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Abstract: This article represents the second part of a review by De Stefano and Vasilyev (2021)
on wavelet-based adaptive methods for modeling and simulation of turbulent flows. Unlike the
hierarchical adaptive eddy-capturing approach, described in the first part and devoted to high-fidelity
modeling of incompressible flows , this companion paper focuses on the adaptive eddy-resolving
framework for compressible flows in complex geometries, which also includes model-form adaptation
from low to high fidelity models. A hierarchy of wavelet-based eddy-resolving methods of different
fidelity has been developed for different speed regimes, various boundary conditions, and Reynolds
numbers. Solutions of various fidelity are achieved using a range of modeling approaches from
unsteady Reynolds-averaged Navier–Stokes simulation to delayed detached eddy simulation, wall-
modeled and wall-resolved large eddy simulations. These novel methodologies open the door to
construct a hierarchical approach for simulation of compressible flows covering the whole range of
possibilities, from only resolving the average or dominant frequency, to capturing the intermittency
of turbulence eddies, and to directly simulating the full turbulence spectrum. The generalized
hierarchical wavelet-based adaptive eddy-resolving approach, once fully integrated into a single
inherently interconnected simulation, results in being a very competitive and predictive tool for
complicated flows in industrial design and analysis with high efficiency and accuracy.

Keywords: compressible flow; turbulence modeling; adaptive wavelet collocation; Reynolds-averaged
Navier–Stokes; delayed detached eddy simulation; large eddy simulation; wall modeling

1. Introduction

Accurate modeling of compressible turbulent flows required in aerospace industry,
including aeronautical and rotorcraft engineering, turbomachinery, automotive and railway
transportation, energy and several technology-related industries, continues to be one of
the major challenges in developing simulation-based predictive tools that can be used for
design and analysis of fluid engineering systems and/or their components [1]. Compared
to the low-Mach number incompressible regime, the computational fluid dynamics of
high-speed compressible flows is further complicated by significant variations of the fluid
thermodynamic properties. The highest fidelity method, i.e., direct numerical simulation
(DNS) remains computationally prohibitive for moderate to high Reynolds-number flows,
due to the need to resolve an extremely wide range of length and time scales that results
in computational requirements exceeding current capabilities. The number of grid points
(degrees of freedom) required for DNS is proportional to either Re9/4, based on the large
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eddy characteristic velocity and length scales [2], or Re37/14, based on the stream-wise
domain size [3]. Due to the high accuracy requirements for the spatial discretization,
spectral methods [4] and compact finite difference methods [5] are the most popular
numerical schemes for DNS. However, their applications to complex geometries in realistic
engineering problems are still limited. Therefore, more efficient numerical methods than
DNS are of great interest in simulations of large scale complex flows.

In order to increase the computational efficiency of turbulent flow simulations and
substantially improve the accuracy of predictions of fluid flow characteristics, a number of
wavelet-based adaptive numerical methodologies [6–8] that explore unique properties of
wavelet analysis to unambiguously identify and isolate localized flow structures have been
developed. These methods allow to fully utilize spatial/temporal turbulent flow inter-
mittency and to tightly integrate numerics and physics-based turbulence modeling [9–12],
while resolving dynamically dominant flow structures with an active error control and
ensuring better capture of the flow physics on a nearly optimal adaptive computational
grid, ultimately leading to substantial reduction in the computational cost. Specifically,
for the results reported in Refs. [12–17], the reduction of grid points number results in
being above 90% for most of three-dimensional (3D) cases, compared to the full mesh at
the highest level of resolution.

Furthermore, tight integration of wavelet-based adaptive numerical methods with
turbulence modeling allows to construct a hierarchical eddy-capturing framework for
simulating compressible turbulent flows, where coherent flow structures are either totally
or partially resolved on self-adaptive computational grids, while modeling the effect
of unresolved motions, wherever it is appropriate. The separation between resolved
(more energetic, coherent) eddies and residual (less energetic, coherent/incoherent) flow
structures is achieved by means of the nonlinear wavelet thresholding filter (WTF). The
value of wavelet threshold controls the relative importance of resolved field and residual
background flow and, thus, the fidelity of turbulence simulations. By increasing the
thresholding level, a unified hierarchy of wavelet-based eddy-capturing turbulence models
of progressively lower fidelity is obtained, namely, the wavelet-based adaptive direct
numerical simulation (WA-DNS) [12], the coherent vortex simulation (CVS) [18], and the
wavelet-based adaptive large eddy simulation (WA-LES) [11,19–21].

A distinct advantage of this adaptive eddy-capturing framework is that the overall
physical fidelity of the simulation can be simply controlled by the WTF strength [22,23],
thereby providing a hierarchical modeling framework that allows continuous transition
among the various fidelity regimes. In fact, transition from WA-DNS to CVS, and to WA-
LES, is well established through controlling the wavelet threshold. WA-DNS uses wavelet-
based discretization of the (unfiltered) Navier–Stokes equations to dynamically adapt the
local resolution on intermittent flow structures [24,25]. Transition from WA-DNS to CVS is
achieved by using an optimal wavelet threshold [18], resulting in the decomposition of the
flow field into coherent and incoherent contributions. For WA-LES, the wavelet threshold
is further increased so that the stochastic and the least energetic coherent portion of the
turbulent solution are discarded, and only the most energetic part of the coherent vortices
are captured in the resolved field [19]. In WA-LES, the discarded subgrid-scale (SGS)
coherent structures dominate the total SGS dissipation to be modeled [26,27]. Therefore,
similar to conventional non-adaptive LES, deterministic closures [28,29] are applicable
for WA-LES by modeling SGS coherent structures in terms of resolved energetic coherent
vortices. A recent comprehensive review about the hierarchical adaptive eddy-capturing
approach for modeling incompressible turbulent flows can be found in Ref. [30].

As far as the simulation of wall-bounded high Reynolds-number flows is concerned,
the reliable and computationally efficient prediction of the effects of near-wall turbulence
still represents the major challenge for the turbulence modeling community. Recently,
a number of wall-modeled and wall-resolved wavelet-based adaptive approaches have
been developed [14,16,31,32]. Several attempts for the application of the wavelet-based
methods have been carried out for both wall-modeled and wall-resolved simulations. In the
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latter case, the wall region is fully resolved by the wavelet-based adaptive computational
mesh and no wall model is needed. Thus, the wall-resolved WA-LES [14] can be directly
applied. However, even with wavelet-based grid adaptation, the computational cost of
wall-resolved simulations at high Reynolds numbers is prohibitively high. Thus, the
Reynolds-averaged Navier–Stokes (RANS) modeling approach is still of great importance
in engineering applications. The capabilities of the recently developed wavelet-based
adaptive unsteady RANS (WA-URANS) method [16,31,32] have been demonstrated for
a variety of two-dimensional (2D) and three-dimensional (3D) high Reynolds-number
complex geometry flows, for different speed regimes and various boundary conditions.

Although the RANS methods are very popular in a wide range of industrial ap-
plications, more accurate simulations become more and more demanding in some areas,
especially considering the fast development of high performance computing [1]. To compro-
mise the accuracy and efficiency between the wall-resolved LES and RANS approaches, the
wall-modeled LES has drawn great attention in the last two decades. In fact, as estimated
by Choi and Moin [3], the computational complexity of the wall-resolved LES approach
scales as ∼Re13/7, whereas for the wall-modeled LES [33,34] it scales as ∼Re. Therefore,
the latter approach is more applicable to high Reynolds number problems, despite some
side-effects, such as the log-layer mismatch (LLM). Due to LLM, where near-wall RANS
and resolved LES away from the wall do not quite match their interception constants in the
log-law layers, the error in skin friction of about 5% to 15% is observed [35–37].

There are three well-known categories of wall-modeled LES methods: (1) the hybrid
LES/RANS methods [38–41], (2) the Detached-Eddy Simulation (DES) methods [35,36,42,43]
and (3) the wall-shear-stress modeled methods [44–48]. Both the first two categories switch
to RANS formulation in the inner layer of the wall region. The hybrid LES/RANS methods
usually use a RANS closure model in the near-wall region and an LES approach away
from the wall. In this category, the terms zonal and nonzonal are used to identify different
methods. For zonal methods, a RANS zone is specified in advance, whereas nonzonal
methods usually use a blending function to interpolate between RANS and SGS turbulent
stresses. Note that in the DES community, DES methods are usually also referred to
as hybrid LES/RANS methods. However, the DES approach appears to have a more
“seamless” inter-model transition based on length scale that switches to either a RANS
formulation or the general LES closure model, and can be considered as a unified closure
model throughout the domain [49]. Finally, the wall-shear-stress methods model the
wall shear stress directly on the wall by performing a RANS computation on a separate
boundary layer mesh and returning wall stress and heat flux as boundary conditions for
the large eddy simulation.

To build a framework for the application of wall-modeled LES approaches in the
wavelet-based adaptive methodology, the first question to address is how the WA-LES and
WA-URANS can coexist in a single simulation. The transition from WA-LES to WA-URANS
is not as straightforward as the aforementioned transition from WA-DNS to CVS, and to
wall-resolved WA-LES. In the compressible RANS modeling framework, the unknown
variables represent mean (Reynolds- or Favre-averaged) quantities, which are smooth and
whose evolution is simulated by modeling the mean effects of turbulent stresses. In fact,
as shown in Refs. [16,32], the accurate solution of the WA-URANS equations requires
wavelet threshold values as small as the ones used in WA-DNS. This is counterintuitive
when looking at the increasing fidelity regime for monotonically decreasing WTF level,
as previously discussed. However, although a low level of wavelet threshold is used to
achieve high numerical accuracy, the smooth mean solution of the governing equations
turns out to be supported by a relatively coarse adaptive mesh, regardless how fine the
mesh at the highest permitted level of resolution is.

To develop a hybrid, mathematically consistent approach with coexistence and connec-
tion between WA-URANS and WA-LES approaches, the wavelet-based adaptive delayed
detached eddy simulation (WA-DDES) formulation was recently proposed [15,50]. A vari-
able wavelet thresholding strategy was used to blend a very small wavelet threshold in
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the WA-URANS region with a relatively large value in the WA-LES region. The developed
wavelet-based adaptive extension allows to achieve both accuracy and efficiency in terms
of degrees of freedom used in WA-DDES compared to the wall-resolved WA-LES. However,
the stringent restriction on the time integration step caused by the CFL-type [51] condition
still remains to be a major issue for WA-DDES computations. In fact, despite the use of
highly stretched meshes with relatively large spacings in the wall-parallel directions to
reduce the total number of active nodes, a relatively small wall-normal mesh spacings are
employed in the region immediately adjacent to the wall, i.e., where y+ < 1. To overcome
this restriction, the new wavelet-based adaptive wall-modeled LES (WA-WMLES) method
has been introduced in Ref. [17], where the outer-layer WA-LES is supplied with a com-
pressible equilibrium wall-stress model, so that the first mesh point away from the wall
may be located at y+ & 40, thus, relieving the time step restriction.

The development of WA-URANS, WA-DDES, and WA-WMLES, as well as (wall-
resolved) WA-LES practically covers the full spectrum of wall-bounded turbulence mod-
eling approaches. Along with WA-DNS and CVS, these methods serve as segregated
steps towards the construction of a unified wavelet-based adaptive hierarchical eddy-
resolving framework for modeling complex wall-bounded compressible turbulent flows,
capable of performing simulations with various fidelity, from no-modeling DNS to full-
modeling RANS, depending on the requirement and balance of accuracy and computa-
tional efficiency.

In the hierarchical adaptive eddy-capturing approach [30] the form of governing equa-
tions is kept unchanged and the transition between models of different fidelity is achieved
through modifying the WTF level. The adaptive eddy-resolving framework, discussed in
this review, incorporates a wider class of methods that not only utilize different wavelet
thresholds but also include different governing equations with model-form adaptation.
In particular, the combination of these two features facilitates the development of wavelet-
based adaptive wall-modeled approaches. The present work represents the original attempt
at systematically expanding the application of the wavelet-based adaptive methodology
for accurate and efficient predictions of complex wall-bounded turbulent flows.

The rest of the paper is organized as follows. Section 2 introduces the wavelet-based
Favre filtered/averaged Navier–Stokes equations. In Section 3, the wavelet-based method
that is used for the numerical implementations is described. Sections 4 and 5 describe
wall-resolved and wall-modeled methods, respectively, with discussion of key concepts,
advantages/disadvantages of each method, as well as simulation examples. Finally, some
concluding remarks are given in Section 6.

2. Wavelet-Favre Filtered/Averaged Navier–Stokes Equations

In this section, the wavelet-based Favre filtered/averaged Navier–Stokes equations for
compressible turbulent flows are presented. For simplicity, Favre filtered equations for LES
computations and Favre averaged equations for RANS computations are combined into
a common form, with explanation of meanings of the integrated variables and modeled
terms for the two distinguished formulations.

WA-LES is formulated in terms of wavelet-based spatially filtered variables. For con-
ventional non-adaptive LES, the implicit or explicit linear lowpass filtering operator is
usually defined a priori and is tied to the corresponding computational mesh, with under-
resolved mesh spacings relative to DNS. In contrast to standard LES, the spatial filter used
in WA-LES is constructed by employing the WTF operator described in Section 3, which is
nonlinear and depends on the instantaneous flow realization. In the following, the WTF
operator is denoted by (·)>ε

, where ε stands for the prescribed level of thresholding. Simi-
larly to the conventional lowpass-Favre filter for variable density flows, the wavelet-Favre
filter is defined by φ̂>ε = ρφ

>ε/ρ>ε. This way, the wavelet-Favre filtered Navier–Stokes
equations involve the following primitive variables: ρ>ε, p>ε, ûi

>ε, T̂>ε and ê>ε, repre-
senting, respectively, wavelet-filtered density and pressure, together with wavelet-Favre
filtered velocity, temperature and total energy (per unit mass).
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Differently, WA-URANS is formulated in terms of Reynolds-averaged and Favre-
averaged dependent variables. Denoting Reynolds-averaging and Favre-averaging op-
erations as 〈φ〉 and {φ} = 〈ρφ〉/〈ρ〉, respectively, where φ stands for a generic physical
variable, the method involves 〈ρ〉 and 〈p〉, together with {ui}, {T}, and {e}. Note that,
in this context, since a very low level of wavelet thresholding is used, the effect of WTF is
practically negligible, and the corresponding operator symbol is omitted in the notations
of Reynolds/Favre-averaged primitive variables.

Furthermore, WA-DDES is formulated in terms of both Reynolds-averaged and spa-
tially (wavelet) filtered quantities, which exist simultaneously in this hybrid modeling
framework. In fact, the family of eddy-resolving DES models is better described in terms
of length scale formulations [49], where either Reynolds-averaged in the near-wall region
(referred to as RANS region) or low-pass wavelet-filtered Navier–Stokes equations away
from the wall (LES region) are solved. DES results in being, essentially, an eddy-resolving
method everywhere as it has to be ensemble-averaged to obtain meaningful statistical
quantities. Significant levels of fluctuations are usually observed, even in the RANS regions
of the flow domain. Therefore, in WA-DDES, all dependent variables can be interpreted as
Favre-filtered quantities.

For the sake of clarity, the simple symbols ρ, p, ui, T and e are used hereafter to denote
the resolved primitive variables for either WA-LES or WA-URANS formulations, including
WA-WMLES and WA-DDES. Therefore, the wavelet-Favre filtered/averaged Navier–Stokes
equations governing the balance of mass, momentum, and energy in compressible flows
of a calorically perfect gas, supplied with modeled turbulent terms, can be written in the
following general form:

∂ρ

∂t
+

∂(ρuj)

∂xj
= 0, (1)

∂(ρui)

∂t
+

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂τ̂ij

∂xj
, (2)

∂(ρe)
∂t

+
∂

∂xj

[
(ρe + p)uj

]
=

∂

∂xj

[
uiτ̂ij − qj

]
, (3)

where

p = ρRT, (4)

e =
1
2

uiui +
p

ρ(γ− 1)
, (5)

qj = −cp

(
µ

Pr
+

µT

PrT

)
∂T
∂xj

, (6)

τ̂ij = 2µS̃ij − τij, (7)

S̃ij = Sij −
1
3

∂uk
∂xk

δij, Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (8)

The parameter R stands for the gas constant, while cp and cv are the specific heats at
constant pressure and volume, respectively, where the specific heat ratio γ = cp/cv = 1.4
for diatomic gases is assumed. The term qj represents the sum of molecular and modeled
turbulent heat fluxes, with Pr = µcp/λ being the Prandtl number, where λ is the thermal
conductivity, and PrT the turbulent Prandtl number. In this work, these two parameters
are assumed constant, being set to Pr = 0.72 and PrT = 0.9, respectively. Note that the
temperature dependent molecular dynamic viscosity µ is given by the Sutherland’s law.
The turbulent eddy viscosity is denoted by µT, which is unknown and needs a turbulence
model for closure. The term τ̂ij is the sum of molecular and modeled stress tensors, while
Sij is the mean strain-rate tensor, with S̃ij representing the associated deviatoric part, δij is
the Kronecker delta, and the summation convention for repeated indices is assumed.
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The definition of the stress tensor depends on the formulation that is applied. In WA-
LES, where the wavelet-Favre filtered equations are considered, the SGS stress tensor is
defined as

− τij = ρ

(
unf

i unf
ĵ

>ε

− uiuj

)
, (9)

where the unclosed term unf
i unf

ĵ

>ε

involves the unfiltered velocity unf
i . In WA-URANS,

where the Favre averaged equations are considered, the Reynolds stress tensor is written as

− τij = ρ
({

ũiũj
}
− uiuj

)
, (10)

where the unclosed term {ũiũj} involves the instantaneous velocity ũi. Regardless of
the formulation, the residual stress tensor is modeled according to the eddy-viscosity
assumption, namely,

− τij = 2µTS̃ij, (11)

so that τ̂ij = 2(µ + µT)S̃ij holds for the total stress tensor (7). All the details about the
governing equations and turbulence closure models can be found in the reference articles
for the different approaches that are WA-LES [14], WA-URANS [16], WA-DDES [15],
and WA-WMLES [17].

3. Adaptive Wavelet Collocation Method

Regardless of the adopted formulation, the governing equations described in the
previous section are numerically solved using the parallel adaptive wavelet-collocation
(AWC) method [7]. This method is based on multi-resolution wavelet analysis to construct
time-dependent computational meshes with spatially varying resolution that is required
to adequately resolve the localized structures of the solution with a priori prescribed
accuracy. From previous studies on different wavelet-based turbulence modeling methods
for linearly forced homogeneous turbulence [10] and supersonic channel flow [15] the
Reynolds number scaling of wavelet-based adaptive methods is considerably slower than
cubic, i.e., Re3, required for the non-adaptive DNS. However, further investigation on the
Re scaling of the models in wavelet-based eddy-resolving hierarchy at very high Reynolds
numbers remains to be done, in order to apply the wavelet-based methods to practical
industrial flows.

Formally, the mesh adaptation is based on the analysis of wavelet decomposition of a
spatially dependent field, say u(x), sampled on a set of dyadic nested collocation points xj

k
at different levels of resolution j, formally written as

u(x) = ∑
l∈L1

c1
l φ1

l (x) +
J

∑
j=2

2n−1

∑
µ=1

∑
k∈Kµ,j

dµ,j
k ψ

µ,j
k (x), (12)

where n denotes the number of spatial dimensions, bold subscripts denote n-dimensional
indices, while L1 and Kµ,j are n-dimensional index sets associated with scaling functions
φ1

l and different family wavelets ψ
µ,j
k , respectively. Each of the basis functions, i.e., φ1

l

or ψ
µ,j
k , has one-to-one correspondence with a mesh point l ∈ L1 or k ∈ Kµ,j. Scaling

functions φ1
l carry the averaged signal, while the multi-dimensional second-generation

wavelet functions ψ
µ,j
k define local, variational details. The amplitudes are given by the

coefficients c1
l and dµ,j

k , respectively, and hence have a unique correspondence to mesh
points. The levels of resolution span over 1 ≤ j ≤ J, with 1 and J being respectively the
coarsest and finest levels of resolution present in the approximation. During the wavelet
transform, detail (or wavelet) coefficients dµ,j

k are obtained recursively from scaling function

coefficients cµ,j
k , from level J to 2. After the wavelet transform, the coefficients c1

l (l ∈ L1)

and dµ,j
k (k ∈ Kµ,j) are stored, respectively, at the mesh points of the coarsest (j = 1) and
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higher (2 ≤ j ≤ J) levels of resolution. Note that for n-dimensional space, there are (2n − 1)
families of wavelet functions, which are indexed by µ.

Wavelet-based filtering arises naturally from the series expansion (12). The WTF oper-
ation is performed by applying the wavelet transform to the original field u(x), zeroing
the wavelet coefficients below a given threshold, say ε = ε(x, t) for generality, and trans-
forming back to the physical space. The resulting approximate field, say u>ε(x), composed
of a subset of the original wavelets, represents the dominant modes and can be formally
written as the following conditional series:

u>ε(x) = ∑
l∈L1

c1
l φ1

l (x) +
J

∑
j=2

2n−1

∑
µ=1

∑
k∈Kµ,j

|dµ,j
k |>ε‖u(x)‖

dµ,j
k ψ

µ,j
k (x). (13)

In many implementations, the filter threshold is taken to be relative to some charac-
teristic scale, often represented by either the L2 or L∞ norm of u(x) taken globally over
the domain and denoted as ‖u(x)‖ [19]. The resulting nonlinear filtering operation prac-
tically separates resolved flow structures and unresolved residual motions, where, for a
properly normalized threshold, the reconstruction error of the filtered variable is shown to
converge as

‖u>ε − u‖ ≤ Cε‖u‖, (14)

with C = O(1) [52].
The dynamic mesh adaptation is tightly coupled with WTF, because, due to the one-

to-one correspondence between wavelets and grid points, the nodes are omitted from the
computational mesh if the associated wavelets are excluded from the truncated approxima-
tion (13). Indeed, the multilevel structure of the wavelet approximation provides a natural
way to obtain the solution on a nearly optimal numerical mesh, which is dynamically
adapted to the evolution of the main flow structures, both in location and scale, while
higher resolution computations are carried out in the regions where (and only where) steep
gradients in the resolved flow field occur. The multi-resolution wavelet decomposition
(13) is used for both mesh adaptation and interpolation, while the derivatives at the adap-
tive computational nodes are found by differentiation of the local wavelet interpolant at
appropriate level of resolution [6,53].

It is worth noting that per-point cost of adaptive simulations is about three times more
expensive for the AWC method with respect to corresponding non-adaptive simulations,
which makes the adaptive method in principle outperform the corresponding non-adaptive
one when less than one third of the mesh points are retained in the calculation or, equiva-
lently, the grid compression ratio exceeds 67%. Based on the results reported in previous
works [12,14–17], typical compression ratios above 90% are observed for most 3D cases.

The second-generation wavelet bases described above rely on topologically rectilinear
meshes and inherently isotropic mesh elements. This restriction puts some limitations
on the applicability of the approach for simulation of complex geometry wall-bounded
turbulent flows. These limitations were recently overcome with the development of the
anisotropic AWC (A-AWC) method [54]. This enhanced formulation preserves active
error-controlling properties of the original method [6,7,53,55], but provides the additional
flexibility to control mesh anisotropy and to solve flow problems in complex domains.
In practice, by separating the computational space from the physical one and introducing a
mapping between them, the use of anisotropic curvilinear meshes in complex geometries
is permitted. At the same time, the structured rectilinear assembly of collocation points
in the computational space is retained, which allows the use of computationally efficient
discrete adaptive wavelet transform and derivative approximations. A-AWC utilizes a
general curvilinear coordinate mapping function x(ξ), which can be either continuous
or discrete. The mapping coordinates are viewed as additional variables, which can be
adapted on and differentiated in computational space, thus, allowing the construction of
the Jacobian matrix
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Jij ≡
∂xi
∂ξ j

. (15)

Spatial derivatives in physical space are evaluated numerically as

∂

∂xi
=

∂ξ j

∂xi

∂

∂ξ j
= J −1

ij
∂

∂ξ j
, (16)

where J −1
ij is the inverse Jacobian matrix.

4. Wall-Resolving Approach

The WA-LES approach was extended for computational modeling of compressible
wall-bounded attached turbulent flows in [14], where the wavelet-Favre filtered compress-
ible Navier–Stokes equations were derived. According to the wall-resolving approach,
the spatial mesh was highly stretched in the wall-normal direction, with mesh spacings at
the highest level of resolution practically corresponding to DNS-like resolution. Indeed, effi-
cient and accurate calculations were permitted by the use of A-AWC method for the numer-
ical implementation. The unknown SGS stresses (9), together with the other unclosed terms
in the governing equations, were approximated by means of eddy-viscosity/conductivity
models based on the anisotropic minimum-dissipation (AMD) approach, which has low
computational complexity while being particularly suitable for anisotropic grids [56].

The performance of compressible WA-LES was assessed by conducting wall-resolved
simulations of fully developed supersonic turbulent flow in a plane channel with isothermal
cooled walls, at different Mach and Reynolds numbers [14]. This flow configuration repre-
sents a well-established benchmark for wall-bounded turbulent compressible flows [57].
In Figure 1, an example of instantaneous adapted grid, colored by the thermal field nor-
malized by the wall temperature, is reported for the flow case at Ma = 1.5 and Re = 3000,
which was simulated by prescribing ε = 2.5× 10−2 for WTF. As was expected, the spatial
mesh resulted in being highly refined around localized flow structures. It is worth noting
that the choice of the uniform level of thresholding is very important, especially when no
explicit filtering operation is performed and the pure built-in filtering effect of AWC is
exploited [21]. This parameter was selected as a fair compromise to ensure the necessary
numerical accuracy, while keeping acceptable the computational cost. The detailed discus-
sion of how the WTF level affected the compressible WA-LES solution was also included
in [14].

X

Y

Z

1.4

1.3

1.2

1.1

1

Figure 1. WA-LES of supersonic channel flow: instantaneous adapted mesh, colored by normalized
temperature field, at four different channel cross-sections.
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Both feasibility and effectiveness of WA-LES in the high-speed compressible regime
were demonstrated by making a comparison with reference DNS [57] and LES [58] of the
same flow. The mesh resolution and some mean flow results for the three different solutions
are presented in Table 1, where the subscript c is used to indicate values at the channel
center. Note that, for WA-LES, while the resolution corresponding to an equivalent non-
adaptive grid is shown for the two homogeneous directions, the minimum mesh spacing
in the wall normal direction actually corresponds to the finest mesh that was employed
in the simulation. The friction Reynolds and Mach numbers, Reτ and Maτ , as well as
the heat flux coefficient, −Bq, were reasonably predicted, consistently with non-adaptive
LES data. Very importantly, the good agreement with reference DNS was obtained by
retaining less than 4% of the AWC points at the highest level of resolution. As illustrated
in Figure 2, where the profiles of normalized mean density, temperature, and streamwise
momentum are shown, WA-LES was able to almost perfectly reproduce mean flow features,
which is fully consistent with reference LES data [58]. Moreover, turbulent flow statistics
were well predicted, as demonstrated by the profiles of turbulent shear stress and mean
square temperature fluctuation depicted in Figure 3. The accuracy of resolved turbulent
fluctuations in the wall region demonstrated an important feature of compressible WA-LES.
Close to the wall, owing to the automatic grid adaptation, the presence of high gradients in
the mean flow-field variables, along with significant turbulent fluctuations, leaded to the
use of refined grids. This fact must be taken into consideration when making a comparison
between WA-LES and LES resolutions. Indeed, this behavior contributed to retain energy at
high wavenumbers and caused the correspondingly increased local resolution with respect
to conventional lowpass filter-based LES. In contrast, in the central region of the channel,
due to the slowly spatially varying mean flow and less significant turbulence, coarser grids
were employed in the calculation.

Table 1. WA-LES of supersonic channel flow: mesh resolution and mean flow results compared to conventional LES
and DNS.

Method Resolution ∆x+1 ∆x+2,wall ∆x+3 Reτ Maτ −Bq ρc/ρwall Tc/Twall uc/Ubulk

WA-LES 129× 87× 86 21.0 0.12 10.5 216 0.079 0.045 0.718 1.39 1.17
LES [58] 128× 65× 81 21.5 0.11 11.3 219 0.079 0.05 − 1.40 −
DNS [57] 144× 119× 80 19 0.1 12 222 0.082 0.049 0.723 1.38 1.18
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Figure 2. WA-LES of supersonic channel flow: profiles of normalized mean density, temperature, and streamwise momen-
tum, compared to reference DNS [57].
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Figure 3. WA-LES of supersonic channel flow: profiles of turbulent shear stress and mean square
temperature fluctuation, compared to reference DNS [57].

5. Wall-Modeling Approaches

This section reviews three different wall-modeled methods attempting to deal with
wall-bounded compressible turbulent flows with complex geometries, different speed
regimes, various boundary conditions, at moderate to high Reynolds numbers.

5.1. Wavelet-Based Adaptive Unsteady Reynolds-Averaged Navier–Stokes

In contrast to conventional non-adaptive RANS modeling, where the mesh is specified
a priori, the WA-URANS approach uses dynamically adaptive meshes, where the finest
allowed grid resolution could be considerably smaller [16,31,32]. This implies that grid
convergence is automatically achieved as long as the wavelet threshold is sufficiently small,
as follows from the estimate (14), which guarantees that the error of the adaptive numerical
solution with respect to the corresponding solution on non-adaptive computational mesh,
at the highest level of resolution, is bounded by the wavelet threshold. In fact, a relatively
small threshold (/O(10−3)) must be used for WA-URANS, since the unknown mean
variables in the governing equations have to be solved accurately. One interesting feature
of WA-URANS is its ability to check whether the solution converges to the mean flow
results of conventional RANS, when very small grid spacings are allowed in both wall-
normal and wall-parallel directions, which is quite expensive for non-adaptive simulations,
whereas an accurate A-AWC solution can be obtained in a very efficient manner.

The accuracy and efficiency of WA-URANS simulation for a given highly refined
mesh and a priori prescribed level of thresholding is demonstrated for 2D simulations of a
subsonic zero pressure gradient flat plate boundary layer (BL) [16]. The flow configuration
corresponds to the case found on the NASA Turbulence Modeling Resource website
(https://turbmodels.larc.nasa.gov/flatplate.html (accessed on 16 June 2021)). Results of
the study of the dependence on the wavelet threshold, in terms of mesh size and predicted
skin friction at a given streamwise location, are listed in Table 2, compared with the NASA
CFL3D results using the Spalart-Allmaras (SA) model [59] and the non-adaptive full mesh
with all grid points at the highest level of resolution. Therefore, the error introduced by
the wavelet-based adaptation is the relative difference between the WA-URANS and the
CFL3D non-adaptive simulations. As expected, the mesh size increases with decreasing
threshold, while the error of skin friction C f decreases. Also, note that the error magnitudes
are of the expected order of 10−3. This shows that a smooth mean solution of the RANS
equations can be accurately represented by a quite coarse adaptive mesh, compared to the
solution on the finest non-adaptive mesh. WA-URANS was also tested for more complex
flows for subsonic and transonic speeds [16]. For the latter case, an anisotropic extension
of the original wavelet-based shock capturing scheme [60] was used in the proximity of
the shock.

https://turbmodels.larc.nasa.gov/flatplate.html
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Table 2. WA-URANS of flat plate BL: dependence study on WTF threshold for mesh size and skin
friction, compared to NASA CFL3D using the SA model.

Case ε = 4.0 × 10−3 ε = 2.0 × 10−3 ε = 1.0 × 10−3 ε = 5.0 × 10−4 CFL3D

Mesh
size 6.6 K 7.5 K 9.3 K 11.0 K 209.8 K

C f 0.0026879 0.0026900 0.0026972 0.0026984 0.0027056
Error 0.654% 0.576% 0.310% 0.266% –

A benchmark case for subsonic flows with shape induced separation involved a wall-
mounted hump geometry, also known as 2D NASA hump case, representative of the upper
surface of an airfoil. This actually represents a NASA standard test case, for which the
original experimental study was reported in Ref. [61]. The computational configuration
mainly followed the NASA 2004 CFD validation workshop [62], where it represented the
baseline validation case with no plenum for flow control. The hump chord based Reynolds
number was relatively high, around one million, while the far field Mach number was
Ma = 0.2. The resulting velocity field and adaptive mesh are depicted in Figures 4 and 5,
respectively. Apparently, local mesh refinement is located at the separation shear layer,
where mesh cells are nearly isotropic. The skin friction and pressure coefficient over the
bottom wall are plotted in Figure 6, for both WA-URANS and conventional RANS obtained
with the NASA CFL3D code [62], supplied with the SA model, compared to experimental
findings. Both numerical solutions fail in predicting the separation bubble size, showing
the reattachment point at X/c ≈ 1.26, whereas experiments provided X/c ≈ 1.1.

Figure 4. WA-URANS of NASA hump flow: contours of mean streamwise velocity, normalized by
bulk flow reference velocity, around the separation bubble.

Figure 5. WA-URANS of NASA hump flow: adaptive mesh around the separation bubble. The col-
ored contours represent the adaptive mesh resolution levels.
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Figure 6. WA-URANS of NASA hump flow: skin friction and pressure coefficients over the bottom wall. Comparison is
made with experimental data [61] and results by NASA CFL3D code supplied with SA model [62].

Furthermore, a benchmark case for transonic flows with shock induced separation
was represented by the so-called Bachalo-Johnson flow. The original experiments [63] for
this flow had an axisymmetric bump placed over a cylinder aligned with a wind tunnel
and adjusted to produce a shock wave, which resulted in the turbulent BL separation.
The Reynolds number based on the bump chord was Rec = 2.763× 106 and the far field
free-stream Mach number was Ma = 0.875.

The mean streamwise velocity contours and the corresponding adaptive mesh are
depicted in Figures 7 and 8, respectively. Apparently, the major local mesh refinement is
concentrated in the shock region, while another region of local mesh refinement can be
seen just on the bump surface, say, at 0.2 < x < 0.5. In fact, this is a favorable pressure
gradient region with relatively thinner BL thickness and, hence, sharper gradients of the
velocity occur than those of other attached flow regions. The skin friction and pressure
coefficients over the bottom wall are plotted in Figure 9, where the conventional RANS and
WA-URANS predictions are very close to each other. Compared with the available pressure
distribution provided by the experiments, the predicted shock locations by both RANS
methods were observed downstream of the measured location. In addition, the separation
bubble correlated with the pressure distribution was poorly predicted.
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Figure 7. WA-URANS of Bachalo-Johnson flow: contours of mean streamwise velocity normalized
by free-stream speed of sound.
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Figure 8. WA-URANS of Bachalo-Johnson flow: adaptive mesh. The colored contours represent the
adaptive mesh resolution levels.
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Figure 9. WA-URANS of Bachalo-Johnson flow: skin friction and pressure coefficients over the bottom wall. Comparison is
made with experimental data [63] and results by NASA CFL3D code supplied with SA model [62].

Although the WA-RANS methods can handle complex turbulent flows at high
Reynolds numbers with coarse adaptive mesh and very fine effective mesh resolution, for a
given accuracy, both the subsonic flow over the hump and transonic flow over the bump
cases showed an inherent “bottle-neck” of the RANS approach in capturing the mean field
of the turbulent flow separation. This issue can be addressed by eddy-resolving turbulence
modeling methods, such as the WA-DDES and WA-WMLES methods discussed in the
next sections.

5.2. Wavelet-Based Adaptive Delayed Detached Eddy Simulation

The WA-DDES approach for wall-bounded compressible turbulent flows was devel-
oped in Ref. [15], where its effectiveness was demonstrated for flow simulations using
the SA model based formulation [35]. WA-DDES exploits a variable wavelet thresholding
strategy by blending two distinct reference thresholds, which are completely different for
WA-URANS and WA-LES regimes. In fact, on one hand, the accuracy of WA-URANS
solution would be lost if the aggressively high level of thresholding typical to WA-LES
were used. On the other hand, WA-LES would automatically switch to WA-DNS, if the
very low level of thresholding typical to WA-URANS were prescribed, which is also unac-
ceptable. Since the original DDES model already makes use of a blending function [35],
which switches between the length scales in LES and RANS regions, and serves as a good
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indicator between the two regions, it is natural to use the same blending function, say fd,
for defining the actual threshold in WA-DDES computations. This way, by interpolation
between the two limit values, say εRANS and εLES, the following hybrid threshold,

εhyb = (1− fd) εRANS + fd εLES, (17)

was used to perform A-AWC grid adaptation. For example, Figure 10 shows the instanta-
neous blending function contours for WA-DDES of supersonic channel flow, where RANS
and LES regimes practically correspond to blue and red zones, respectively.
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Figure 10. WA-DDES of supersonic channel flow: instantaneous contours of the blending function.

In addition to wavelet threshold blending, a split mesh adaptation strategy on mean
and fluctuating quantities, with two different WTF levels, helped to further reducing the
total number of retained AWC points and, thus, the computational cost of the simulations.
Decomposition of the fields into mean and fluctuating parts resulted in the corresponding
decomposition of the wavelet coefficients in (13), specificallly,

dµ,j
k = d̄µ,j

k + d′µ,j
k (18)

where d̄µ,j
k and d′µ,j

k represent mean and fluctuating components, respectively. As a conse-
quence, the thresholding criterium was replaced by

|d̄µ,j
k | > ε1‖〈u(x)〉‖, |d′µ,j

k | > ε2‖u′(x)‖ (19)

where 〈u〉 and u′ represent the mean and fluctuating components of u. The splitting
strategy provided a tighter control on the grid adaptation process, while being more
flexible than the one based on a single threshold. In fact, using ε1 � ε2 leads to a more
accurate representation of the mean flow quantities, along with a more precise control of
the relative resolution of fluctuating components, because more physically relevant scales
based on the turbulence intensity are used, instead of relying on instantaneous flow scales.
Note that the splitting operation was employed for both εRANS and εLES values [15].

Both accuracy and efficiency in terms of degrees of freedom for WA-DDES with
novel adaptation strategy were successfully achieved for supersonic channel flow, also
making a comparison with wall-resolved WA-LES, where grid adaptation was performed
on instantaneous quantities using a priori defined uniform thresholds [14]. Moreover,
thanks to the benefit of adaptive local mesh refinement, the WA-DDES formulation is able
to resolve the typical log-layer mismatch issue that is encountered for conventional non-
adaptive DDES of attached flows [35]. Figure 11 shows the turbulent shear stress profiles
predicted without and with threshold splitting. When adapting on the instantaneous
field, the excessive filtering of fluctuating components in the LES region resulted in under-
resolving the turbulent shear stress, which caused an excessive underestimation of the
total shear stress, as shown Figure 11a. The log-layer mismatch is significantly mitigated
by using split adaptation, where a larger portion of the turbulent shear stress is resolved,
as demonstrated in Figure 11b.
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Figure 11. WA-DDES of supersonic channel flow: turbulent shear stress profiles predicted without (left) and with (right)
split adaptation, compared to reference DNS [64].

Finally, to demonstrate the capability of WA-DDES for flows with massive BL separa-
tion, the simulation of subsonic channel flow with periodic hill constrictions is presented.
The present flow geometry corresponds to Case 81 of the ERCOFTAC “Classic Collection”
database. Periodic hill crests are separated by 9H and the channel height from the plane
top wall to the hill feet is Ly = 3.035H, while the domain size in the span-wise direction
corresponds to the typical value 4.5H, where H is the hill’s height. The bulk flow Reynolds
and Mach numbers, ReH = 2.8× 103 and Ma = 0.2, are based on the hill’s height and the
bulk velocity between the hill crests and the top wall.

The AWC grid corresponds to the effective resolution of 2560× 768× 1280 at the
finest level that is J = 8. A body-fitted mesh is generated using the algebraic method with
analytical or discrete grid coordinates defined between the top and bottom boundaries.
Grid points are evenly distributed in the x and z directions. For grid points along the y
direction with the same x coordinate, a hyperbolic distribution is employed to define the y
coordinates between the wall boundary nodes. The wall neighboring grid aspect ratio is
∆x+/∆y+ ≈ 13 and ∆y+(1)max ≈ 0.11 at the finest level. No-slip and isothermal boundary
conditions are imposed on the walls and periodicity is assumed in the stream-wise and
span-wise directions. The 3D WA-URANS solution reported in [16] with the same grid at
the finest level is used as the initial condition for the WA-DDES computation.

As illustrated in Figure 12, good agreement with DNS and great improvement over
WA-URANS, in terms of separation bubble size, are obtained [15]. The size of the separation
bubble is close to the DNS solution. The averaged skin friction C f for WA-DDES is
plotted in Figure 12, compared with DNS as well as 2D and 3D WA-URANS. Significant
improvement is achieved with the reattachment point of the major separation bubble and
the secondary separation bubble being resolved much better than WA-URANS, despite of
an overestimation for the size of the secondary separation bubble. In addition, the peak
value of C f at the upwind side of the second hill excellently agrees with the DNS data.
Such an improvement benefits from the eddy-resolving simulation invoked by WA-DDES,
because RANS results are generally poor for separated turbulent flows, regardless the
relatively low Reynolds number.
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Figure 12. WA-DDES of periodic-hill channel: mean skin friction coefficient on the lower wall,
compared to reference DNS [65].

The resulting adaptive mesh with a very high compression ratio of 99.9% is achieved.
Note that the effective wavelet dyadic grid resolution is higher than the DNS grid of [65]
that is 513× 257× 289, while the adaptive grid size is less than 8% of the non-adaptive
DNS grid. The seemingly over-refined effective resolution of WA-DDES is justified by
the fourth-order wavelet-based approximation used in this paper compared to the eighth-
order compact finite difference schemes employed in the reference DNS. Due to adaptive
nature of AWC, marginally resolved simulations as the non-adaptive DNS reference case
result in aliasing errors that spread and considerably increase the number of adaptive
grid points used in the simulations, compared to the well-resolved calculations at higher
level of resolution. Furthermore, the high resolution is mitigated by considerably higher
compression ratio achieved in WA-DDES compared to WA-DNS.

5.3. Wavelet-Based Adaptive Wall-Modeled Large Eddy Simulation

One major motivation for developing the wall-modeled approach is to overcome the
stringent restriction on step size for time integration, which is caused by the necessary use
of very small wall-normal mesh spacings immediately adjacent to the wall. Note that this
restriction is valid not only for wall-resolved WA-LES, but also for WA-DDES. The key idea
behind WA-WMLES is to use the WA-LES approach to resolve only outer-layer scales, with
the wall shear stress and heat flux being provided by the inner-layer RANS model, while
transferring data from one model to another at a given exchange location (EL). The latter
results in being a user-defined parameter that has to be adjusted based on the BL thickness.
In order to prevent the log-layer mismatch, this parameter was recommended [37] to be
located in the lower portion of the log-layer and within 10% of the BL thickness. This way,
the WA-LES mesh does not resolve the viscous sublayer and the CFL restriction due to
near-wall mesh spacing is removed. Indeed, the first mesh point away from the wall may
be located even at y+ & 40, so that considerably cheaper explicit time integration schemes
can be used.

Following [37,66], the separate inner-layer wall model incorporated in WA-WMLES
employed the equilibrium BL model, where the governing equations form a system of two
coupled ODEs, namely,

d
dη

[
(µ + µwm

T )
du||

dη

]
= 0, (20)

d
dη

[
(µ + µwm

T )u||
du||

dη
+

(
µ

Pr
+

µwm
T

Prwm
T

)
dT
dη

]
= 0, (21)
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where η is the wall-normal coordinate, u|| the wall-parallel velocity, and T the temperature.
The above equations are solved for 0 < η < ηEL, where ηEL stand for the wall-normal dis-
tance at EL. As to boundary conditions, no-slip condition for u|| and isothermal/adiabatic
wall condition for T are assumed at η = 0, while u|| = u||EL and T = TEL are imposed at

η = ηEL, with u||EL and TEL being obtained through linear interpolation from the closest LES
mesh point [66]. Note that, due to the flexibility of the interpolation method, the LES mesh
does not need to be orthogonal at the wall. An illustration is given in Figure 13 depicting a
non-orthogonal LES mesh, the closest LES mesh points to the exchange locations, and the
boundary points for the RANS ODEs on the wall and the exchange layer.

Figure 13. WA-WMLES: schematic depicting the LES mesh, with exchange layer (red curve), clos-
est LES mesh points (blue circles), line segments for RANS ODEs integration (red dashed lines),
and corresponding endpoints (black and red circles).

Using the simple mixing-length approximation, the wall-model eddy viscosity in the
equilibrium BL equations was determined as [37]

µwm
T = κη

√
ρτwm

w

[
1− exp

(
− η+

A+

)]2

, (22)

where A+ = 17 and κ = 0.41, while Prwm
T = 0.9 was set for the wall-model turbulent

Prandtl number in (21). WA-LES had to be supplied with the wall values of the total stress
and heat flux that are defined by Equations (7) and (6). Assuming that the wall shear stress
was aligned with the wall-parallel velocity at EL, it holds

(τ̂ijnj)
LES
w = τwm

w e||i , (23)

where nj is the unit vector in the wall-normal direction and e||i is the unit vector parallel to

the wall that is aligned with the direction of u||EL. Similarly, the wall heat flux was given by

(qjnj)
LES
w = qwm

w . (24)

The last two equations involve the known terms τwm
w and qwm

w that are the wall shear stress
and heat flux returned by the wall-model. Moreover, due to the equilibrium BL hypothesis,
the pressure was assumed to be wall-normal independent (and equal to the pressure at
EL), so that (

∂p
∂xj

nj

)LES

w

= 0, (25)

which can be rewritten as a Robin-type boundary condition for the density field. The com-
pressible WA-LES Equations (1)–(3) were solved by imposing the wall-normal convective
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fluxes (for density, momentum and energy) to be zero at the wall, with the same condition
holding for the wall-normal viscous flux in the energy Equation (3), along with the wall
boundary conditions (23), (24), and (25).

The WA-WMLES method extends the application of wavelet-based methods to realistic
wall-bounded turbulent flows at relatively high Reynolds numbers, where (wall-resolved)
WA-LES and WA-DDES would require substantially larger computational resources. It is
worth noting that WA-WMLES behaves exactly the same as WA-LES in the outer-layer,
where the turbulent large-eddies are effectively resolved. Owing to this fact, the predictive
performance of WA-WMLES for complex turbulent flows with BL separation are generally
superior to WA-URANS.

To demonstrate the WA-WMLES performance, the results of the simulation of the
subsonic NASA hump flow, which was already considered in Section 5.1, is presented.
The mesh spacings at the finest level of resolution, in both wall and chord units, are sum-
marized in Table 3, along with the corresponding mesh data for selected simulations in
the literature. Note that the finest effective mesh resolution of WA-WMLES is consistently
smaller than non-adaptive WMLES, but relatively close to WRLES, while similar accuracy
is achieved with considerably fewer degrees of freedom than in non-adaptive WMLES.
The combination of small mesh size with aggressive compression ratio and effective fine
mesh spacing with controlled error are the key attractive points of WA-WMLES. The sepa-
ration and reattachment locations for the current and reference simulations are given in
Table 4, where the bubble length and the error in bubble length are also provided. Overall,
the WA-WMLES results are similar to reference results, especially taking into account that
many aspects of numerical simulations may affect the predicted separation bubble.

Table 3. Grid resolution for the NASA hump flow simulations, in both wall and chord units. The wall unit is normalised by
the kinematic viscosity over the friction velocity. All data are evaluated at the inflow flat-plate turbulent boundary layer,
while the subscript 1 denotes the first wall-normal mesh spacing.

Grid WA-WMLES WMLES [67] WMLES [68] WMLES [69] WRLES [70]

∆x+ 90 600 300 360 25

∆x/c (3.8 ∼ 38) × 10−4 (12 ∼ 180) × 10−4 (12 ∼ 200) × 10−4 (15 ∼ 100) × 10−4 7.2 × 10−4

∆z+ 40 100 120 180 12.5

∆z/c 1.2 × 10−3 3.1× 10−3 3.8× 10−3 5.0× 10−3 3.6 × 10−4

∆y+1 13 20 50 36 0.8

∆y1/c 3.6× 10−4 5.5× 10−4 13× 10−4 (2.0 ∼ 33) × 10−4 2.2× 10−5

Span size/c 0.3 0.4 0.6 0.3 0.4

Total size/million 7.5 9.4 12.9 11 420

Table 4. Comparison of separation and reattachment locations for NASA hump flow. Note that all
WMLES cases use the equilibrium wall model.

Case Separation
(x/c)

Reattachment
(x/c)

Bubble Length
(∆x/c)

Error in
Bubble

WA-WMLES 0.677 1.138 0.461 6.0%

WMLES [68] 0.680 1.084 0.404 −7.1%

WMLES [69] 0.655 1.105 0.450 3.4%

WRLES [70] 0.641 1.09 0.449 3.2%

Experiment [71] 0.665 (±0.005) 1.10 (±0.005) 0.435 –
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The instantaneous turbulent flow structures are shown in Figure 14, where the Q-
criterion isosurfaces, colored by streamwise momentum, are displayed. Along the front
of the hump, streamwise streaks and small scale vortices are seen, while, downstream
of the hump, larger scale horse-shoe shape vortices are observed, which indicates the
strong-intensity turbulent shear layer over the separated recirculation region. The effect
of the wall model is demonstrated in Figure 15, where the contours of the instantaneous
skin friction coefficient C f , calculated from the wall shear stress returned from the wall
model, are plotted on the streamwise-spanwise plane. Note that in the region of flat
plate BL the reasonably high skin friction due to streamwise streak structures is properly
predicted by the RANS model. The separation region can be identified by the negative
dominant values of C f with subsequent growth of the skin friction coefficient with the re-
solved fluctuations after the flow reattachment. Moreover, the time and spanwise averaged
skin friction and pressure coefficients over the wall are plotted in Figure 16, compared to
wall-resolved LES [70], non-adaptive WMLES [68,69], NASA CFL3D results with the k-ω
SST RANS model (https://cfl3d.larc.nasa.gov/ (accessed on 31 May 2021)), and experi-
ments [71]. Note that all WMLES results were obtained with the same equilibrium wall
model presented here. WA-WMLES results show close agreement with wall-resolved LES
and non-adaptive WMLES and great improvement compared to RANS counterparts that
were shown in Figure 6.

0.2   0.4   0.6   0.8   0.0   1.0   

X_Momentum

Figure 14. WA-WMLES of NASA hump flow: instantaneous Q-criterion isosurfaces colored by
streamwise momentum.

Figure 15. WA-WMLES of NASA hump flow: instantaneous skin friction coefficient on the
streamwise-spanwise plane.

https://cfl3d.larc.nasa.gov/


Fluids 2021, 6, 331 20 of 24

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

-0.5  0  0.5  1  1.5

C
f

x/c

Cf over wall

experiments w/ endplates
WRLES Uzun Ma=0.2
WMLES Park Ma=0.2
WMLES Iyer Ma=0.1
SST CFL3D Ma=0.2
WA-WMLES Ma=0.2

-1.5

-1

-0.5

 0

-0.5  0  0.5  1  1.5

C
p

x/c

Cp over wall

experiments w/ endplates
experiments w/o endplates

WRLES Uzun Ma=0.2
WMLES Park Ma=0.2
WMLES Iyer Ma=0.1
SST CFL3D Ma=0.2
WA-WMLES Ma=0.2

Figure 16. WA-WMLES of NASA hump flow: time and spanwise averaged skin friction (left) and pressure (right)
coefficients over the wall.

6. Concluding Remarks

In order to make a comparison between the presented wavelet-based adaptive eddy-
resolving methods for complex wall-bounded compressible turbulent flows, a brief sum-
mary of the main features is provided in Table 5. Depending on different requirements
of fidelity, affordable computational costs, and capabilities of applications, each method
comprehensibly has its own advantages and disadvantages. As far as fidelity is concerned,
it is worth stressing that, even though all based on the utilization of the AWC methodology,
these methods represent formally different approaches to turbulence modeling and simula-
tion. WA-URANS solves the Reynolds-averaged compressible Navier–Stokes equations
in terms of mean flow variables, where the use of very low thresholds leads to negligible
wavelet-filtering effects. Differently, WA-LES solves the wavelet-filtered compressible
Navier–Stokes equations, where the threshold level controls both the turbulence resolution
and the numerical accuracy of the solution, unless a different explicit filtering formulation
is applied [21].

Table 5. Summary of wavevet-based adaptive eddy-resolving methods for wall-bounded compressible turbulent flows.

Method Model Form Adaptation Wall Effect Mesh Size Computational Cost Fidelity

Eddy-capturing
methods [30]

{WA-DNS No Resolved Very Large Prohibitive High
CVS No Resolved Very Large Prohibitive High
WA-LES No Resolved Large Very large High
WA-WMLES Yes Modeled Moderate Moderate Moderate
WA-DDES Yes Modeled Moderate Large Moderate
WA-URANS No Modeled Small Small Low

Ongoing research is devoted to further developments of the methods reviewed in this
work, which improve their performance and extend the range of applications. For instance,
new localized dynamic models for wall-resolved compressible WA-LES, similarly to what
has been developed in the past for incompressible flows [29], and non-equilibrium dynamic
wall-models for WA-WMLES, based on unsteady 3D RANS equations [46,47], are under
development. However, one major long-term goal of research in wavelet-based turbulence
modeling and simulation is to integrate the existing adaptive methods for compressible
flows into a unified hierarchical eddy-capturing approach, capable of performing a single
simulation with coexistence, connection and even active communication between different
fidelity methods. This can be achieved once an optimal wavelet filtering threshold field
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with spatio-temporal variation is systematically defined, since the local fidelity of the in-
stantaneous numerical solution is highly associated with this parameter. Some preliminary
attempts for spatio-temporally varying wavelet thresholding were made in [22,23] for
incompressible turbulent flows.

The different methods reviewed in this work are incorporated into a more general
hierarchical adaptive eddy-resolving framework for wall-bounded compressible turbulent
flows, which also includes no-modeling WA-DNS and CVS approaches. Unlike the hierar-
chical adaptive eddy-capturing approach described in the companion review article for
incompressible flows [30], the hierarchical adaptive eddy-resolving approach introduced
here also includes the model-form adaptation, while incorporating both wavelet-filtered
and RANS equations, together with the associated model closure procedures. Regardless
of the particular formulation that is employed, the positive characteristics of wavelet-based
numerical methods are exploited, and significant computational savings from wavelet-
based grid compression are achieved.
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Abbreviations
The following abbreviations are used in this manuscript:

DNS Direct Numerical Simulation
WTF Wavelet Thresholding Filter
WA-DNS Wavelet-based Adaptive Direct Numerical Simulation
CVS Coherent Vortex Simulation
WA-LES Wavelet-based Adaptive Large Eddy Simulation
SGS SubGrid-Scale
RANS Reynolds-Averaged Navier–Stokes
WA-URANS Wavelet-based Adaptive Unsteady Reynolds-Averaged Navier–Stokes
WA-DDES Wavelet-based Adaptive Delayed Detached Eddy Simulation
CFL Courant-Friedrichs-Lewy
WA-WMLES Wavelet-based Adaptive Wall Modeled Large Eddy Simulation
AWC Adaptive Wavelet Collocation
A-AWC Anisotropic Adaptive Wavelet Collocation
AMD Anisotropic Minimum-Dissipation
BL Boundary Layer
SA Spalart-Allmaras
AMD Anisotropic Minimum-Dissipation
EL Exchange Location
ODE Ordinary Differential Equation
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