as noted by [1]. So, the original model should be amended.
According to this revision, the spreading angle of the shear layer in this regime varies
inversely with the size of the sonic eddy, i.e., inversely with Mach number. Figure 1 is a
sketch of a log–log diagram of the normalized spreading angle of a shear layer as a function
of Mach number.
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There are three transitions between different regimes. The first occurs when the size of
the sonic eddy equals the largest possible vortex size, at M = 1. The sonic eddy becomes as
small as the smallest possible eddy, the Kolmogorov microscale, when the Mach number is
equal to the square root of the Reynolds number, as described in [4]. The third transition
occurs at M = Re, when the sonic eddy equals the mean free path of the gas.
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2. Materials and Methods

Let us now apply this model to the boundary layer. For an equilibrium, self-similar
flow, the skin friction is equal to the rate of momentum flux removal from the outer, wake
flow. Using the standard wake approximation, the wake momentum defect is proportional
to ρU∆U, where ρ is the fluid density, U is the freestream speed, and ∆U is the characteristic
velocity defect in the wake. Thus, the skin friction coefficient c f i for incompressible flow is

c f i = const.
∆U
U

(1)

The amplitude of the velocity fluctuations u′ should be proportional to the velocity
defect DU. Thus,

c f i = const.
∆U
U

= const.
u′

U
(2)

If the turbulence is compressible (M > 1), then according to this model, momentum is
essentially transferred only by those eddies whose rotational Mach number is unity. Thus,
the effective value of the velocity defect as far as momentum transfer is concerned is an
average speed of sound a∗ instead of ∆U. Consequently, at a fixed Reynolds number, the
skin friction coefficient c f is proportional to the inverse Mach number,

c f =
const.

M
(3)

Additionally,

c f =
u2

τ

U2 (4)

where uτ is the friction velocity, and a factor of two is suppressed for simplicity. Replacing
DU by the local average speed of sound a∗, it follows from Equations (1)–(4) that

u′

U
=

u′

uτ
c1/2

f =
const.

M
(5)

and thus
u′

uτ
= const.

uτ

U
= const. M−1/2 (6)

According to the model, this expression should be valid for Mach numbers between
unity and the square root of the Reynolds number, at which point the sonic eddy has shrunk
to the Kolmogorov microscale, the smallest possible eddy size.

In combination with the velocity field, the density field must be consistent with the
Reynolds stresses. Even if acoustic signaling completely controls the momentum transport,
as assumed in the sonic eddy model, the van Driest–Morkovin density scaling still works.
The subtle distinction is that the density field is a consequence of the signaling. Mach number
controls the signaling, which, in turn, controls the transport and hence the density field. A
single, unified physics is presumed for all vortices, no matter their proximity to a wall.

In contrast, the van Driest–Morkovin view implies that the density field influences
the vortex dynamics near a wall but not away from a wall. Somehow, there is one type of
physics for a vortex near a wall, and another type for a vortex away from a wall. This raises
awkward questions: At what distance from the wall is there a transition between the two
types of physics? How does a vortex know this?

3. Discussion
3.1. Comparison with Experiment and DNS
3.1.1. Skin Friction

The skin friction and streamwise velocity fluctuations as a function of Mach number
for an adiabatic wall have been measured and computed by [6–30].
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Due to experimental challenges in supersonic flow, particularly with measuring ve-
locity fluctuations, direct numerical simulations offer some relative advantages. The DNS
results of [28,29] are particularly informative and remarkable. The only fundamental
disadvantage of DNS is its limitation to modest Reynolds numbers.

Figure 2 is a plot of skin friction normalized by its incompressible value as a function
of freestream Mach number, here labeled Ma [30]. The curved dashed line is van Driest–
Morkovin scaling, and the straight dashed line is the sonic eddy model, assuming a constant
speed of sound. The open circles are measurements from [11–20], the blue squares are
from [28], and the green triangles are non-adiabatic cases from [29]. The latter two are at
constant Reynolds number. Density scaling closely correlates with the DNS results.
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3.1.2. Velocity Fluctuations

Figure 3 is a plot of the streamwise velocity fluctuations as a function of freestream
Mach number at a height of 25% of the boundary layer thickness, with the same symbols
as in Figure 2. The dashed line has a slope of minus one half, as predicted by the model.
Note that the speed of sound is the freestream value, rather than the more appropriate local
one. The comparisons may improve if the local rather than the freestream speed of sound
is utilized.

3.1.3. Growth Rate

Mach number has only a weak effect on growth rate of the boundary layer [31]. The
rate of growth increases by about 20% as the Mach number increases from 1.7 to 5. This
may be consistent with a diffusive growth rate controlled by an eddy viscosity equal to
the product of the local speed of sound and the size of the sonic eddy. The eddy viscosity
of sonic eddies can account for the peculiar behavior of the hypersonic wake, where the
visible growth rate vanishes for hundreds of effective body diameters downstream of the
body [4]. Density ratio effects are too weak to account for it.

3.1.4. Eddy Celerity

When the freestream Mach number is about 3, the eddy speed divided by the freestream
speed of sound, a∞, is typically about 0.3 less than that of the freestream Mach number [17].
Assuming, for simplicity, that an eddy accommodates a speed difference across it symmet-
rically, the speed difference between the freestream and the eddy would be half of the total
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speed difference across the eddy. Therefore, the change in flow speed across these eddies
normalized by a∞ is about 0.6, a number reasonably close to the value of unity assumed in
this model. A further refinement would normalize by the local speed of sound.
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The integral scale in a Mach three-boundary layer was about one-third of the layer
thickness [24], consistent with the model. A neighboring shear layer at a lower value
of convective Mach number was observed with the same dual-wire probe to have an
integral scale much larger, comparable to the shear layer thickness. Consequently, this
probe technique was capable of resolving the difference in scales [25].

At a freestream Mach number of 7.2, the eddy celerity normalized by the free stream
speed of sound is about 1.4 less that the freestream Mach number [26]. Consequently, the
speed difference across that eddy normalized by the freestream speed of sound is about
three, apparently too large to be consistent with the model. However, normalization by the
local rather than the freestream speed of sound would lower this number.

3.1.5. Topology

The large-scale structure of the turbulence in the incompressible free shear layer is
two-dimensional [32]. The model implies that all compressible turbulence must have a
three-dimensional structure, because the signaling speed limits the coherence length of
the eddies to the size of the sonic eddy. There must be a topological transformation in
the large-scale structure of the free shear layer at a Mach number of about unity, from
two-dimensional to three-dimensional. Such a transformation has been observed [33,34].
This topological transformation is accompanied by a change in growth rate, as described
above [4].

In contrast, the incompressible boundary layer is already three-dimensional, so no
topological transformation is necessary at M = 1. However, the correlation distance would
be expected to shrink with increasing Mach number, along with the shrinking size of the
sonic eddy. This is supported by the velocity iso-correlations in [28].

3.2. Proposed New Experiment or Simulation

To clearly distinguish between the effects of density from those of signaling, a new
experiment or direct numerical simulation is required. Following the strategy of [32] for
the free shear layer, a new experiment or simulation would directly measure the effect of
density ratio in an incompressible boundary layer. Helium and air flows would form an
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incompressible boundary layer with a strong density gradient. According to the sonic eddy
model, the density gradient would have little effect on the vortex dynamics, as modeled
by [35]. In the free shear layer, for example, a change in density ratio by a factor of 49
only changes the spreading angle by a factor of 2 [32]. In contrast, according to the van
Driest–Morkovin viewpoint, the density ratio in both free and wall flows would have a
large effect.

4. Conclusions

Using the same physical arguments as for free shear flows, the effect of Mach number
on momentum transport in a boundary layer has been modeled. The central idea is that an
eddy must communicate with itself during one rotation in order to transport momentum.
In general, the largest active eddy controls the transport. In a compressible flow, the finite
acoustic signaling speed limits the size of the largest active eddy to one with an eddy Mach
number of unity, the sonic eddy.

The present model contrasts with the conventional approach that attributes the effect
of Mach number on the boundary layer to density ratio effects. Since density ratio effects
are known to be relatively weak in the free shear layer, it is natural to expect the same
physics to apply to all turbulent vortices, including those in wall flows. If so, then Mach
number affects momentum transport through the speed of sound rather than the square
root of the specific total energy √h0 . Due to the confusing dual role of Mach number
in compressible turbulence, a new experiment or numerical simulation is proposed to
distinguish between signaling and density effect.
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