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Abstract: Sickle cell disease (SCD) is an inherited monogenic disease characterized by distorted red
blood cells that causes vaso-occlusion and vasculopathy. Presently, electrophoresis of haemoglobin
and genotyping are used as routine tests for diagnosis of the SCD. These techniques require spe-
cialized laboratories and are expensive. The low-cost microfluidics-based diagnostic tool holds a
great attention for screening of red blood cell (RBC) deformability. In the present study, lubrication
theory has been applied in order to develop a biomechanical model of microcirculation with altered
rheological properties of sickle blood in the capillary, which is smaller in size compared to the cell
diameter, to explain the multifactorial nature and pathogenesis of vaso-occlusion in SCD. The gov-
erning equations have been solved analytically for realistic boundary conditions and simulated using
MATLAB. We found that the axial velocity of the cell decreases with a decrease in deformability and
compliance. The height of the lubricating film predicts deformation of the cell with respect to local
pressure in the microcirculation. Leak back and drag force depend non-linearly on the deformed cell
radius with varying viscosity of the plasma and Reynolds number. The modelling predictions of this
study is in coherence with experimental results. The analyzed parameters provide unique insights
with novel possibilities to design a microfluidics-based effective therapeutic intervention for SCD.

Keywords: sickle cell disease; cell deformability; lubrication theory; blood flow modelling; numerical
simulation; microfluidics

1. Introduction

Blood is a multiphase fluid, primarily made up of red blood cells (RBCs), white blood
cells (WBCs) and platelets suspended in plasma. Oxygenated blood flows away from
the heart to different organs through systemic circulation. Healthy RBCs are biconcave
discs with a mean diameter of 6–8 µm and a maximal thickness of 2 µm. They represent
approximately 40 to 45% of the average volume of human blood and more than 99%
of blood cells. RBCs are highly deformable cells, which can easily squeeze through the
capillaries (where the internal diameter is less than or equal to of their own) and transport
oxygen and nutrients to the different parts of the body through the network of vessels. In
1910, James B. Herrick, first reported a large number of thin, elongated, sickle-shaped cells
in a blood smear of an African [1]. After 40 years Pauling et al., advocated the existence of
a molecular disease due to a defective haemoglobin molecule (HbS), which was named
sickle cell disease (SCD) [2]. This was the first identified molecular disease inherited
genetically. The genetic basis of SCD is the substitution of valine for glutamic acid in the
sixth position of each β–globin chain of the haemoglobin protein β6: Glu→ Val [3]. Within
the microcirculation of deoxygenated haemoglobin, molecules polymerize and form rigid
fibres of HbSS that injure the cytoskeleton of the RBC and consequently cause a change in
the biomechanical and rheological properties [4,5]. Morbidity and mortality due to a vaso-
occlusion event in SCD under clinical manifestation inlcude recurrent painful crises, bone
marrow infraction, organ damage and stroke. Early viscometry studies reveal that sickle
blood cells are more viscous and less deformable than healthy red blood cells [6]. Viscosity
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of haemoglobin protein in sickle red blood cells is remarkably high even in their oxygenated
condition, which reduces RBC deformability [7,8]. Higher plasma viscosity results in higher
protein concentration by which RBC aggregation (rouleaux formation) occurs [9].

Researchers have used different techniques to investigate the effects of various factors
such as changes in vessel geometry, viscosity, pressure gradient, adhesive interaction and
aggregation of the RBCs on blood rheology which contribute to blood flow obstruction and
leads to vaso-occlusion [10,11]. Considering RBC and its membrane as a viscoelastic solid,
Evan et al., quantified that the elastic moduli of sickle RBCs are higher than average [12].
Hebbel et al., also showed that sickle RBCs are more adherent to endothelial cells than to
healthy cells [13]. In a subsequent study, Evans et al. quantified the strength of sickle RBC-
endothelial adhesion and demonstrated the role of plasma factor using a micropipette [14].
The deformability of an individual sickle cell was examined using optical tweezers to
calculate overcrowding in confined flowing suspension [15]. Ye et al., investigated the
deformation and 3D motion of RBCs in a rectangular microchannel using a dissipative
particle dynamics (DPD) approach [16]. It is imperative to discuss the rheology of RBCs in
the whole blood to better understand the motion of RBCs in a microchannel. Landmark
studies by Fahraeus et al., in 1931 found that blood loses its homogeneous character under
flow in cylindrical tubes less than 300 µm in diameter [17]. Blood viscosity decreases with
decreasing tube diameter (Poiseuille Law). Several investigations were performed to find
a molecular mechanism of SCD and its effects on the clinical course of the disease [18],
hitherto flow dynamics in capillaries during SCD has not got much attention, despite this
area being significant in being able to understand the whole event [19]. Presently elec-
trophoresis of haemoglobin for the HbS variant and genotyping are used as routine tests for
diagnosis of SCD. Both of these techniques require a specialized laboratory. New nuances
of microfluidics hold great potential as a tool to measure RBC deformability and adhesion
which are the key biophysical factors of vaso-occlusion in SCD. Since microfluidic systems
can probe deformation of RBC incorporation at physiological flow conditions [20,21], it
holds great potential as a micro-fluidic-based diagnostic tool (medical device).

The fundamental approach is to predict whether the rheological properties, with
reference to mechanical properties, of the individual blood cells is suitable for the modelling
of blood in capillaries with a diameter of less than 8 µm. There are many investigations in
microcirculation which extend the continuum models, including the effects of the plasmatic
layer near the vessel wall [22,23]. Bernard et al., studied the effect of the diameter of
the undeformed cell to the capillary spacing with a pressure gradient and the ratio of
the cell velocity to the average flow velocity over the cross-section of the capillary in the
microcirculation [24]. Lighthill found that the undeformed shape of RBCs near the wall to
be parabolic and the deformation of the cell to be proportional to the local pressure [3]. Fitz-
Gerald reinvestigated his work and concluded that the mechanics of deformation of the cell
to allow passage through narrow capillaries is the response of a non-uniform distribution
of forces such as a local and mean pressure gradient [25]. Axisymmetric geometry of the
RBC was analyzed by Zarda et al. [26] and Pedrizzetti [27] in the capillary flow at low
velocities. Secomb et al., introduced symmetrical and asymmetrical quantitative models
of the cells that relate red cell mechanics to the flow properties of blood in capillaries by
using lubrication theory to approximate plasma flow in a narrow gap between the cell
and the vessel wall [16,28]. Lin et al. [29,30] performed a numerical simulation of the
axisymmetric, pressure-driven motion of red blood cells through cylindrical capillaries to
investigate apparent viscosity, the bending moment, sheer stress and the flow rate with axis
symmetric deformation of RBC in narrow vessels by using lubrication theory in agreement
with experimental studies.

In this present work, a mathematical model has been developed for the investigation of
how a pellet (red blood cell) moves through a narrow fluid filled cylindrical tube (capillary)
which is smaller in size compared to the cell diameter. The pellet, containing incompressible
fluid, enters the tube in edge-on position and deforms to an axis symmetrical parachute
(paraboloid) shape. Single file flow is considered and neglects cell-cell interaction. The
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tube is taken to be nonporous in order to ignore the effect of ESL inside the capillary wall.
This study is focused on the flow within the capillary for axisymmetric cell-deformation
and investigates the flow profile in healthy and sickle blood. To describe the flow of a
single cell, a thin lubricating film of plasma has been used between cell and capillary wall.
Equations of motion are given by Navier-Stoke’s equation and a continuity equation (due
to incompressibility). In a steady-state, and at a very low Reynolds number, lubrication
theory has been implemented and inertial effects have been neglected. Since plasma in the
capillary, on average, moves slower than within the cells, we simulated the effect of motion
of a highly viscous liquid filled membrane in a narrow tube and developed the model for
the flow behavior in the disease condition.

2. Mathematical Formulation
2.1. Assumptions of the Model

RBC deformability can be screened in microcirculation when deoxygenation occurs.
RBC passes through the micro-capillaries and undergoes a complex and time dependent
deformation which depends on the geometry of micropore, mechanical and rheological
properties of the cell and suspending medium. To analyze the sickle red blood cell motion
in the capillary, we have taken a two-dimensional cylindrical polar geometry and empha-
sized that the diameter of the capillary is less than that of RBC (as shown in Figure 1).
Single file flow is considered and cell-cell interaction is neglected. The tube is taken to be
nonporous to ignore the effect of ESL inside the capillary wall and flow in the capillary for
axisymmetric cell-deformation.
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2.2. Formulation of the Model
2.2.1. Red Blood Cell Mechanics

The red blood cells that have a viscoelastic membrane and contain incompressible
viscous fluid in biconcave shape show complex behavior. Its structure can easily support
an increase in external pressure transmitted directly to the fluid inside the cytoskeleton.
Filterability of RBCs sensitively depends on the resistance to transient deformation [31].

Sickle RBCs are comparatively less deformable (more rigid) than normal RBCs, hence
we have taken deformability as a key determinant when screening for sickle red blood cells
in microcirculation. Change in the flow structure is strongly correlated with a change in
shape of the RBC, and it depends on the distance between two neighboring cells [32].

Here, we have used the concept of reference pressure and elastic behavior of pellets
according to Fitz-Gerald [25]. In this model reference pressure P′0 applied to the rim
will deform the pellet just to fit it to the tube. An additional pressure (β)(P′(x)− P′0)
must be applied to the rim once bowing has occurred. Where (P′(x)) is non uniform,
pressure generated in the lubrication film and β is cell compliance. Here we have taken
the parachute shape of the RBC at the point of constriction and further deformed it into an
elongated parachute (with a comparatively long tail and lower dimple on front) under the
influence of additional pressure which continued until the RBC formed an elongated bullet
shape. Here x is measured as positive downstream from the point where the unstressed
pellet has its maximum diameter. We have taken the condition when the pellet radius is
almost equal to the radius of tube. We Considered an axisymmetric pellet of radius R(x),
separated from tube (capillary) radius r0 by a gap of thickness h′(x).

r = c(x) is the pellet profile when the reference pressure is applied to the rim of pellet
and c(0) = r0 is the unstressed tube radius. Lubrication film in the surroundings of the
pellet profile generated a non-uniform pressure P′(x) if the tube was also deformed linearly
under the action of pressure change and elastic compliance of the tube.

Then R(x) + h′(x) = r0 + α(P′(x)− P′0).
For the sake of simplicity, we have taken elliptical pellet profile.

Then: R(x) = r0

√
1− x′2k′

r0
− β(P′(x)− P′0).

Now: h′(x) = r0 −R(x) + α(P′(x)− P′0)

h′(x) = r0 − r0

√
1− x′2k′

r0
+ β

(
P′(x)− P′0

)
+ α

(
P′(x)− P′0

)
Here k is the measure of the curvature of the pellet at the point of constriction and the
length of the pellet is given by 2

√
r0
k′ .

Hence, height of lubricating film is h′(x) = r0 − r0

√
1− x′2k′

r0
+ (α + β)(P′(x)− P′0)

h′(x) = r0

(
1−

(
1− x′2k′

r0

)1/2
)
+ (α + β)

(
P′(x)− P′0

)
2.2.2. Plasma Flow Mechanics

The motion of the plasma fluid is modelled by Naiver-Stoke’s equation and the
equation of continuity. We have considered u′ = u(x, r) as axial velocity component of
fluid, where x and r axes are taken as along and across the capillary. u0 and v0 are the
initial velocity components of the fluid.

Thickness of the fluid layer between the cell and the wall is sufficiently small so that
lubrication theory is used to describe the squeezing flow of plasma in between the cell and
tissue wall. Stoke’s equation can be reduced to the Reynolds equation.
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2.3. Governing Equation

Hence, the equation of motion can be written as:

∂P′

∂r′
= 0 (1)

dP′

dx′
=

µ

r′
∂

∂r′

(
r′

∂u′

∂r′

)
(2)

The fluid film thickness h′(x) of the plasma between the cell and the tube wall is
represented as:

h′(x) = r0

(
1−

(
1− k′

r0
x′2
)1/2

)
+ (α + β)

(
P′(x)− P′0

)
(3)

By coupling the fluid film thickness h′(x) of the plasma with Reynold’s equation,
we can analyze the dynamics of the lubricating film, which is moving slower than the
cell velocity.

The continuity condition may now be written as:

∫ h′

0
u′r′ dr′ = −r0Q′ (4)

The drag per unit area on the pellet is:

τ′ = −µ′
∂u′

∂r′

]
at rim of the pellet

(5)

Boundary conditions are:

u′ = 0 at r′ = R′

u′ = v1 − u0 at r′ = R′ − h′(x)
(6)

Non dimensional scheme:

x =
x′

r0
, y =

y′

r0
, P =

P′

ρU2
0

, u =
u′

u0
, P0 =

P′0
ρU2

0
, Re =

ρu0r0
µ

, k =
k′
1
r0

,µ =
µ′

µ0
, τ =

τ′(
µ0u0

r0

) (7)

By using the above non-dimensional scheme, the above equations can be written as an equation
of motion:

∂P
∂r

= 0 (8)

Re

(
dP
dx

)
=

1
r

∂

∂r

(
r

∂u
∂r

)
dr (9)

Height of lubrication film of plasma between the pellet and tube wall:

h(x) =
(

1ϕ
(

1− kx2
)1/2

)
+ (α + β)(P(x)− P0) (10)

Integral form of continuity equation:∫ h

0
ur dr = −Q (11)

Drag force on the rim of the pellet in the tube is given by:

τ = −µ
∂u
∂r

(12)
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Dimensionless boundary conditions are given by:

u = 0 at r = 1
u = v1

u0
− 1 at r = 1− h(x) (13)

On integrating Equation (9) w.r.t ‘r’ we have:

u(x, r) =
Re

4

(
dP
dx

)
r2 + A logr + B (14)

2.4. Solution
Solution for the axial velocity component of fluid (plasma) in the capillary is given by:

u =
Re

4

(
dP
dx

)(
r2 − 1

)
+


(

v1
u0
− 1
)
− Re

4

(
dP
dx

)(
h2 − 2h

)
log(1− h)

log(r) (15)

For the sake of simplicity let h(x)→ h .
By using Equation (15) in Equation (11) and integrating w.r.t ‘r’ Reynold’s equation, the flux per

unit length in backward direction (leak back (Q)) is:

Q =


(

Re
4

)(
dP
dx

)(
h2 − 2h

)
−
(

v1
u0
− 1
)

log(1− h)

h2

2

(
logh− 1

2

)
−
(

Re

4

)(
dP
dx

)
h2

2

(
h2

2
− 1

)
(16)

Drag force on the rim of the pellet in the tube is given by:

τ = −µ


((

Re

4

)(
dP
dx

)
2r
)
+

(
1
r

)[( v1
u0
− 1
)
−
(

Re
4

)(
dP
dx

)(
h2 − 2h

)]
log(1− h)

 (17)

where r is a dimensionless radius of the deformed pellet influenced by local pressure P2. Some notations

which are used in discussion include r = r(x), P2 =
P(x)
P0

,
(

dP
dx

)
= P1 (Mean Pressure gradient).

3. Results
The deformability of a red blood cell plays a major role in microcirculation to regain its original

contour in a fraction of seconds. In sickle cell disease (SCD) RBCs become less deformable (stiff)
and adherent than normal RBC, depending on oxygen saturation property of haemoglobin protein.
Deformability is a key bio-physical factor that can be understood in the micro capillary flow for the
screening of SCD. A set of analytical solutions have been derived to understand the flow behavior of
the blood in the capillary with variation in cell compliance, pressure difference, viscosity of plasma
and intracellular haemoglobin suspended in the RBC. Graphical results have been computed using
MATLAB 2019b. Parameters are used in this study has been given in Table 1. Graphical representation
of analytical results are as follows:

Table 1. Model Parameters.

Sr. No. Description Value Reference

1. Pressure drop, P1 4 [24]
2. Ratio of the velocities of the cell to plasma, U0/V0 1.67 [24]
3. Radial Compliance of the normal red blood cell 0.06 [33]
4. Reynolds number, Re 0.25 [34]

5. Ratio of local pressure in fluid region with reference
pressure in capillary P2 6.877 [35]

Figure 2 shows the variation in plasma fluid velocity with different cell compliance values
(i.e., β = 0.3, 0.6, 0.9). Fluid velocity is at the minimum for β = 0.3 and maximum for β = 0.9. It is
also observed that maximum velocity can be observed at the center of the capillary (i.e., r = 0) and
minimum at the wall of the capillary (i.e., r = 1). Hence it can be said that fluid velocity increases
with an increase in cell compliance i.e., β and decreases with a decrease in cell compliance.
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Figure 2. Variation of axial velocity component (u) of plasma film with deformed cell radius (r) in
microcirculation for different value of cell compliance (β) with Re = 0.25, P1 = 2, P2 = 2.5.

Figure 3 shows the variation in axial fluid velocity of plasma (u) for different values of radius of
curvature of the deformed shape of cell (i.e., k = 0.1, 0.5, 0.8). It is noticed that fluid velocity is at its
maximum at the center of the capillary (i.e., r = 0) and minimum near the capillary wall (i.e., r = 1).
No significant variation has been observed for different values of radius curvature of the deformed
shape of cell.

 

2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Variation of axial velocity component (u) of the plasma film with a deformed cell radius (r) for
different values of radius of curvature (k) of deformed shape of cell paraboloid Re = 0.25, P1 = 2, P2 = 2.5.

Figures 4 and 5 are computed for the axial velocity component of plasma in the capillary for
different values of local and mean pressures respectively (i.e., P1 = 2, 5, 8 and P2 = 2, 4, 6). Axial
velocity decreases from the axis to the capillary wall along the cell surface i.e., it is at its maximum
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at the center and minimum at the edge of the pellet. Figure 4 represents the variation in the axial
velocity of the plasma film for different values of P2 (Local pressure around the cell). It is observed
that axial velocity decreases with an increase in the value of P2. Figure 5 delineates the change in
the axial velocity component for different values of mean pressure gradient (i.e., P1 = 2, 5, 8), which
shows that the fluid velocity decreases with a decrease in the mean pressure gradient.
 

3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Variation of axial velocity component (u) of plasma film with deformed cell radius (r) in
microcirculation with variation of local pressure (P2) on the cell with Re = 0.25, P1 = 2.

 

4 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variation of axial velocity component (u) of the plasma film with a deformed cell radius (r)
in microcirculation with a change in mean pressure (P1) in plasma with Re = 0.25, P2 = 2.

Figure 6 represents the variation in the mean pressure gradient (P1) on the red blood cell with
respect to the height of the lubricating film (h(x)) of plasma for different values of beta cell compliance
(i.e., β = 0.2, 0.4, 0.6). It is observed that P1 is decreasing (Very minutely) with an increase in the
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height of the lubricating film of plasma (h(x)). It also shows that the mean pressure gradient increases
with a decrease in the value of cell compliance β. Mean pressure gradient is at its maximum for
β = 0.2 and minimum for β = 0.6.
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Figure 6. Variation of mean pressure gradient (P1) with the height of the lubricating film h(x) of
plasma between the cell and capillary wall for different compliance (β) with Re = 0.025, P2 = 5, k = 0.1.

Leak back in microcirculation promotes the flow in the capillary. The above Figures 7–9 shows
the relationship between leak back (Q) and the height of lubricating film h(x) for different values of
mean pressure gradient (i.e., P1 = 0.7, 0.8, 0.9), local pressure (P2 = 0.5, 0.6, 0.7) and cell compliance
(β = 0.10, 0.15, 0.20), respectively. Figure 7 shows that the leak back Q increases linearly with increase
in the width of lubricating film h(x). Leak back Q attains Maximum value for P1 = 0.7 and minimum
value for P1 = 0.9. It shows that leak back decreases with an increase in mean pressure gradient value.
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Figure 7. Variation of flux per unit length in back ward direction (leak back (Q)) with the height of
plasma film h(x) at different values of mean pressure gradient in the capillary (P1).
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Figure 8. Variation of flux per unit length in backward direction (leak back (Q)) with the height of
plasma film h(x) at different local pressures (P2) with Re = 0.25, k = 0.1.
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Figure 9. Variation of flux per unit length in the backward direction (leak back (Q)) with the height
of plasma film h(x) for different values of cell compliance (β) with Re = 0.25, P1 = 7, P2 = 5, k = 0.1.

Figure 8 shows the same variation for different values of local pressure around the cell in the
capillary. It is observed that an increase in local pressure reduces the leak back. Figure 9 captures the
variation in leak back Q with respect to the height of the lubricating film h(x) for different values of
cell compliance (i.e., β = 0.10, 0.15, 0.20). Interestingly, the leak back is directly proportional to the
height of the lubricating film h(x). It is observed that leak back Q increases with an increase in h(x). It
is also observed that leak back decrease with an increase in cell compliance β.

Figures 10–12 shows the variation in drag force (resistance in the direction of flow i.e., τ) at the
rim of the cell with respect to the cell radius (r) for different values of cell compliance (i.e., β = 0.01,
0.03, 0.05), viscosity (i.e., µ = 0.25, 0.3, 0.35) and Reynolds number (i.e., 0.25, 0.3, 0.35), respectively.
Interestingly drag force on the rim of the cell decreases untill a certain value of stressed cell radius
and then starts increasing at a different rate. Figure 10 shows the variation in drag force (τ) for
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different values of cell compliance (β). It is observed that the drag force component decreases with
an increase in the cell compliance (β).
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Figure 10. Drag force (τ) at the rim of the deformed cell with respect to its deformed radius (r) at
different cell compliances (β) with Re = 0.25, P1 = 2, k = 0.1.
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Figure 11. Variation of the drag force (τ) at the rim of the cell with respect to its radius (r) with
variation in viscosity (µ) with Re = 0.25, P1 = 2, k = 0.1.
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Figure 12. Variation of the drag force (τ) at the rim of the cell with respect to its radius (r) at different
Reynolds numbers (Re) with P1 = 2, k = 0.1.

Figure 11 represents the change in drag force (τ) for different values of viscosity (µ) of the
plasma. It is noticed that the drag force component τ increases with an increase in the value of
plasma viscosity. In other words, it can be concluded that the higher viscosity of plasma exerts a
comparatively higher drag force. Figure 12 shows the variation in the drag force component for
different values of Reynolds number (Re). Drag force behaves non-linearly for different values of
(Re). It decreases until a fixed value of cell radius and then starts increasing up to the wall of the
capillary. Drag force (τ) has a greater value for a comparatively low Reynolds number (Re). Initially
it decreases until the critical value of the deformed cell radius (i.e., r = 0.32). After that, it starts to
increase with an increase in Reynolds number (Re).

4. Discussion
The mechanics of deformable red blood cells in the capillary (diameter is less than that of the cell)

is described here. The red blood cells are a viscoelastic membrane containing incompressible viscous
fluid in biconcave shape and exhibit complex behavior. Its structure can easily support an increase in
external pressure, transmitted directly to the fluid inside the cytoskeleton. Lubricating film thickness
h << r0 (tube radius) is effective in this capillary region. Nonuniform pressure generated by the
lubrication layer across the cell influences the mean velocity in these regions. We have taken the effect
of cell bending with the parameter of cell compliance. Sickle RBCs are comparatively less deformable
(more rigid) and have more viscous cytoplasm than normal RBCs. This study promotes the cell
deformability in terms of compliance, which could be the key determinant in pressure driven flow in
screening for sickle red blood cells in microcirculation. This model provides insight into the flow
behavior of a highly viscous liquid filled membrane in narrow tube to describe the disease condition.

Here, in Figure 2, the less compliant (rigid) cells lead to a decrease in the height of the lubricating
film, resulting in a decrease in the fluid velocity. The deformability of the cell in the diseased condition
is affected to a greater extent than any other rheological factor [20]. Plasma flows slower in the
capillary in the case of SCD, as sickle cells are comparatively stiffer and less compliant (rigid) than
normal red blood cells after deoxygenation in the microcirculation [36].

Fluid velocity decreases from the core to near the capillary wall along the concavity of the cell.
However, axial fluid velocity has not been affected significantly with the value of k in the capillary
region. This can be understood by the heterogeneous characteristic of sickle RBCs (HbSS). These are
fractioned into four density groups (I-IV). Fractions I (SS1) and II (SS2) are composed primarily of
reticulocytes and discocytes, respectively, with MCHC levels similar to healthy RBCs. They have
comparable bulk viscosity, unseparated from healthy blood samples in an oxygenated state hence
they are not effective on the basis of curvature. Fractions III (SS3) and IV (SS4) are mainly composed
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of rigid discocytes and (SS4) with the mean corpuscular haemoglobin concentration (MCHC) values
considerably higher than those of healthy RBCs, which results in a significant increase in blood
viscosity even in their oxygenated state. These cells are called irreversible sickle cells (ISCs) and have
a typical sickle shape, a comparatively large curvature and not affected the flow because of its shape.
Because they are not adhesive to endothelia cells of the capillary wall; haematocrit is very low, fluid
velocity is relatively slow here, and so cell to cell adhesion also does not happen. There are many
studies demonstrating that rigid elongated RBCs (ISCs) do not get stuck in narrow capillaries [37].
From this model, axial velocity decreases with an increase in the value of local pressure around the
cell P2. In SCD, as deoxygenated red blood cells are less flexible and plasma is relatively more viscus
so for possible flow and an increase the local pressure around the cell [6,38]. Figure 5 shows that
the fluid velocity decreases with a decrease in the mean pressure gradient. In SCD, the pressure
drop in the flow is directly proportional to the velocity i.e., for decreasing the value of the pressure
gradient, velocity drops dramatically [23,39]. Figure 6 shows the mean pressure gradient (P1) of
the flow and height of the lubricating film of plasma at different values of cell compliance. P1
decreases (very minutely) around the cell with increases in height of the lubricating film of plasma
with increases in rigidity of the cell. Due to the highly viscous medium, suspended erythrocytes
undergo varying deformations according to their location in the velocity profile [40] and also changes
in red cell flexibility can substantially increase or decrease the vascular resistance in the absence of
any haematocrit change [41]. In SCD, red blood cells are less deformable than normal blood cells,
hence with an increase in stiffness of the cell in capillary motion, relatively higher mean pressure,
vascular resistance happened. Leak back in microcirculation promotes the flow in the capillary. The
above results (7)–(9) show the relationship between leak back and the height of lubricating film for
different values of mean pressure gradient (P1), local pressure and cell compliance (beta) respectively.
Figure 7 shows that the leak back increases linearly with an increase in the width of the lubricating
film. It attains relatively less value for the increased mean pressure gradient [42]. In Figure 8 increase
in local pressure reduce the leakback because static and dynamic response of RBCs subjected to
tensile forces due to structural defects in the lipid bilayer, cytoskeleton and their interaction [43].
Figure 9 shows the variation in flux per unit length in backward direction leak back w.r.t and the
height of the lubricating film for different values of cell compliance (beta). It is shown that the leak
back is directly proportional to the height of the lubricating film but decreases with an increase in the
value of the cell compliance i.e., less compliant (stiffer) blood cells show more leak back action which
can breakdown the lubricating film. It can be concluded that in case of sickle cell disease, flow in the
capillary is relatively slower than in healthy condition [44].

Figures 10–12 show the variation in drag force (resistance in the direction of flow) at the rim of
the cell with respect to the cell radius for different values of cell compliance, viscosity and Reynolds
number, respectively. Results show that the drag force on the rim of the cell decreases till a certain
value of stressed cell radius and then starts increasing at a comparatively different rate. Figure 10
shows the variation in drag force for different values of cell compliance (beta). It is observed that the
drag force component decreases with an increase in the cell compliance. It is clear from the figure that
stiff red blood cells experience comparatively higher drag force as compared to healthy red blood
cells. Figure 11 represents the change in drag force for different values of viscosity of the plasma.
It is shown that higher viscosity of plasma exerts comparatively higher drag force. In the case of
sickle cell disease, plasma is more viscous than normal, so it can be concluded that in SCD, sickle
cells experience higher viscous resistance (drag force component) on the rim and depress the flow in
capillary motion [44,45]. Figure 12 shows the variation in drag force component for different values
of Reynolds number (Re). Drag force behaves non-linearly for different values of Re. It decreases
till a fix value of cell radius and then starts increasing up to the wall of capillary. Drag force has
greater value for comparatively low Reynolds number, initially it decreases till the critical value
of the deformed cell radius (i.e., r = 0.32). Following this, it starts to increase with an increase in
Reynolds number due to the shear rate reaches a certain threshold, in their study of shear-induced
cell movement in a microchannel [46]. This result can be explained by the effects of the sphere
number, relative geometry, and spacing on the flow resistance in the vessel and the fluid flow drag
force acting to sweep the sphere off the vessel wall by Chapman et al. [47].

Lubrication theory proposed good agreement to observe the flow pattern. This can be applied
to visualize the flow in microfluids and to observe the sickle blood flow pattern. The deterioration
of mechanical properties in sickle cells coincide with dehydration and increased viscosity resulting
from increased intracellular haemoglobin concentration [15]. The above model and their results can
probe deformation of RBC incorporation at physiological flow conditions in microfluidic system
holds great potential as a diagnostic tool [21].
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5. Conclusions
Effective diagnosis of sickle cell diseases relies on the robust knowledge of cellular and fluid

flow-mechanism. This study explores the fluid flow mechanism aspect of the SCD. We have investi-
gated the effect of cell compliance, mean/local pressure difference, Reynold number, viscosity of
plasma and intracellular haemoglobin suspended in the RBC in the blood flow through narrow blood
vessels. This study suggests that the blood flow velocity decreases significantly with decrease in cell
compliance. Reduction in cell compliance results in severe clinical outcomes i.e., vaso-occlusive crises
etc. The findings of this paper show significant flow properties of sickle blood in microcirculation.
The study of the mechanical properties of the RBCs ensures that the deformability, compliance
and local pressure around the red cells in the capillary motion participate major role in blood flow
regulation. This study is helpful in identifying similarities and differences between normal and sickle
blood and incorporates more realistic representation for sickle blood flow in the aspect of bio-medical
engineering. It can provide unique insights with novel possibilities for the design of microfluidics
towards effective therapeutic intervention of SCD.
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