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Abstract: Air entrainment phenomena have a strong influence on the hydraulic operation of a plung-
ing drop shaft. An insufficient air intake from the outside can lead to poor operating conditions,
with the onset of negative pressures inside the drop shaft, and the choking or backwater effects of
the downstream and upstream flows, respectively. Air entrainment phenomena are very complex;
moreovet, it is impossible to define simple functional relationships between the airflow and the
hydrodynamic and geometric variables on which it depends. However, this problem can be cor-
rectly addressed using prediction models based on machine learning (ML) algorithms, which can
provide reliable tools to tackle highly nonlinear problems concerning experimental hydrodynamics.
Furthermore, hybrid models can be developed by combining different machine learning algorithms.
Hybridization may lead to an improvement in prediction accuracy. Two different models were built to
predict the overall entrained airflow using data obtained during an extensive experimental campaign.
The models were based on different combinations of predictors. For each model, four different hybrid
variants were developed, starting from the three individual algorithms: KStar, random forest, and
support vector regression. The best predictions were obtained with the model based on the largest
number of predictors. Moreover, across all variants, the one based on all three algorithms proved to
be the most accurate.

Keywords: air entrainment; drop shaft; prediction models; machine learning; hybrid models

1. Introduction

Drop shafts are widely present in urban drainage systems, characterized by high
slopes of the basins, where there is the need to reduce the flow velocities in pipes. In
recent years, plunging-flow drop shafts have been the subject of some relevant literature
studies [1-7]. Christodoulou [1] found that the local head-loss coefficient in a circular drop
manbhole in supercritical flows depends on a dimensionless drop parameter, expressed
in terms of the drop height and the inflow velocity. Rajaratnam et al. [2] carried out
experimental observations of flow features crossing a circular drop shaft and conducted
measurements of energy dissipation and airflow. Chanson [3] focused on flow regimes,
energy dissipation, and recirculation times in rectangular drop shafts. This study showed
that rectangular drop shafts with 90° outflow are the most efficient energy dissipators.
Carvalho and Leandro [4] investigated the effects of a free jet in a square drop manhole with
a downstream control gate. They found that energy dissipation and turbulence, respectively,
decrease and increase by raising the water discharge from the inlet and by opening the
gate. Granata et al. [5] tested two specific jet-breaker devices to improve flow conditions in
circular drop manholes. Jet breakers proved to be particularly effective under the worst
operating conditions of the manholes. Granata [6] investigated the basic flow patterns in
a drop-shaft cascade, showing that, as regards energy dissipation and air entrainment, a
cascade is a more efficient solution for the single drop manhole with the same total drop
height. Ma et al. [7] compared a single drop manhole with a previously reported stacked
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drop manhole in terms of energy dissipation, finding that the two different structures have
a similar performance in energy dissipation.

The hydraulic operation of a plunging drop shaft is strongly influenced by the air
entrainment phenomena that can be observed inside it. Insufficient air inlet from the outside
may lead to poor operating conditions, characterized by the choking of the downstream
flow, the onset of negative pressure inside the drop shaft, and backwater effects in the
upstream flow. Air entrainment, in turn, changes with the operating condition.

The operating conditions of a circular drop shaft, also called flow regimes, were
characterized by Granata et al. [8], who also introduced the impact number ! to predict the
onset of the different regimes as follows:

0.5
=(%) o g

where s is the drop height, g is the gravitational acceleration, V, is the average approach
flow velocity, and Dy is the drop shaft diameter.

In a later study, Granata et al. [9] characterized the air entrainment mechanisms
typically observed in a circular drop shaft, also indicating which of them act under each
flow regime. In particular, five main air entrainment mechanisms were described in the
aforementioned study: The air entrainment action by the free-falling jet, the jet plunging
into the bottom pool, the entrainment mechanism due to the water veil flowing along
the shaft wall, the entrainment induced by the droplets released after the jet break-up,
and the entrainment mechanism due to pool surface fluctuations. More details on flow
regimes and air entrainment mechanisms can be found in [8] and [9]. In the latter study [9],
typical results of manhole air demand measurements were shown. Moreover, it was proved
that maximum air demand from outside is significantly affected by incoming flow kinetic
energy and by manhole geometry. In addition, an empirical equation that allows estimating
peak air demand was proposed.

Other valuable results on air entrainment in drop shafts can be found in the work of
Ma et al. [10], who focused on tall plunging drop shafts. Air entrainment phenomena have
been more extensively studied in vortex drop shafts, but these studies are not considered
here because they are beyond the limits of this study.

The problem that has remained largely unsolved up to now is that of obtaining suffi-
ciently accurate forecasting models of the overall air demand of a circular plunging drop
shaft in any operating condition. Due to the high physical complexity of air entrainment
phenomena and the impossibility of defining simple functional relationships between the
airflow and the hydrodynamic and geometric variables on which it depends, the problem
can be effectively addressed through machine learning (ML) algorithms. In the field of
water engineering, these algorithms find their main area of application in the prediction of
hydrological quantities; however, in recent years, they have also been increasingly used to
tackle problems concerning experimental hydrodynamics. There have been several applica-
tions of ML in the context of studies on weirs [11-14] and scour in various fields [15-17].
However, there is a lack of applications of ML algorithms on issues concerning two-phase
air-water flows [18,19].

The aim of this study is to develop hybrid models based on ML algorithms to predict
the overall entrained airflow in a circular drop shaft, under all possible operating conditions.
The increase in prediction performances related to the hybridization of ML algorithms was
widely demonstrated in several studies in the literature on different topics. Sujjaviriyasup
and Pitiruek [20] proposed a hybrid model based on the support vector machine (SVM)
algorithm and an autoregressive integrated moving average (ARIMA) model to obtain
predictions in agricultural production planning. They highlighted the better performances
of the hybrid model in comparison with models based on the individual SVM algorithm
and ARIMA model. Gala et al. [21] proposed a hybrid model for solar radiation forecasting,
based on support vector regression (SVR), gradient-boosted regression (GBR), and random
forest (RF), demonstrating how hybridization led to more accurate predictions in compari-
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son with the models based on individual algorithms. Khozani et al. [22] developed different
machine learning models to estimate apparent shear stress in a compound channel with
smooth and rough floodplains. Models were based on the following algorithms: random
forest (RF), random tree (RT), reduced-error pruning tree (REPT), and M5P. Furthermore,
they also developed a hybrid model based on both M5P and bagging methods, with the
latter leading to the most accurate predictions among all models, including the one based
on the individual M5P. Kombo et al. [23] developed a hybrid model based on K-nearest
neighbor (K-NN) and random forest (RF) algorithms for the groundwater level prediction.
They compared the performance of the hybrid model with those achieved with an artificial
neural network (ANN) and with individual algorithms, including K-NN, RF, and SVR,
showing the greater accuracy of the K-NN-RF hybrid model.

The prediction models in this study were trained from data obtained during an
extensive experimental campaign carried out at the Water Engineering Laboratory of the
University of Cassino and Southern Lazio, Italy. The results shown below constitute notable
advances over the scant research conducted so far on the same topic.

2. Materials and Methods
2.1. The Experimental Setup

The experimental facility included a plexiglass circular drop shaft model (Figure 1) sup-
plied by a recirculation system [8]. The tests were carried out on three different drop shafts:

Q:r

h D,
[ g Rt

(b)

Figure 1. The experimental model: (a) image of Model 1, with clearly visible air entrainment
phenomena; (b) sketch of the model with indicated symbols.

Model 1, whose internal diameter was Dy; = 1.0 m, was investigated under three
different drop heights (s = 1.0 m, 1.5 m, and 2.0 m), while the test water flow rate Q ranged
between 31/sand 801/s;

Model 2, whose internal diameter was D) = 0.48 m, was tested under three different
drop heights (s =1.0 m, 1.2 m, and 1.5 m). Q was varied between 1.51/s and 601/s;

Model 3, whose internal diameter Dy, = 0.3 m, was tested under two different drop
heights (s = 1.2 m and 1.8 m). Q was varied between 2 1/s and 47 1/s.

The inlet and outlet plexiglass pipes had a diameter of D;, = Dy, = 200 mm. The
approach flow depth /1, (and, consequently, the approach flow-filling ratio v, = h,/D;,) was
controlled by a jet box [8], which was placed upstream of the drop shaft. Water discharges
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were measured with an electromagnetic flowmeter with 4-0.11/s accuracy. The flow depth
h, was measured by means of a piezometer and a point gauge with £0.5 mm accuracy. The
pool depth h, was evaluated by means of a set of piezometers (0.5 mm accuracy) linked
to the shaft plane bottom; time-averaged values were considered.

The air demand tests were performed by sealing the model from the atmosphere and
allowing the air supply only through the 60 mm diameter tube placed on top of the drop
shaft model. An anemometric probe was installed inside the tube, which made it possible
to measure the average speed of the flow (+0.1 m/s accuracy) during the sampling time,
assumed to be 10 min, and consequently, the incoming airflow Q,;, was determined.

2.2. Base Models
2.2.1. Random Forest

A random forest [24] is a forecasting algorithm consisting of a set of simple regression
trees suitably combined to provide a single value of the target variable (Figure 2). It
is a popular ensemble model. In a single regression tree [25], the root node includes the
training dataset, and the internal nodes provide conditions on the input variables, while
the leaves represent the assigned real values of the target variables. The development of
a regression tree model involves the recursive splitting of the input dataset into subsets.
A multivariable linear regression model provides predictions in each subdomain. The
growth of the regression tree proceeds through the subdivision of each branch into smaller
partitions, evaluating all the possible subdivisions on each field and finding at each stage
the subdivision into two separate partitions that minimizes the least squared deviation
as follows: .

2
R(t) = Wg(yz —ym(t)) 2
where N(t) is the number of units in the node f, y; is the value assumed by the target
variable in the i-th unit, and y,;, is the average value of the target variable in the node t.
R(t) evaluates the “impurity” at each node. The procedure ends when the lowest impurity
is achieved or if a different stopping rule occurs. A pruning process minimizes the risk
of overfitting.

Tree 1
F,(x)
Tree 2
Initial Dataset ‘{ Prediction
Fa(x) ’
...... >/ Training dataset .. b-rrmreeeeme| Tree

Training dataset K

Figure 2. Typical architecture of the random forest algorithm.



Fluids 2022, 7, 20

5o0f 14

In random forest algorithms, each tree is developed from a different bootstrap of the
training dataset. In addition, each node is characterized by randomly choosing only a part
of the variables with respect to which the subdivision is to be carried out. The number of
these variables does not change during the development of the forest.

2.2.2. Support Vector Regression

The support vector machine algorithm [26] is a powerful tool for addressing both clas-
sification and regression problems. In the latter case, it is called support vector regression
(SVR) (Figure 3). Its aim is to find a function f(x) with a deviation no greater than ¢ from
the experimental target values y;. Starting from a training dataset {(x;, y;),i=1,...,I} C
X x R, where X is the space of the input arrays (e.g., X € Rn) in order to identify a linear
function f(x) = (w, x) + bin which w € X and b € R, the Euclidean norm | |w | 1% must be
minimized. This is achieved by solving a constrained convex optimization problem.

Output y=f(4)

Input vector x

K(xxx)

Figure 3. Typical architecture of the support vector regression algorithm.

It is often necessary to tolerate further deviations ¢, so slack variables §&;, &*must
be introduced in the constraints. Therefore, the optimization problem can be formulated
as follows:

1 1
minimize §||w\|2+CZ(Ci+C§k) ®)
i=1

subject to vi— %) =b S et 4)
(w,x;) +b—y; <e+&f

where the constant C > 0 affects the flatness of the function and the tolerated deviations.
The SVR is made nonlinear by preprocessing the training instances x; by a function ®:
X—F, where F is a feature space. Since the results of SVR only depend on the scalar
products between the different instances, a kernel is employed instead of explicitly using
the function ®. Pearson VII universal function kernel (PUK) was used in the models built
for this research.

1

1+ <(2\/lxi - lezx/m> /a>2r

k(xi, x;) = (5)
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where the parameters ¢ and w alter the half-width and the tailing factor of the peak.
Optimal results have been achieved for o = 0.4, w =0.4.

2.2.3. KStar

The KStar algorithm [27] is an instance-based procedure derived from the k-NN
algorithm. The latter was firstly used for classification issues, where the procedure provided
a class membership as an outcome. An instance is classified based on the membership
of its neighbors: the instance is allocated to the most common class among its k-nearest
neighbors, where k is usually a small positive integer.

In regression problems, the k-NN algorithm aims to approximate continuous variables
through a weighted average of the k-nearest neighbors’ values. Weights are generally
provided by the inverse of their Euclidean distance.

The main innovative characteristic of the KStar algorithm is the use of an entropy
metric instead of the classical Euclidean metric. The distance between different instances
is evaluated by assessing the complexity of transforming one instance into another. The
computation of complexity is carried out by defining a finite set of transformations that
map instances on instances and introducing the distance K*, defined as

K*(bla) = — log, P*(bla) ©)

where P* is the probability of all paths from instance a to instance b. If the instances are real
numbers, P*(bla) is only depending on the absolute value of the difference between a and
b, and it results

1

K*(bla) = K*(i) = - 10g,(25 — §?) — 10g,(8) + i [log, (1 — §) — log,(1 ~ v/25 — 87)] @)

2

where i = la — bl, while S is a model parameter. A more detailed description of the
algorithm can be found in [22].

2.3. Hybrid Models, Evaluation Metrics, and Cross-Validation

Hybrid models can be built by combining different machine learning regression
algorithms. A simple and effective approach involves the direct combination of the results
of the individual models. In some cases, hybridization can lead to a significant improvement
in the performance of the individual forecasting algorithms. An overview of the different
rules for combining classifiers was provided by Kittler et al. [28].

In this study, the combination was obtained using the soft voting approach, which
involves the simple average of individual predictions to obtain the final result. A hybrid
regressor can outperform a set of equally performing models in order to balance their
individual weaknesses. As explained further below, four different hybrid variants were
developed starting from the three individual algorithms described above, in the context of
two different forecasting models: A variant that provides for the hybridization of the three
algorithms (Hyb_KStar-RF-SVR) and three variants that provide for the hybridization of
two of the algorithms considered (Hyb_KStar-RF, Hyb_KStar-SVR, and Hyb_RF-SVR).
The hyperparameters chosen for the individual algorithms within the hybrid models were
the optimal ones for those single models, previously reported.

The accuracy of the prediction models was assessed by four different metrics: the
coefficient of determination (R?), the mean absolute error (MAE), the root-mean-squared
error (RMSE), and the relative absolute error (RAE). These criteria are defined in Table 1.
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Table 1. Evaluation metrics.

Coefficient of Determination: it represents a measure of the

. . n 2
model accuracy, assessing how well the model fits the R2 — (1 _ XL —yf)z )
experimental results. 1 (Ya=yi)

Mean Absolute Error: it provides the average error magnitude

_ YUlfi—vil
for the predicted values. MAE = ==

Root-Mean-Squared Error: it provides the square root of the
average squared errors for the predicted values. It has the benefit RMSE — 1/ 2t (fi=w)’
of penalizing large errors. "

Relative Absolute Error: it provides the normalized total
absolute error with respect to the sum of the difference between RAE = %
the mean and each measured value. =i Ye i

In the above formulas, m is the total number of experimental data, f; is the predicted value for the
i-th data point, y; is the measured value for the i-th data point, y, is the averaged value of the
experimental data.

Starting from a training dataset of 1200 vectors, each model was developed using a k-
fold cross-validation procedure. In k-fold cross-validation, the original dataset is randomly
subdivided into k subsets. Then, k—1 subsets are used for model training data, while the
remaining single subset is used for validation. Cross-validation is repeated k times: Every
subset is employed once as the validation dataset. Finally, the k results from the folds are
averaged to obtain a single result. In this study, k = 10 provided optimal results.

3. Results and Discussion

Based on the input variables, two different prediction models were built: Model A and
Model B. For each model, seven variants were developed, changing the selected machine
learning algorithm. Model A input variables were chosen based on the dimensional
analysis. Since the densities of water and air are constant, it is possible to write

Quir = Qair(Q/ ho, D, Din, Dout, hp/ S, g) 8)

from which it is possible to obtain
,8 :f(Q:/]/o/DM/S/Dout/DM/hp/Dout) (9)

where B = Q,;,/Q is the dimensionless entrained airflow, and Q; = 1/ Q/ gD?n is a dimen-
sionless water discharge.

However, since the aforementioned variables are not sufficient to adequately charac-
terize the flow regimes, which, as mentioned above, have a priority influence on the air
entrainment phenomena, the impact number I was also included in the input variables.
Therefore, for Model A it can be assumed that

!3 = fl(QZ/yD/I/ DM/S/ Dout/DMrhp/Dout) (10)

Model B was developed in order to obtain a simpler predictive model, reducing the
input variables to those that most influence the results. A wrapper approach for feature
selection was adopted to reduce the number of input variables. This technique consists
of using a generic but powerful learning algorithm and evaluating the performance of
the algorithm on the dataset with different subsets of attributes selected. The subset
that leads to the best performance is taken as the selected subset. The algorithm used to
evaluate the subsets must be different from the algorithms used to model the problem
under investigation, but it should be generally quick to train and powerful. In this study,
the M5P algorithm [29] was used, which led to the selection of the following attributes: Q,%,
I, Dam/s, hy/ Doyt, which were, therefore, the predictors chosen for Model B.

A complete statistical description of the training dataset is reported in Table 2.
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Table 2. Statistical description of the training dataset, with the exclusion of Dyt /D).

Q* Yo I Dy/s hyp/Doyt b
Minimum Value 0.027 0.158 0.234 0.167 0.258 0.029
First Quartile 0.135 0.295 0.728 0.320 0.639 0.349
Median 0.294 0.385 0.998 0.480 0.985 0.573
Third Quartile 0.507 0.503 1.607 0.667 1.636 0.930
Maximum Value 1.417 0.950 6.374 2.000 4.600 2.709
Mean 0.352 0.406 1.309 0.578 1.199 0.694
Standard Deviation 0.265 0.139 0.895 0.401 0.725 0.473
Skewness 0.657 0.444 1.043 0.730 0.885 0.770

The table does not include the Dy, /D) variable because it only assumed three differ-
ent values, and therefore, it was not logical to provide a statistical representation.

Both input and target variables were normalized with respect to their respective maxi-
mum values. This provides a common range between 0 and 1, improving the performance
of prediction models.

The flowchart of the methodology to develop the proposed individual and hybrid
models is shown in Figure 4.

Experi

Model A: Q% v,
|, Dyt/ S, Dyue/ Dy

KStar: training

hpfDoue

Evaluation of
non-

data

o
input
parameters

and cross-
validation

RF : training and

Ho Cetion cross-validation

Model B: Q% I, SVR:training
Dy/s,hp /Dy am! cross-
validation

Figure 4. Flowchart of the model development procedure.

— (s
N>
=
N>

The results of the modeling, in terms of evaluation metrics, are summarized in Table 3

and Figure 5.

Table 3. Prediction models and variants, with the relevant predictors and evaluation metrics.

Model Predictors Algorithm R? MAE  RMSE RAE (%)
Hyb_KStar-RF-SVR 0.917 0.083 0.136 22.47
Qo*, Yo, T Hyb_KStar-RF 0.905 0.092 0.146 24.68
DA’/I /S” ’ Hyb_KStar-SVR 0.909 0.086 0.142 23.31
A Dout/Dis, Hyb_RF-SVR 0.909 0.089 0.143 24.03
/D KStar 0.887 0.099 0.159 26.59
p/ out RF 0.882 0.104 0.163 28.03
SVR 0.888 0.098 0.159 26.38
Hyb_KStar-RF-SVR 0.888 0.096 0.158 25.92
Hyb_KStar-RF 0.877 0.102 0.166 27.58
Qu* 1, Dyt /s Hyb_KStar-SVR 0.854 0.105 0.181 28.22
B h’ /’D ’ Hyb_RF-SVR 0.883 0.098 0.162 26.53
p/ Zout KStar 0.799 0.127 0.212 34.21
RF 0.875 0.108 0.167 29.09
SVR 0.818 0.121 0.202 32.58
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Figure 5. Error histograms (left) and coefficients of determination (right).

Model A showed the best predictive capabilities. The hybrid model Hyb_KStar—-RF-SVR
(R2 = 0.917, MAE = 0.083, RMSE = 0.136, RAE = 22.47%), which was the most complex
hybrid model with three different ML algorithms, led to the best predictions. The hybrid
models developed with two ML algorithms showed performances similar to each other
and, at the same time, worse than the hybrid model with three ML algorithms. In particular,
Hyb_KStar-SVR (R% = 0.909, MAE = 0.086, RMSE = 0.142, RAE = 23.31%) slightly outper-
formed both Hyb_KStar-RF (R? = 0.905, MAE = 0.092, RMSE = 0.146, RAE = 24.68%) and
Hyb_RF-SVR (R? = 0.909, MAE = 0.089, RMSE = 0.143, RAE = 24.03%). Individual ML algo-
rithms led to the less accurate outcomes, with SVR (R2 =0.888, MAE = 0.098, RMSE = 0.159,
RAE = 26.38%), which was the most accurate, and RF (R? = 0.882, MAE = 0.104, RMSE = 0.163,
RAE = 28.03%), which was the least accurate. All variants of Model A showed a slight
tendency to underestimate higher B values. Figure 6 shows the predicted versus observed
values for Model A.

Model B underperformed Model A in all its variants. Additionally, in this case, the
hybrid model Hyb_KStar-RF-SVR (R? = 0.888, MAE = 0.096, RMSE = 0.158, RAE = 25.92%)
led to the most accurate predictions. However, among the hybrid models based on two
ML algorithms, Hyb_RF-SVR (R? = 0.883, MAE = 0.098, RMSE = 0.162, RAE = 26.53%)
was the most accurate, and Hyb_KStar-SVR (R2 =0.854, MAE = 0.105, RMSE = 0.181,
RAE = 28.22%) was the least accurate. Moreover, the individual RF algorithm (R% = 0.875,
MAE = 0.108, RMSE = 0.167, RAE = 29.09%) also led to better forecasts in comparison
with Hyb_KStar-SVR. RF was little affected by the absence of y, and D, /Dy among the
input variables. The worst predictions were achieved with KStar (R? = 0.799, MAE = 0.127,
RMSE = 0.212, RAE = 34.12%). In Figure 7, predicted versus observed values for Model B
are shown.
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Figure 6. Model A: bpredicted Versus Umeasured-

Model B showed a more pronounced tendency to underestimate higher 8 values than
model A. The trend occurred for B greater than 1.5 and even affected the Hyb_KStar-RF-SVR
variant. A partial exception was the RF algorithm, where the trend was less marked.

Figure 8 shows the box plots of the relative errors (i.e., the ratio between the absolute
error and the measured values). A positive relative error indicates an underestimation of f,
and vice versa. The following observations can be highlighted:

The hybrid models were free of bias. In model A, the individual algorithms did not
lead to significantly different relative errors;

The Hyb_KStar-RF-SVR variant was characterized by the narrower interquartile
range (IQR) and by the lower number of outliers among all variants both for Model A and
Model B;
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With the same ML algorithm, Model A had slightly narrower interquartile ranges than
Model B;

The number of outliers was significantly higher for single ML algorithms, both for
Model A and for Model B. Moreover, for the latter, the number of negative outliers
clearly prevailed.

An approach based on ML algorithms for the prediction of the airflow rate entrained
in a circular drop shaft had already been proposed in [30]. In that previous study, three
individual algorithms—MS5D, bagging, and random forest—were compared. The latter had
clearly outperformed both M5P and bagging; however, the results were unsatisfactory, as
evinced also by the evaluation metrics (the value of R? was 0.793, while MAE, RMSE, and

RAE had, respectively, values of 0.1406, 0.2125, and 38.15%, in the case of RF). The models
proposed here proved to be much more accurate than the previous ones.

a) Model B - KStar-RF-SVR "
250 4

*predicted

3

3
I
g measured
3 3 3
b) Model B - KStar-RF c) Model B - KStar-SVR d) Model B - RF-SVR
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Figure 8. Box plots of the relative errors: (a) Model A and (b) Model B.

The better predictive ability of the proposed novel models depends on the follow-
ing factors:

Different choices of predictors: The inclusion of impact number I and the hy, /Doy
ratio among the input variables proved to be crucial. The I variable allows considering the
air entrainment mechanisms linked to the flow regimes, while h,/ D, allows taking into
account the obstruction effect to the dragging of air toward the downstream pipe due to
the liquid pool at the bottom of the drop shaft, when its height exceeds the diameter of the
downstream pipe.

Hybridization of models: The results show clearly that the hybrid models outper-
formed the individual-based models for the prediction of the overall entrained airflow.

The hybrid models are more and more frequently used due to their high capacity for
improving prediction performances. A hybrid machine learning model provides better
performance when the individual models are uncorrelated. For instance, it is possible
to build different models on different datasets or features: The less correlated the base
models are, the better the prediction performance can be achieved. The idea behind using
uncorrelated models is that each could address a weakness in the other. They also have
different strengths, which, when combined, will result in a better estimator.

4. Conclusions

An accurate prediction of the overall entrained airflow in a circular drop shaft is
essential to avoid the poor operating conditions related to an insufficient air inlet from
the outside.

In this study, based on a different combination of predictors, two different models were
developed to predict the overall entrained airflow. Data were obtained from a previous,
extensive experimental campaign. For each model, seven variants were compared. In
particular, three variants were based on the individual algorithms: KStar, random forest,
and support vector regression. The other four variants were based on hybrid models
developed starting from these three individual algorithms.

Model A, which considers predictors including the dimensionless incoming water
discharge, the approach flow filling ratio, the impact number, the ratio between the diameter
of the drop shaft and the drop height, the ratio between the diameters of the outlet pipe and
of the drop shaft, and the ratio between the pool depth and the diameter of the outlet pipe,
provided better predictions, compared with Model B. The latter did not consider both filling
ratio and the ratio between outlet pipe diameter and manhole diameter, resulting in a sharp
reduction in performances, in particular for the models based on individual KStar and SVR
algorithms and for the KStar—-SVR hybrid model. However, the inclusion of both impact
number I and /;,/ Doyt ratio, which allowed considering air entrainment mechanisms and
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the obstruction effect related to dragging of air, respectively, led to accurate predictions of
air demand.

Moreover, hybrid variants based on all three algorithms led to the best results across all
models, with the best metrics, narrower interquartile range, and lower number of outliers
among all variants.

Future developments of this research will be aimed at the investigation of different
hydraulic structures, e.g., vortex drop shaft and stepped spillway.
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List of Symbols
The following symbols are used in this paper:
a = KStar—generic instance
b = KStar—generic instance
b = Support vector machine—Dbias
C = Support vector machine—constant
D;, = Upstream pipe diameter
Dy; = Drop shaft diameter
Doyt = Outlet pipe diameter
F = Support vector machine—feature space
g = Gravitational acceleration
ho = Incoming flow depth
hy = Pool depth
i = KStar—absolute difference between first and last instance
I = Impact number
k =  Support vector machine—kernel function
K* = KStar—distance in the complexity computation
N = Random forest—number of units in the node t
p* = KStar—probability of all paths from instance a to instance b
Q =  Water discharge
Q,* = Nondimensional water discharge
R = Random forest—mean square error in the node t
S = KStar—model parameter
s Drop height
t = Random forest—generic node
Vv = Flow velocity
w = Support vector machine—weight
X = Support vector machine—space of the input arrays
x; = Support vector machine—experimental input values
Yi = Random forest—value assumed by the target variable in the i-th unit
Yi = Support vector machine—experimental target values
Ym = Random forest—average value of the target variable in the node t
Yo = Upstream pipe filling ratio
€ = Support vector machine—maximum deviation from the experimental target values yi

o = Support vector machine—PUK parameter from which the peak tailing factor depends
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Support vector machine—PUK parameter from which the peak half-width depends
b = Dimensionless entrained airflow

&L = Support vector machine—slack variable
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