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Abstract: Due to the complex nonlinearity characteristics, analytical modeling of compressible flow
in inclined transmission lines remains a challenge. This paper proposes an analytical model for one-
dimensional flow of a two-phase gas-liquid fluid in inclined transmission lines. The proposed model
is comprised of a steady-state two-phase flow mechanistic model in-series with a dynamic single-
phase flow model. The two-phase mechanistic model captures the steady-state pressure drop and
liquid holdup properties of the gas-liquid fluid. The developed dynamic single-phase flow model
is an analytical model comprised of rational polynomial transfer functions that are explicitly functions
of fluid properties, line geometry, and inclination angle. The accuracy of the fluid resonant frequencies
predicted by the transient flow model is precise and not a function of transmission line spatial
discretization. Therefore, model complexity is solely a function of the number of desired modes.
The dynamic single-phase model is applicable for under-damped and over-damped systems, laminar,
and turbulent flow conditions. The accuracy of the overall two-phase flow model is investigated
using the commercial multiphase flow dynamic code OLGA. The mean absolute error between
the two models in step response overshoot and settling time is less than 8% and 2 s, respectively.

Keywords: transmission line; two-phase flow; inclined compressible flow; analytical solution

1. Introduction

The oil and gas industry has been looking for a long time into the development of
reliable technologies and practices to be able to properly assess and understand the dynam-
ics of multiphase flows within transmission lines. In upstream-downstream production
systems, an accurate evaluation of the flow transients allows the determination of the
dynamic forces acting on the pipeline wall and the expected flow rate facilitating the
assessment of the well architecture and type of material as well as the choice of the safety
equipment placement and redundancy. Onshore and offshore drilling is another field in
which flow transients have an impact on the progress and safety of drilling operation. For
instance, influxes entering the wellbore result in a change of the circulating fluid flow rate
and pressure. Accurately knowing the flow dynamics allows the adjustment of the injected
mudflow rate and weight to avoid undesirable events, such as gas kicks.

Looking into the standard tools used within the oil and gas industry, a variety of
commercial packages have been introduced, such as OLGA and LEADAFLOW. Although
these codes have been developed using physics based models, they have been simplified
and calibrated using empirical correlations and in-field data. Such hybrid approached
have been seen, despite the accuracy of these codes, altering the ability to generalize
these methods in order to cover the wide range of applications as well as the variety of
investigations and analyses users in such an industry are looking to perform. Hence,
having a simplified, analytical yet accurate model is crucial so that transmission line flow
models can be integrated with other oil and gas equipment models to analyze the behavior
of the whole complex system, achieve tasks that require real-time calculations as well as
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having a fast and reliable tool that can be deployed during the design and optimization
phase of oil and gas development projects.

Several methodologies have been followed in order to develop steady-state multiphase
flow models. The main driver that differentiates each of the proposed methods is mainly
the way the different fluid phases are treated. Specifically, three different approaches have
been introduced within the literature: a homogenous approach was proposed in [1,2], in
which the two phases are considered traveling at the same velocity; hence, the total flow can
be assumed to be a single phase flow. In [3], a separated flow model is presented, in which
the authors assumed that the two phases’ velocities are different, which affects the fluid
conservation equations. A multi-fluid model was presented in [4] based on the assumption
that separate conservation equations are introduced for each of the two phases to highlight
the interaction between both phases. Finally, drift flux models were proposed in [5,6],
in which a distribution parameter and an average of the local fluid velocity difference
between the two phases are used to describe the overall flow.

Another modeling approach was introduced via mechanistic models as an alternative
to the methods described above. Mathematically speaking, the main effort when develop-
ing most of the mechanistic models is to identify the flow regime in question. Numerous
efforts have been placed toward this direction. Taitel and Dukler [7] started by laying out a
procedure to determine the transitions between the different flow regimes. This was the
beginning of multiple investigations in which researchers were looking into developing
analytical approaches in order to accurately predict the different flow patterns as well as
the regimes’ transition boundaries. However, the proposed techniques have been accompa-
nied with shortcomings, such as only considering flow pattern determination [8] or the
applicability to a limited range of pipe inclinations [9]. Petalas and Aziz [10] proposed a
model that was ameliorated for the case of specific flow regimes in [11], to surpass these
limitations. Although mechanistic models are essentially based on fundamental laws and
they offer more accurate predictions when considering the variations of both fluid and
geometry properties, they still depend on closure relationships based on observations.

In addition to steady-state flow conditions, numerous studies have been conducted
to model transient two-phase flow systems based on either a two-fluid model [12] or a
drift-flux model [13]. In both cases, the models are developed mainly on the basis of
introducing a full set of conservation equations (mass, momentum, and energy). To de-
termine approximated solutions of the Navier-Stokes equations, a numerical modeling
approach was employed. In this case, when we are handling a complex system, thousands
of simulations are required, which can be very time consuming. To overcome the numerical
modeling limitations, reduced-order modeling techniques have been suggested to simulate
two-phase dynamics in a fluid transmission line. In [14], a transient single-phase flow
model is integrated with a steady-state two-phase model. The single-phase flow model is
derived from the well-known dissipative model, which is regarded as the most accurate
analytical model for transient laminar flow in horizontal transmission lines. Since the dissi-
pative model is described in Laplace domain and its transfer functions contain hyperbolic
and Bessel functions, approximated rational polynomial transfer functions are developed
to enable simulations in the time domain. Similarly, to extend the results of the dissipative
model to lines with different inclinations, a reduced-order model is developed in [15].
The resulting single-phase model is used in [16] to simulate transient two-phase flow in
inclined transmission lines. The results are compared with those simulated using OLGA
software showing good agreement. A major drawback of these approximated rational
transfer functions is that the physical properties are lost in the model coefficients since they
are calculated numerically.

The present development focuses on the development of an analytical model whose
coefficients are functions of fluid properties and transmission line properties and inclination
for single-phase flow conditions. A comprehensive mechanistic model is then adopted to
estimate steady-state liquid holdup and pressure gradient, which will be used to derive
equivalent single-phase fluid parameters, namely, altering the fluid parameters of density,
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viscosity, and bulk modulus as a function of gas volume fraction (GVF). These steady-state
parameters are finally integrated within the analytical dynamic single-phase model to
predict transient flow behavior in inclined transmission lines.

The remainder of the paper is structured as follows. In Section 2, a reduced-order
solution of Navier-Stokes equations written in Laplace domain is derived for inclined
transmission lines by accounting only for steady state friction losses. In Section 3, the
solution is approximated using rational polynomial transfer functions and extended to
include unsteady-state friction effects. In Section 4, the proposed model is applied to
estimate transient air-water flow dynamics in inclined transmission lines. Concluding
remarks are presented in Section 5.

2. Reduced Order Modeling of Inclined Compressible Single Phase Flow

The solution for transient flow in transmission line is obtained from the continuity,
momentum, energy, and state equations

ρ
∂u
∂t

= −∂P
∂x

+ µ

(
∂2u
∂r2 +

1
r

∂u
∂r

)
− ρg sin(θ), (1)

∂ρ

∂t
+ ρ

(
∂u
∂x

+
∂v
∂r

+
v
r

)
= 0, (2)

dT
dt

+ T (γ− 1)
∂ρ

∂t
= α

(
∂2T
∂r2 +

1
r

∂T
∂r

)
, (3)

dρ

ρ
=

dP
βe

, (4)

dρ

ρ
+

dT
T

=
dP
P

, (5)

where x and r are independent cylindrical space variables, and t is the independent time
variable. The dependent fluid variables include pressure P, its time average P, velocities
in x-direction and r-direction (u and v), temperature T, its time average T, density ρ,
its time average ρ, fluid absolute viscosity µ, fluid effective bulk modulus βe, diffusion
coefficient α, specific heat ratio γ, and angle of inclination θ. For a horizontal flow, the set of
Equations (1)–(5) describes the so-called dissipative model and is regarded as the accurate
model for laminar flow case since it includes viscosity and heat transfer effects [15].

Similar to the approach adopted in [17], the second-order effects, namely, the unsteady
friction losses and the heat transfer effects, are temporarily neglected and only laminar flow
conditions are considered in order to retain a one-dimensional model. The only difference
is that the present development accounts for transmission line inclination. The resulting
reduced-order system of equations that describes transient flow in inclined transmission
line can be written in Laplace domain as

IxsQ + RxQ + GxP = −dP
dx

, (6)

CxsP = −dQ
dx

, (7)

where s is the Laplace transform variable, and Q is the flow rate and pressure along the
transmission line. The distributed lumped parameters in Equations (6) and (7) are Rx, Ix,
Cx, and Gx, defined as the resistance, inertance, capacitance, and gravity term per unit
length of transmission line and are presented in Table 1, where c is the time averaged
speed of sound in the fluid, g is the gravity acceleration, and A is the transmission line
cross-sectional area [17]



Fluids 2021, 6, 300 4 of 18

Table 1. Transmission line distributed parameter.

Rx Ix Cx Gx

8 πµ
A2

ρ
A

A
c2ρ

g sin(θ)
c2

Using Laplace Transform, the analytical solution for Equations (6) and (7) can be
represented as a two-port model (four-terminal network) and written in a matrix form as[

Pin(s)
Qout(s)

]
=

[
TF11(s) TF12(s)
−TF21(s) TF22(s)

][
Pout(s)
Qin(s)

]
, (8)

where

TF11(s) = e
Gx L

2
cosh−1

(
ΓL
2

)
1− Gx

Γ tanh
(

ΓL
2

) , (9)

TF12(s) =
2(Ixs + Rx)

Γ tanh
(

ΓL
2

)
1− Gx

Γ tanh
(

ΓL
2

) , (10)

TF21(s) =
2Cxs

Γ tanh
(

ΓL
2

)
1− Gx

Γ tanh
(

ΓL
2

) , (11)

TF22(s) = e−
Gx L

2
cosh−1

(
ΓL
2

)
1− Gx

Γ tanh
(

ΓL
2

) , (12)

and
Γ =

√
4(IxCxs2 + RxCxs) + G2

x (13)

Illustrated in Figure 1 is the sensitivity of the matrix transfer functions TF11(s), TF12(s),
TF21(s), and TF22(s) to the transmission line inclination angle for the laminar flow case,
given the parameters shown in Table 2.

At low frequencies, the inclination angle θ has no effect on the output Qout(s) since
the line inlet and outlet flow rates are equal at steady state conditions and independent
of the outlet pressure. However, the angle θ has an effect on the output Pin(s) as expected
from the momentum equation. As the inclination angle increases, the difference between
the line inlet and outlet pressures increases. It is also concluded that the system described
in Equation (8) is sensitive to the inclination angle at middle frequencies (first harmonics).
As the transmission line inclination increases, a slight decrease in natural frequencies is
observed along with an increase in damping ratios.

Table 2. Study case parameters.

Parameter Value Unit

L 500 m
A 4.9 × 10−4 m2

ρ 500 kg/m3

µ 6.6 × 10−4 kg/m/s
βe 106 Pa
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The four-terminal network representation obtained in Equation (8) is causal and
known as the Hybrid Representation. It is also referred to as the PQ-Model and represents
mixed boundary conditions system, where a pressure at one end of the line and a flow
rate at the other end are used as inputs [18]. Based on all possible boundary conditions,
there are three other causalities to fluid transmission line, namely the Hybrid Represen-
tation (PQ-Model), the Impedance Representation (also known as the Q-Model), and the
Admittance Representation (also known as the P-Model). Using the transfer function
matrix presented in Equation (8), the other three causal representations to the inclined fluid
transmission line problem are defined as

Hybrid Representation:[
Pout(s)
Qin(s)

]
=

[
TF22(s) −TF12(s)
TF21(s) TF11(s)

][
Pin(s)

Qout(s)

]
(14)

Impedance Representation:

[
Pin(s)
Pout(s)

]
=


TF12(s)

1 − TF2
11(s)

− TF11(s)TF12(s)
1 − TF2

11(s)
TF11(s)TF12(s)

1 − TF2
11(s)

− TF12(s)
1 − TF2

11(s)

[ Qin(s)
Qout(s)

]
(15)

Admittance Representation:

[
Qin(s)
Qout(s)

]
=

 TF21(s)
1 − TF2

22(s)
− TF22(s)TF21(s)

1 − TF2
22(s)

TF22(s)TF21(s)
1 − TF2

22(s)
− TF21(s)

1 − TF2
22(s)

[ Pin(s)
Pout(s)

]
(16)
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3. Analytical Fluid Transmission Line Model

Developed in this section is the explicit analytical model for transient compressible
single-phase flow in inclined fluid transmission lines. First, a modal approximation is
developed such that the matrix transfer functions of the solution (8) are approximated
by rational polynomial transfer functions. Since these transfer functions are accounted
only for linear friction effects, the approximated transfer functions are then corrected to
incorporate second order effects [17].

3.1. Modal Approximation

The obtained model in matrix form can be used to perform frequency-domain analyses.
However, it is impractical for time domain analyses and a modal approximation procedure
is required [17]. The matrix transfer functions in Equation (8) can be expressed as functions
of four transcendental transfer functions that can be approximated as

cosh−1
(

ΓL
2

)
≈ C1

m

∑
i=1

aci s + bci

s2 + 2 ξiωni s + ω2
ni

, (17)

2(Ixs + Rx)

Γ
tanh

(
ΓL
2

)
≈ C2

m

∑
i=1

arti s + brti

s2 + 2 ξiωni s + ω2
ni

, (18)

2Cxs
Γ

tanh
(

ΓL
2

)
≈ C3

m

∑
i=1

s(acti s + bcti )

s2 + 2 ξiωni s + ω2
ni

, (19)

Gx

Γ
tanh

(
ΓL
2

)
≈ C4

m

∑
i=1

agti s + bgti

s2 + 2 ξiωni s + ω2
ni

, (20)

where m is the desired number of modes to be included in the approximation. The
denominator coefficients for each ith mode are the natural frequency ωni and the damping
ratio ξi. The numerators coefficients aci , bci , arti , brti , acti , bcti , agti , and bgti are determined
using the residue theorem [17]. The DC gain factors C1, C2, C3, and C4 are incorporated to
adjust the steady-state conditions due to the finite number of modes used to approximate
the transcendental transfer functions. All the transfer functions in Equation (8) have the
same poles and can be computed using the following series expansion

cosh
(

ΓL
2

)
=

∞

∏
i=1

(
1 +

Γ2L2

4π2(i− 0.5)2

)
= 0 (21)

Two complex conjugate poles exist for each second-order mode, provided

L
π

Rx

√
Cx

Ix

1√
1 + G2

x
L2

π2

< 1 (22)

The corresponding complex conjugate poles of each ith mode are

si,1 =
−RxCx + j

√
4π2(i− 0.5)2 IxCx

L2 − Rx2Cx2 + G2
x IxCx

2IxCx
, (23)

si,2 =
−RxCx − j

√
4π2(i− 0.5)2 IxCx

L2 − Rx2Cx2 + G2
x IxCx

2IxCx
(24)

which yields to analytical expressions for the natural frequencies and damping ratios

ωni =
π

L
1√
IxCx

√
(i− 0.5)2 +

(
GxL
2π

)2
, (25)
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ξi =
L

2π
Rx

√
Cx

Ix

1√
(i− 0.5)2 +

(
Gx L
2π

)2
(26)

The numerator coefficients can be computed using the residue calculation tech-
nique [17] and they are expressed as

aci = Res
[

cosh−1
(

ΓL
2

)]
si,1

+ Res
[

cosh−1
(

ΓL
2

)]
si,2

, (27)

bci = −si,2Res
[

cosh−1
(

ΓL
2

)]
si,1

− si,1Res
[

cosh−1
(

ΓL
2

)]
si,2

, (28)

arti = Res
[

2(Ixs + Rx)

H
tanh

(
HL
2

)]
si,1

+ Res
[

2(Ixs + Rx)

Γ
tanh

(
ΓL
2

)]
si,2

, (29)

brti = −si,2Res
[

2(Ixs + Rx)

Γ
tanh

(
ΓL
2

)]
si,1

− si,1Res
[

2(Ixs + Rx)

Γ
tanh

(
ΓL
2

)]
si,2

, (30)

acti = s−1
i,1 Res

[
2Cxs

Γ
tanh

(
ΓL
2

)]
si,1

+ s−1
i,2 Res

[
2Cxs

Γ
tanh

(
ΓL
2

)]
si,2

, (31)

bcti = −s−1
i,1 si,2Res

[
2Cxs

Γ
tanh

(
ΓL
2

)]
si,1

− s−1
i,2 si,1Res

[
2Cxs

Γ
tanh

(
ΓL
2

)]
si,2

, (32)

agti = Res
[

Gx

Γ
tanh

(
ΓL
2

)]
si,1

+ Res
[

Gx

Γ
tanh

(
ΓL
2

)]
si,2

, (33)

bgti = −si,2Res
[

Gx

Γ
tanh

(
ΓL
2

)]
si,1

− si,1Res
[

Gx

Γ
tanh

(
ΓL
2

)]
si,2

, (34)

where the corresponding residues are obtained as

Res
[

cosh−1
(

ΓL
2

)]
s=si,k

=

 2

Γ′Lsinh
(

ΓL
2

)


s=si,k

=

[
2π(−1)i+1(i− 0.5)
(2IxCxs + RxCx)L2

]
s=si,k

, (35)

Res
[

Gx

Γ
tanh

(
ΓL
2

)]
s=si,k

=

[
2Gx

Γ Γ′L

]
s=si,k

=

[
Gx

(2IxCxs + RxCx)L

]
s=si,k

, (36)

Res
[

2(Ixs + Rx)

Γ
tanh

(
ΓL
2

)]
s=si,k

=

[
4(Ixs + Rx)

Γ Γ′L

]
s=si,k

=

[
2(Ixs + Rx)

(2IxCxs + RxCx)L

]
s=si,k

, (37)

Res
[

2Cxs
Γ

tanh
(

ΓL
2

)]
s=si,k

=

[
4Cxs
Γ Γ′L

]
s=si,k

=

[
2Cx s

(2IxCxs + RxCx)L

]
s=si,k

(38)

Finally, the approximated rational transfer functions in Equations (17)–(20) are adjusted such
that their DC gains match accurately those of the analytical transfer functions in Equations (9)–(12).
The steady state correction factors are obtained as

C1 =

cosh
(

Gx L
2

) m

∑
i=1

(−1)i(1− 2i)π

π2(i− 0.5)2 +
(

Gx L
2

)2


−1

, (39)

C2 = C3, (40)

C3 = C4, (41)
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C4 =


[

m
∑

i=1

2
π2(i−0.5)2

]−1
i f θ = 0

tanh( Gx L
2 )

GX L

[
m
∑

i=1

1
π2(i−0.5)2 + ( Gx L

2 )
2

]−1
i f θ 6= 0

(42)

Hence, the resulting approximated matrix transfer functions in Equations (9)–(12) for oscillating
pressure and flow rate in a fluid inclined transmission line can be written as

TF11(s) ≈ e
Gx L

2

C1 ∑m
i=1

(−1)i (1 − 2i)π
L2 Ix Cx

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
)

1− C4 ∑m
i=1

Gx
Ix Cx L

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
) , (43)

TF22(s) ≈ e−
Gx L

2

C1 ∑m
i=1

(−1)i (1 − 2i)π
L2 Ix Cx

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
)

1− C4 ∑m
i=1

Gx
Ix Cx L

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i −0.5 )2 + ( Gx L

2 )
2
) , (44)

TF12(s) ≈
C2 ∑m

i=1

2
Cx L s + 2Rx

Ix Cx L

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i−0.5)2 + ( Gx L

2 )
2
)

1− C4 ∑m
i=1

Gx
Ix Cx L

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
) , (45)

TF21(s) ≈
C3 ∑m

i=1

2
Ix L s

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
)

1− C4 ∑m
i=1

Gx
Ix Cx L

s2 + Rx
Ix

s + 1
L2 Ix Cx

(
π2(i − 0.5)2 + ( Gx L

2 )
2
) (46)

Illustrated in Figure 2 is the accuracy of the developed approximated transfer functions. A
comparison of the frequency responses of the transcendental (analytical) transfer functions (9)–(12)
and their rational polynomial approximations (43)–(46) using eight second-order modes is performed
using the study case presented in Table 2.
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Approximated transfer functions proposed in Equations (43)–(46) are obtained for
under-damped transmission lines. The same approach is applied to the other cases in
which the inequality condition in (22) is not met. It is found that the approximated transfer
functions (43)–(46) remain the same; hence, they are valid approximations for over/well-
damped systems. Shown in Figure 3 is a frequency response evaluation of the proposed
approximations for two different cases. The first case represents the horizontal transmission
line presented in Table 2, which corresponds to an under-damped system (ξ1 = 0.25). In
the second case, a well-damped transmission line (ξ1 = 3) is considered by decreasing
the line cross-sectional area. Agreement is seen between the analytical solution and the
proposed approximation for both cases.
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3.2. Proposed Analytical Model

The analytical solution in Equation (8) is obtained by solving Equations (1)–(5) as-
suming Hagan-Poiseuille flow (losses are proportional to mean velocity) and no heat
transfer effects [17]. Proposed in this section is an explicit analytical model obtained by
incorporating unsteady friction and heat transfer effects in the approximated transfer
functions using modal approximations of the dissipative model, which is known as the
most accurate analytical model for laminar flow in horizontal transmission lines. Similar
to the work presented in [17,19], two unsteady modifications factors are introduced to
adjust the numerators and denominators of the approximated transfer functions. Hence,
the updated analytical model describing transient flow in an inclined fluid transmission
line is proposed as[

Pin(s)
Qout(s)

]
=

[
T̃F11(s) T̃F12(s)
−T̃F21(s) T̃F22(s)

][
Pout(s)
Qin(s)

]
, (47)
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where

T̃F11(s) = e
Gx L

2

C1 ∑m
i=1

κi
(−1)i(1 − 2i)π

L2 IxCx

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

1− C4 ∑m
i=1

κi
Gx

IxCx L

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

, (48)

T̃F22(s) = e−
Gx L

2

C1 ∑m
i=1

κi
(−1)i(1 − 2i)π

L2 IxCx

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

1− C4 ∑m
i=1

κi
Gx

IxCx L

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

, (49)

T̃F12(s) =

C2 ∑m
i=1

2
Cx L s + τi

2Rx
IxCx L

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

1− C4 ∑m
i=1

κi
Gx

IxCx L

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

, (50)

T̃F21(s) =

C3 ∑m
i=1

κi
2

Ix L S

s2 + τi
Rx
Ix s + κi

1
L2 IxCx

(
π2(i−0.5)2 + ( Gx L

2 )
2)

1− C4 ∑m
i=1

κi
Gx

IxCx L

s2 + τi
Rx
Ix s+κi

1
L2 IxCx

(
π2(i − 0.5)2 + ( Gx L

2 )
2)

, (51)

The expressions for the low frequency correcting factors remain the same except for C2,
whose expression becomes

C2 =


[

m
∑

i=1

2τi
κi

π2(i − 0.5)2

]−1

i f θ = 0

tanh( Gx L
2 )

GX L

[
m
∑

i=1

τi
κi

π2(i − 0.5)2 + ( Gx L
2 )

2

]−1

i f θ 6= 0
(52)

The frequency dependent modifications factors τi and κi are computed by adjusting
the approximated transfer functions of Equation (8) using the dissipative model, which is
the exact solution of horizontal laminar flow dynamics problem [17]. Shown in Figure 4
are the resulting coefficients for liquid and air cases as functions of the dimensionless
characteristic root λci that is defined as

λci =
8 (i− 0.5)

LRx

√
Ix

Cx
(53)

The analytical expressions of these modification factors are obtained as

τi = A1tanh(A2log10(λci ) + A3) + A4tanh(A5log10(λci ) + A6) + A7, (54)

log10(κi) = B1tanh(B2log10(λci ) + B3) + B4tanh(B5log10(λci ) + B6) + B7 (55)

where the parameters Ai and Bi are given in Table 3 for both liquid and air cases [17].
Similar expressions can be derived for other gases.
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Table 3. Values of the parameters Ak and Bk.

Liquid Air

A1 0.920 2.050
A2 1.500 1.300
A3 −2.100 −2.100
A4 0.870 0.800
A5 2.000 2.530
A6 −4.320 −5.780
A7 2.470 3.610
B1 0.100 0.275
B2 1.143 0.665
B3 −1.147 −0.649
B4 −0.127 −0.100
B5 0.716 0.702
B6 0.455 −1.323
B7 0.000 −0.213

The seconds-order effects on the transmission line frequency response are illustrated
in Figure 5 for the case of laminar flow in a vertical transmission line given the properties
shown in Table 2. It is seen that second-order effects result in much greater attenuation of
mid- and high frequency components of the proposed model in Equation (47), compared
to the linear friction model in Equation (8).
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Figure 5. Frequency dependent effects on line frequency response.

The accuracy of the proposed model is investigated by comparing its frequency re-
sponse with that of the modified dissipative model developed in [15]. The dissipative
model is known in the literature as the exact model for laminar flow in horizontal transmis-
sion lines. The model is extended to account for compressibility effects in inclined fluid
lines and an exact analytical solution represented as a four-terminal network is derived. A
comparison between the frequency responses of the model developed in and the proposed
model of Equation (47) is depicted in Figure 6, showing a good agreement for different
line inclinations.

The proposed model and the model developed in [15] are solutions of linearized
ordinary differential equations that are derived by assuming laminar flow conditions. To
extend the model to account for turbulent flow conditions, a similar technique to that
presented in [14] is adopted. An effective resistance term is introduced as

Re f f = δ(Rtur − Rlam)R, (56)

where δ = 0 and δ = 1 for the case of laminar flow and turbulent flow, respectively. The
resistance terms are defined as

Rtam = λlam
π µ Re
8 A2 L, (57)

Rtur = λtur
π µ Re
8 A2 L, (58)
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such that λlam and λtur are the friction factors for laminar flow and turbulent flow, re-
spectively. The proposed model that can be applied to both laminar and turbulent flow
conditions in inclined transmission lines is given as

[
Pin(s)

Qout(s)

]
=


T̃F11(s)

1 + Re f f T̃F21(s)

T̃F12(s) + Re f f

1 + Re f f T̃F21(s)

− T̃F21(s)
1 + Re f f T̃F21(s)

T̃F22(s)
1 + Re f f T̃F21(s)

[ Pout(s)
Qin(s)

]
(59)
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4. Dynamic Modeling of Transient Two Phase Flow

As described in Figure 7, to model transient two-phase flow behavior, a steady-state
model is first used to determine the flow pattern and estimate the liquid holdup and
pressure drop quantities. Then, the equivalent fluid properties (density, viscosity, and bulk
modulus) of the mixture are estimated using the results presented in [14], and finally used
as model parameter inputs for the proposed analytical dynamic and single-phase model.

A mechanistic model is used to estimate pressure gradient (drop) and liquid holdup,
given gas and liquid configuration in horizontal and inclined transmission lines [14]. The
model was derived from fundamental laws of physics. An experimental database was
used to calibrate the model unknown parameters. The model distinguishes between
several flow patterns (regimes) such as bubble flow, dispersed bubble flow, stratified flow,
annular-mist flow, intermittent flow, and forth flow. For flow regime identification, the
steady-state two-phase flow model developed in [15] assumes the existence of a particular
flow pattern and then examines various criteria that establish stable boundaries of the flow
regime. A new flow pattern is assumed, and the procedure is repeated if the regime is
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found to be unstable. Once the flow pattern is obtained, fluid dynamic relationships are
then used to estimate the pressure gradient and liquid holdup variables based on fluid
mixture, phase material properties, and transmission line inclination. The procedure and
corresponding mathematical relationships for flow pattern determination and pressure
drop/liquid holdup calculation are detailed in [7,14].
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4.1. Equivalent Fluid Parameters

Based on the steady-state pressure drop and liquid holdup obtained by the mechanistic
model, the equivalent fluid phase parameters, namely, the bulk modulus, density, speed of
sound, and viscosity, are derived using the gas and liquid single-phase properties [14]. The
two-phase flow is then assumed to be one homogeneous mixture fluid, and the proposed
analytical dynamic and single-phase model in Equation (47) is applied.

The bulk modulus of a fluid describes the material elasticity as it experiences a
volumetric deformation, which is defined as the ratio of an infinitesimal pressure stress
to its resulting relative change of the volume strain. However, in the present research
for the liquid-gas two-phase flow, the existence of air in the oil flow can considerably
reduce its effective bulk modulus. Thus, considering such deviation in two-phase flow, this
mixture bulk modulus was determined as a combination of the liquid and the gas bulk
moduli in parallel. The equivalent bulk modulus of the liquid-gas two-phase mixture can
be expressed as

1
βeq

=
EL
βL

+
1− EL

βG
, (60)

where βL is the liquid bulk modulus, βG is the gas bulk modulus, and EL is the predicted
liquid holdup given by the steady-state model. While the flow GVF is increasing, the
equivalent bulk modulus of the two-phase mixture will decrease accordingly, based on
Equation (56), which causes lower frequencies of oscillation in flow applications.

The equivalent density of the two-phase fluid is calculated as follows

ρeq = ELρL + (1− EL)ρG, (61)
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where ρL and ρG are respectively the liquid and gas density. Assuming a constant tem-
perature inside the pipeline, the density of the equivalent fluid will be a function of the
pressure only

ρeq(P) =
ρ0

1 + 1
βeq

(P0 − P)
(62)

hence, the equivalent speed of sound in the fluid is obtained as

ceq =

√
βeq

ρeq
(63)

For a liquid-gas two-phase flow problem, higher GVF will cause lower mixture density
and its equivalent bulk modulus. Considering that the fluid sound speed can be more
sensitive to its bulk modulus compared to its density, such higher GVF may lead to a lower
sound speed when an equivalent fluid is characterized [14]. For such equivalent mixture
flow, the basic Darcy friction factor is calculated by

feq =
2DA2∆Pss

ρeqQ2 , (64)

where D is the pipe diameter, A is the pipe cross-sectional area, Q is the flow rate, and
∆Pss is the steady-state predicted pressure drop. Then, the equivalent viscosity of the
mixture fluid is derived based on this Darcy friction factor. In the case of laminar flow, the
equivalent dynamic viscosity will be given by

µeq =
1
64

ρeqVmD feq (65)

If the flow is turbulent, the Colebrook equation [20] is used to recover the equivalent
viscosity. Other correlations such as Goudar and Sonnad [21] can also be used. Once all
the equivalent single-phase fluid properties are determined, the dynamic model proposed
in Equation (47) is used to simulate transient behavior of the two-phase flow in inclined
transmission lines.

4.2. Model Comparison with OLGA

To investigate the model accuracy under transient multiphase flow conditions, a time-
domain analysis is performed by simulating an air/water flow in inclined transmission
line using OLGA under different GVF conditions as described given Table 4.

Table 4. OLGA simulation parameters.

Transmission Line

Length Diameter Inclination Roughness

100 m 0.038 m 0◦, 30◦, 60◦, 90◦ 3.3 × 10−6 m

Liquid

Density Speed of sound Viscosity

884 kg/m3 1372 m/s 0.075 Pa s

Gas

Density Speed of sound Viscosity

82 kg/m3 400 m/s 1.5 × 10−5 Pa s

GVF Flow rate

10%, 25%, 50% Stepped from 1.8 × 10−3 to 0.002 m3/s
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Shown in Figure 8 are comparisons between a step-time response from OLGA and
that from the proposed model using one mode approximation for the case of 10% GVF
and for different inclination angles. The inlet flow rate is stepped as shown in Table 4
and the outlet pressure is kept constant at 100 bar. An agreement is observed between the
two responses, indicating a match between the estimated system fundamental frequencies
and damping ratios. Indeed, a small error is found with a mean absolute error (MAE) of
less than 4% between the estimated overshoots and a MAE of less than 0.5 s between the
estimated settling times. The same flow conditions are simulated for a fixed inclination
angle of 20◦ upward and various GVF values. The inlet pressure transient responses are
depicted in Figure 9. Agreement between the two models is noted, especially for lower
GVF values. As GVF increases, more discrepancies between the results of the proposed
model and those obtained from OLGA are observed. The MAE between the estimated
overshoots for the 80% GVF case is around 8% and that between the estimated settling
times is around 2 s.
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Figure 8. Comparison of dynamic inlet pressure for 10% GVF.
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As described previously, the accuracy of the fluid resonant frequencies predicted
by the proposed model is precise and not a function of number of modes used in the
approximation. Increasing the model order (complexity) is solely a function of the desired
frequency range. Illustrated in Figure 10 is a comparison of inlet pressure step responses
between the proposed model and OLGA for the 10% GVF flow case in an inclined line with
20◦ downward angle. It can be concluded that, unlike OLGA, the proposed model enables
the estimation of high-order dynamic effects by increasing the number of approximated
second-order modes.
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5. Conclusions

Presented is an analytical model for transient laminar and turbulent two-phase flow
in inclined transmission lines. Four transcendent transfer functions are obtained by solv-
ing the linearized single-phase Navier-Stokes equations. To enable system analysis and
synthesis in the time domain, these transfer functions are approximated by finite-order
rational polynomial transfer functions using residue theorem. A major benefit of the
proposed model over existing models is that its coefficients are explicit functions of the
transmission line and fluid properties rather than numerically derived from tables or
graphs. The proposed dynamic single-phase model is then coupled with a mechanistic
model for steady-state pressure drop and liquid holdup estimation of liquid-gas flow con-
ditions. Model ability to capture the essential dynamics of two-phase flow in transmission
lines is investigated upon comparison with OLGA under different GVF conditions and
inclination angles, showing a good agreement of steady-state characteristics and transmis-
sion line natural frequency response. Discrepancies have been seen in the step response
overshoots and settling times. However, for the case studies described in this paper, the
mean absolute error between the estimated overshoots and settling times is less than 8%
and 2 s, respectively.
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