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Abstract: This work extends the characteristic-based volume penalization method, originally
developed and demonstrated for compressible subsonic viscous flows in (J. Comput. Phys. 262, 2014),
to a hyperbolic system of partial differential equations involving complex domains with moving
boundaries. The proposed methodology is shown to be Galilean-invariant and can be used to impose
either homogeneous or inhomogeneous Dirichlet, Neumann, and Robin type boundary conditions
on immersed boundaries. Both integrated and non-integrated variables can be treated in a systematic
manner that parallels the prescription of exact boundary conditions with the approximation error
rigorously controlled through an a priori penalization parameter. The proposed approach is well
suited for use with adaptive mesh refinement, which allows adequate resolution of the geometry
without over-resolving flow structures and minimizing the number of grid points inside the solid
obstacle. The extended Galilean-invariant characteristic-based volume penalization method, while
being generally applicable to both compressible Navier–Stokes and Euler equations across all speed
regimes, is demonstrated for a number of supersonic benchmark flows around both stationary and
moving obstacles of arbitrary shape.

Keywords: immersed boundary; volume penalization; moving obstacles; Galilean invariance; hy-
perbolic system; adaptive mesh refinement, wavelets, Euler equations, Navier–Stokes equations

1. Introduction

Numerical simulation of complex geometry flows in a computationally efficient man-
ner represents a challenging problem, especially in the presence of moving/deformable
boundaries. Solid bodies are introduced by imposing appropriate boundary conditions
upon surfaces, and to that end, several approaches have been developed. These methods
can be separated into two major groups: body-fitted mesh [1–3] and immersed boundary
(IB) methods [4–6].

For conventional structured/unstructured body-fitted grid methods, the numerical
meshes are conformal to the complex boundaries. Therefore, it is straightforward to impose
exact boundary conditions and to attain satisfactory accuracy by employing fine meshes for
boundary layers, where high resolutions are required, which is critical for high Reynolds
number flows. However, there are some disadvantages to these methods. The grid must
be carefully constructed to precisely fit an obstacle. In most cases, this precludes the use
of structured Cartesian grids. The process of mesh generation is highly dependent upon
the obstacle geometry and can become computationally expensive, especially for complex
surfaces. This issue is compounded for moving or deforming obstacles, which require
continuous adaptation or re-meshing throughout computation of the solution [6]. The grid
generation process may be very expensive: it is not an easy task to generate a good-quality
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grid, as even simple geometries and simulations for moving boundary problems become
prohibitively expensive due to grid generation and solution interpolation to the new mesh
at each time step.

The use of IB methods avoids the cost and complications of body meshing by directly
introducing the effects of obstacles upon the governing equations. Solid body effects, thus
embedded within the flow itself, obviate the rigors of positioning nodes upon a surface. In the
IB approach, the boundary conditions on the obstacle surface are indirectly imposed by intro-
ducing additional terms in either the discretized [7] or continuous [8] governing equations. In
fact, depending on the way the boundary conditions are imposed, IB methods can be roughly
grouped into two main classes: discrete [4,7,9,10] and continuous [8,11,12] forcing approaches.
Discrete forcing methods are based on modifications of discretized equations, which makes
them difficult to generalize due to the direct dependence on methods of discretization.
Continuous forcing methods, also referred to as volume penalization (VP) methods, are
based on solving modified penalized governing equations, where penalty terms in the
form of additional forces (or different feedback mechanisms) ensure the approximation of
the boundary conditions. Despite their seeming simplicity and wide use, discrete forcing
methods lack generality and flexibility across different solvers and the ability to rigorously
control the accuracy of the approximated boundary conditions [6], whereas continuous
formulations are independent of the discretization methods and usually have an ability to
rigorously control the error of the solution through a penalization parameter [12–14]. Since
Peskin’s IB method [15] was originally introduced to study flow patterns around heart
valves, a number of other IB techniques have been developed for incompressible viscous
flows around complex solid boundaries. In contrast to Peskin’s method using external
forces to simulate the immersed boundaries, Cartesian grid methods [16–19] and ghost-cell
IB methods [5] directly impose the boundary conditions on the immersed boundaries.

Starting with the work of Arquis & Caltagirone [8] that introduced a VP formulation for
incompressible flows around solid obstacles, which is commonly known as the Brinkman
penalization (BP) method, considerable efforts have been put into the development of VP
methodologies for incompressible flows [12,14,20–22]. The main idea of these methods is to
model arbitrarily complex solid obstacles as porous media with permeability approaching
zero. A principal strength of Brinkman-type penalization, compared to discrete forcing IB
methods, is that the error between the solutions of penalized and non-penalized equations
can be estimated rigorously in terms of the penalization parameter with the approximate
solution converging to the exact one in a predictable fashion [12–14,20,23]. Because this VP
is simple and cheap to calculate, it is well-suited for flows in complex geometries, including
moving obstacles. Much work has been undertaken to refine BP methods for various
numerical techniques, including pseudospectral [24–27], finite-element/finite-volume [28],
and wavelet-based [23,29–32] formulations.

Until recently, most of the effort was put into the development of IB methods for
incompressible viscous flows. One of the first attempts at developing a discrete forcing IB
method for compressible flows was undertaken in Reference [33], where the flow around
a circular cylinder and an airfoil at high Reynolds numbers was modeled. However,
the formulation of Ghias et al. [33] did not take into account acoustic wave reflection
and transmission at the interface between fluid and solid media, which are critical in
some applications with acoustic and shock wave propagation around solid obstacles.
Similar problems were observed in the extended impedance mismatch method [34], which
extended the original approach of Chung [35] to unsteady non-uniform flow problems.

The Brinkman VP approach was generalized to compressible flows in [36], where
in addition to the penalization of momentum and energy equations, the continuity equa-
tion was also modified inside the obstacle to be consistent with the porous media flow
physics. In the extended compressible BP model, the penalized porous region acts as a
high impedance medium, resulting in negligible wave transmissions. As in the incompress-
ible case, the error bounds of the compressible BP method could be rigorously estimated
in terms of porosity and permeability parameters. The extended BP method was suc-
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cessfully applied for simulating subsonic compressible flows in both viscous [36] and
inviscid [37] conditions.

A number of discrete forcing IB methods have been recently extended to compress-
ible flows as well. The suitability of Cartesian grid methods for modeling compressible
high-Reynolds number flows using delayed detached eddy simulation was studied in
Reference [38], while sharp-interface [39] and ghost-cell [40,41] IB methods were extended
to compressible flows. Moreover, a comparative study of compressible BP and discrete forc-
ing Cartesian grid IB methods was performed in [42] for compressible viscous flows, where
an excellent agreement between the two different approaches was observed. It should
be noted that, for the compressible BP method, the correct shock reflection was obtained
using theoretically predicted values of total energy after shock reflection, as a target in the
Brinkman term for the energy equation, which is not known in the general case, and thus
should not be used. The imposition of the temperature conditions on the wall results in the
incorrect reflection of shock waves, due to creation of a large pressure gradient inside the
penalized region and consequent graduate pressure decay due to seepage. This necessitated
the development of a more general VP approach capable of approximating compressible
flows across all speed regimes, as well as imposing general homogeneous/inhomogeneous
Neumann and Robin type boundary conditions. The first step to this end was to develop
a characteristic-based volume penalization (CBVP) method [43], where the BP approach
was extended to general boundary conditions by introducing hyperbolic VP terms with
characteristics pointing inward on solid obstacles. As with the original formulation, CBVP
maintains rigorous control of the error, through a priori chosen penalization parameters,
for all types of boundary conditions.

The CBVP method was demonstrated for scalar diffusion equations and compressible
Navier–Stokes equations for a variety of boundary conditions for both stationary and
moving obstacles and was extended to Euler equations [44,45] for stationary obstacles.
Lavoie et al. [45] suggested using modified boundary conditions to impose conservation
of entropy and total enthalpy in the wall-normal direction instead of adiabatic boundary
conditions used in [44], which lead to more accurate results on coarse meshes. However,
even though the results of simulation of compressible flows using the compressible BP [36]
and CBVP [43] methods were demonstrated to be accurate, as pointed out in Reference [46],
mathematically, both formulations were not actually Galilean-invariant. Indeed, Komatsu
et al. [46] suggested a Galilean invariant extension of the compressible BP method [36].

In this work, we propose a novel Galilean-invariant extension of the CBVP method to
systems of hyperbolic partial differential equations (PDEs) involving moving geometries.
This extended formulation, which is referred to as Galilean-invariant characteristic-based
volume penalization (GI-CBVP), is demonstrated for supersonic complex geometry flows.
The penalized Euler and Navier–Stokes equations are solved for flows around stationary
and moving obstacles. It should be noted that the new method is well suited for use
with adaptive mesh refinement (AMR) techniques [47]. In fact, the VP approach does
not employ body-conformal meshing, and high resolution is required around surfaces for
computational accuracy and proper definition of geometry. The use of AMR grids maintains
the resolution of solid geometry without over-resolving flow structures. Additionally, the
number of nonphysical points lying inside the obstacle can be minimized to those necessary
to support the boundary conditions, which is particularly important for obstacles inhabiting
a large portion of the computational domain.

All of the results reported in this paper were obtained using the adaptive wavelet
collocation (AWC) methodology [48–51]. AWC represents a general numerical approach
that utilizes a wavelet decomposition to dynamically adapt the local mesh resolution
on steep gradients in the solution, while retaining a predetermined order of accuracy.
Geometry definitions are treated as any other flow variable by AWC methods, where the
local grid adapts efficiently and dynamically in order to resolve surfaces, even for moving
obstacles. The AWC method was applied to shockless supersonic flows in [52], while
a wavelet-based shock capturing scheme was developed to handle flow discontinuities
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in [53]. The combined VP/AWC approach was undertaken for incompressible flows past
stationary obstacles in [54,55]. The interested reader is referred to [56,57] for a complete
review of this methodology and its applications.

The rest of the paper is organized as follows. Theoretical and numerical aspects of
the new GI-CBVP method are provided in Section 2, while the results of simulations of
different benchmark problems are presented and discussed in Section 3. Finally, some
conclusions are drawn in Section 4.

2. Characteristic-Based Volume Penalization
2.1. Mathematical Formulation

In the framework of the CBVP approach, the proper boundary conditions are imposed
by modifying the governing equations inside the solid region. Consider a compressible
flow problem, defined in a physical domainR containing a solid obstacle Ω, and governed
(outside of Ω) by a generalized evolution equation, say

∂ f
∂t

= RHS, (1)

where RHS is simply representing the physical terms on the right hand side of the equation.
Note that Equation (1) can be hyperbolic or parabolic in nature. A masking function χ(x, t)
is defined by

χ(x, t) =
{

1, if x ∈ Ω, ∀t
0, elsewhere

(2)

with Ω standing for the physical domain instantaneously occupied by the solid obstacle.
This masking function separates the domain into a physical region and a penalized region
associated with the solid obstacle. The general boundary conditions, written in operator
form as

L f = Target (3)

are imposed in a similar fashion as BP, namely

∂ f
∂t

= (1− χ)RHS− χ

η
(L f − Target). (4)

For Dirichlet type boundary conditions, Equation (4) reduces to BP [12], while homo-
geneous Neumann type boundary conditions

L f =
∂ f
∂n

∣∣∣∣
∂Ω

= 0

result in the following penalized equation:

∂ f
∂t

= (1− χ)RHS− χ

η

∂ f
∂n

, (5)

where ∂ f
∂n = ni

∂ f
∂xi

, with ni representing the components of the inward-oriented surface
normal vector. This procedure can be generalized to Robin type boundary conditions, as
was demonstrated in Reference [43].

It is important to emphasize that despite the similarity of the different formulations in
operator form for Dirichlet, Neumann, and Robin type boundary conditions, the mecha-
nisms underlying each condition are very different. For Dirichlet type boundary conditions,
the penalization term acts as a simple feedback mechanism that forces the solution inside
the obstacle to the desired target value. For Neumann/Robin type boundary conditions,
the solution is convected inside the obstacle along the inward pointing characteristic nor-
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mal to the surface. In any case, the penalization parameter η determines the timescale of
the process. As it was demonstrated in [43], the solutions of the penalized equations for
either Dirichlet or Neumann/Robin type penalization converge to the solutions obtained
by imposing the exact boundary conditions. Since the penalization timescale is controlled
through the parameter η, selecting η � 1 causes Equation (4) to become quasi-steady
within Ω, on the normalized problem timescale, therefore imposing the intended bound-
ary conditions on the interface. For vanishing η, the increased disparity in timescales
asymptotically controls the penalization error. However, reducing the error increases the
computational complexity. Since 1/η is the characteristic velocity for Neumann/Robin
type boundary conditions, a reduction of η is also accompanied by increased stiffness,
which represents a well-known problem with BP that is mitigated through stiffly-stable
solvers [36].

Note that the CBVP method relies on the availability of the normal vector in the entire
obstacle interior, that is, where χ = 1. This normal vector can be either directly prescribed,
for simple objects, or constructed through the use of distance or level set functions, defined
analytically or numerically, for more complex geometries (e.g., [58]).

2.2. Volume Penalization of Euler Equations

For numerical simulation of the compressible Euler equations, the following bound-
ary conditions at the fluid–obstacle interface are either explicitly assumed or implicitly
built into numerical methods (e.g., by constructing ghost cells while using symmetry
assumptions) [59]:





un
i |∂Ω = Un

oi (no-penetration condition),

∂uτ
i

∂n

∣∣∣∣
∂Ω

= 0 (stress free condition),

∂p
∂n

∣∣∣∣
∂Ω

= −κτρ‖ûτ‖2 (no flow separation assumption),

∂T
∂n

∣∣∣∣
∂Ω

= 0 (adiabatic wall condition),

(6)

where the superscripts (·)n and (·)τ denote normal and tangential components, respectively.
The vector field û = u−Uo represents the relative to obstacle fluid velocity, with ‖ûτ‖2 =

ûτ
j ûτ

j , while κτ is the streamline surface curvature moving with the obstacle frame of
reference. Despite the fact that the only mathematically rigorous boundary condition for
Euler equations would be the no-penetration condition, the above boundary conditions are
commonly used because they can be derived as outer asymptotic conditions for viscous
boundary layer flows. In the present context, these boundary conditions are enforced
through the VP approach, as is discussed in the following. For the sake of simplicity,
hereafter, the penalized equations are written for the interior of the obstacle, where χ = 1.
Thus, the boundary conditions (6) are enforced as follows:





∂un
i

∂t
= − ûi

ηb
,

∂uτ
i

∂t
= − 1

ηc

∂uτ
i

∂n
,

∂p
∂t

= − 1
ηc

(
∂p
∂n

+ κτρ‖ûτ‖2
)

,

∂T
∂t

= − 1
ηc

∂T
∂n

.

(7)

Note that in these equations and thereafter, two different parameters ηb and ηc are used
to highlight different asymptotic convergence mechanisms for Brinkman and characteristic-
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based penalizations, respectively. Also note that, since Equation (7) is defined throughout
the obstacle interior, both normal and tangential velocities un and uτ , as well as the
streamline curvature, need to be defined inside the obstacle. This can be achieved by
making use of the normal vector field n, so that the different velocity fields are determined
as: un = niuin; uτ = u− un; ûn = niûin; ûτ = û− ûn. As to the streamline curvature,
it holds κτ = −τiτj

∂ni
∂xj

, where τ = ûτ

‖ûτ‖
represents the unit tangential vector. Using this

definition, the pressure equation takes the following simpler form

∂p
∂t

= − 1
ηc

(
∂p
∂n
− ρûτ

i ûτ
j

∂ni
∂xj

)
. (8)

Therefore, rewriting Equation (7) for conserved variables, using Equation (8) and the
total energy definition

E =
ρuiui

2
+

p
γ− 1

, (9)

the following evolution equations in the interior of the obstacle are obtained:




∂ρ

∂t
= − χh

ηc

∂ρ

∂n︸ ︷︷ ︸
convective

+
χh
ηc

ρ2ûτ
j ûτ

k

p
∂nk
∂xj︸ ︷︷ ︸

non-conservative

+ χdνn∇2ρ︸ ︷︷ ︸
smoothing

,

∂(ρun
i )

∂t
= − χ

ηb
ρûn

i
︸ ︷︷ ︸

Brinkman

+ χνn∇2un
i︸ ︷︷ ︸

diffusive

,

∂(ρuτ
i )

∂t
= − χh

ηc

∂(ρuτ
i )

∂n︸ ︷︷ ︸
convective

+
χh
ηc

ρ2uτ
i ûτ

j ûτ
k

p
∂nk
∂xj︸ ︷︷ ︸

non-conservative

+ χdνn∇2uτ
i︸ ︷︷ ︸

smoothing

,

∂E
∂t

= − χh
ηc

∂E
∂n︸ ︷︷ ︸

convective

+
χh
ηc

ρûτ
j ûτ

k

γ− 1
∂nk
∂xj

+
χh
ηc

un
j

∂(ρun
j )

∂n
+ χhun

j νn∇2un
j −

χh
ηb

ρun
j ûn

j

︸ ︷︷ ︸
non-conservative

+ χdνn∇2E︸ ︷︷ ︸
smoothing

,

(10)

where ∇2(·) stands for the Laplacian differential operator.
In these equations, the diffusive and smoothing terms, in addition to convective,

Brinkman, and non-conservative forcing terms, are considered in order to stabilize the
numerical implementation. Note that the convective terms practically correspond to the
CBVP approach. In particular, the Brinkman term in the normal momentum equation
is complemented by the diffusive term, which is added to control spatial resolution of
the inner boundary layer for a given mesh size ∆, and penalization parameter ηb, and
to avoid spurious oscillations at the boundary. The corresponding numerical viscosity
νn = α2∆2/ηb (with α = O(1)) is chosen to guarantee that the diffusion in the interior of
the obstacle is occurring on the same timescale as ηb. For more details on the diffusion
term determination, the reader is referred to Reference [43].

It should be emphasized that the application of convective terms in the entire interior
domain of the obstacle is undesirable for two reasons: (i) normal vectors are ill-defined far
from boundaries, due to possible intersection of the characteristics and existence of extrema
points in the distance function, (ii) an additional computational cost and deterioration of
stability/accuracy of characteristic equations far from the boundaries. For these reasons,
the characteristic equations are only solved in a narrow internal layer close to the obstacle
boundary, denoted by masking function χh, which is just wide enough to propagate the
solution along characteristics within the actual stencil of the differential operator. As a
result, all convective and non-conservative terms in Equation (10) are only present in this
layer. Differently, the BP and corresponding penalization terms are applied throughout the
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entire region defined by obstacle masking function χ. Since the characteristics are pointed
inwards, the solution of Euler equations in the fluid region and in the thin layer defined by
masking function χh are not affected by the solution in the remaining interior region of
the obstacle, denoted by masking function χd. Note that the masking functions χh and χd
are orthogonal, i.e., χ = χh + χd. The convective terms are complemented by smoothing
terms using the same form as diffusive terms but defined only in the region of the masking
function χd. The schematic illustration of different masking functions and regions where
they are defined is given in Figure 1.

□

□

♦  

χh

χd

(1− χ)

grid

Figure 1. Illustration of different masking functions used for different penalization terms: χh is the
masking function for the hyperbolic thin layer, χd is for the diffusive internal region, and (1− χ) is
for the external fluid region.

Finally, when the Euler equations are solved together with Equation (10) for the penal-
ized region, the penalization terms for evolution of normal and tangential momentums are
combined according to

∂(ρui)

∂t
=

∂(ρun
i )

∂t
+

∂(ρuτ
i )

∂t
, (11)

resulting in the simultaneous enforcement of boundary conditions at the surface for both
normal and tangential velocity components.

2.3. Volume Penalization of Navier–Stokes Equations

The penalization approach introduced in the previous section is also applicable to
the Navier–Stokes equations for problems with adiabatic walls. Since the form of no-slip
boundary conditions is mathematically equivalent to the form of no-penetration boundary
conditions, Equation (10) is directly applicable for the penalization of the Navier–Stokes
equations after performing the following substitutions: un → u, uτ → 0, and Un

o → Uo.
In other words, the penalization equation for the tangential velocity component is simply
ignored. For the solution of the Navier–Stokes equations with non-zero heat flux, the
adiabatic wall boundary conditions (6) need to be replaced by

∂T
∂n

∣∣∣∣
∂Ω

= q, (12)

where q is the normalized heat flux. The latter variable can be either prescribed or expressed
as a function of the wall temperature. The penalization equation for the temperature in the
system (7) can be modified following the procedure given by Equation (4).

2.4. Moving Obstacles

When solving flows with moving boundaries, it is important that the underlying
problem (governing equations and associated boundary conditions) is invariant with
respect to a change of the reference frame, which is commonly referred to as Galilean
invariance. In this case, the solution of the fluid flow equations should be the same in
every inertial frame. Unfortunately, while boundary conditions (6) are Galilean-invariant,
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the system of penalized Equation (10) is not. In order to become Galilean-invariant,
these equations need to be reformulated in the reference frame moving with the obstacle
velocity and then transformed for the stationary frame. This procedure results in adding
Lagrangian terms to the equations, according to the following transformation: ∂

∂t →
∂
∂t +

Uo
j

∂
∂xj

. To theoretically demonstrate the Galilean invariance of the proposed formulation
let us consider the Galilean-invariant formulation of Equation (4) enforcing the boundary
condition (3) on the boundary of the obstacle moving with velocity Uo

∂ f
∂t

+ χo(x−Uot)Uo
j

∂ f
∂xj

=
(

1− χo(x−Uot)
)

RHS− χo(x−Uot)
η

(
L f − Target

)
, (13)

where the masking function for the moving obstacle is explicitly written as

χ(x, t) = χo(x−Uot). (14)

Assuming that the RHS is Galilean-invariant outside of the obstacle, the formulation (13) is
Galilean-invariant for general boundary condition, including the Dirichlet boundary condition
on the velocity, which follows from the Galilean invariance of spatial operators, Dirichlet
boundary conditions of non-velocity variables, and the relative velocity û = u−Uo used
in either no-slip or no-penetration boundary conditions. Thus, the proposed extension of a
characteristic-based volume penalization method is Galilean-invariant on the formulation level.

This way, the system of penalized Equation (7) in the interior of the obstacle is rewritten
as





∂un
i

∂t
+ Uo

j
∂un

i
∂xj

= − ûi,
ηb

∂uτ
i

∂t
+ Uo

j
∂uτ

i
∂xj

= − 1
ηc

∂uτ
i

∂n
,

∂p
∂t

+ Uo
j

∂p
∂xj

= − 1
ηc

(
∂p
∂n

+ κτρ‖ûτ‖2
)

,

∂T
∂t

+ Uo
j

∂T
∂xj

= − 1
ηc

∂T
∂n

.

(15)

Analogously, the system of penalized evolution Equation (10) in the interior of the
obstacle becomes





∂ρ

∂t
+ χUo

j
∂ρ

∂xj
= − χh

ηc

∂ρ

∂n︸ ︷︷ ︸
convective

+
χh
ηc

ρ2ûτ
j ûτ

k

p
∂nk
∂xj︸ ︷︷ ︸

non-conservative

+ χdνn∇2ρ︸ ︷︷ ︸
smoothing

,

∂(ρun
i )

∂t
+ χUo

j
∂(ρun

i )

∂xj
= − χ

ηb
ρûn

i
︸ ︷︷ ︸

Brinkman

+ χνn∇2un
i︸ ︷︷ ︸

diffusive

,

∂(ρuτ
i )

∂t
+ χUo

j
∂(ρuτ

i )

∂xj
= − χh

ηc

∂(ρuτ
i )

∂n︸ ︷︷ ︸
convective

+
χh
ηc

ρ2uτ
i ûτ

j ûτ
k

p
∂nk
∂xj︸ ︷︷ ︸

non-conservative

+ χdνn∇2uτ
i︸ ︷︷ ︸

smoothing

,

∂E
∂t

+ χUo
j

∂E
∂xj

= − χh
ηc

∂E
∂n︸ ︷︷ ︸

convective

+
χh
ηc

ρûτ
j ûτ

k

γ− 1
∂nk
∂xj

+
χh
ηc

un
j

∂(ρun
j )

∂n
+ χhun

j νn∇2un
j −

χh
ηb

ρun
j ûn

j

︸ ︷︷ ︸
non-conservative

+ χdνn∇2E︸ ︷︷ ︸
smoothing

,

(16)
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where the Lagrangian terms are explicitly multiplied by masking function χ to emphasize
that they are applied throughout the entire obstacle.

It is worth noting that the original formulation of the CBVP method for moving
obstacles, in the context of compressible Navier–Stokes equations [43], did not involve
any Lagrangian terms, without affecting the accuracy of the results. The reason for this
weak sensitivity to the presence of these additional terms was the use of no-slip boundary
conditions and smooth variation of the solution in the vicinity of the solid boundary. In
fact, the correct boundary conditions were simply achieved through the BP term, which
adjusted the solution on the timescale of ηb. The situation is drastically different for the
Euler equations, since the changes in the tangential velocity field can be substantial if
the solution inside the obstacle is not convected with the obstacle velocity. The results of
the numerical experiments, which are reported in Section 3.4, confirm higher accuracy
and better convergence of the new GI-CBVP formulation (16). The use of Lagrangian
terms in the penalized equations is, however, recommended for both Euler and Navier–
Stokes approaches.

Finally, due to the local nature of the penalized equations, the proposed formulation
is also applicable for rotating and deformable objects, in addition to obstacles with trans-
lational motions. In the former case, the obstacle velocity at every interior point needs to
be provided, either analytically or through the solution of a governing equation for the
evolution of the obstacle motion or its deformation.

2.5. Adaptive Wavelet Collocation Method

The AWC method utilizes the wavelet-based decomposition of the flow field un-
knowns to dynamically adapt the local mesh resolution on steep gradients in the solution,
while retaining a predetermined order of accuracy [29,48,49]. Formally, a scalar spatial
field f (x) can be represented in terms of wavelet basis functions as

f (x) = ∑
l∈L0

c0
l φ0

l (x) +
+∞

∑
j=0

23−1

∑
µ=1

∑
k∈Kµ,j

dµ,j
k ψ

µ,j
k (x), (17)

where φ0
l and ψ

µ,j
k are three-dimensional scaling functions and wavelets of different families

(µ) and levels of resolution (j), respectively. The above wavelet decomposition can be
thought as of a multi-resolution representation of f , where each level of resolution consists
of a family of wavelets ψ

µ,j
k having the same scale but located at different positions.

In order to compress the numerical solution, wavelet filtering is performed through
wavelet coefficient thresholding. Given the number of resolution levels, say jmax, the
wavelet filtered variable is defined by

f
>ε
(x) = ∑

l∈L0

c0
l φ0

l (x) +
jmax

∑
j=0

23−1

∑
µ=1

∑
k ∈ Kµ,j

|dµ,j
k | > ε‖ f ‖

dµ,j
k ψ

µ,j
k (x), (18)

where ε stands for the non-dimensional threshold to be prescribed. A good approximation
of the unfiltered field can be retained even after discarding a large number of wavelets
with small coefficients, because the coefficients dµ,j

k are small unless f causes a significant

variation on the level of resolution j, in the immediate vicinity of the wavelet ψ
µ,j
k location.

The reconstruction error was demonstrated to converge as

‖ f
>ε − f ‖ ≤ Cε‖ f ‖, (19)

with C = O(1). Due to the one-to-one correspondence between wavelets and collocation
points, the nodes are omitted from the computational mesh if the associated wavelets are
excluded from the truncated approximation (18). Thus, the multilevel structure of the
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wavelet approximation provides a natural way to obtain the solution on a nearly optimal
numerical mesh, which is dynamically adapted to the evolution of the main flow structures,
both in location and scale. The multi-resolution wavelet decomposition (18) is used for both
mesh adaptation and interpolation, while the derivatives at the adaptive computational
nodes are found by differentiation of the local wavelet interpolant at the appropriate level
of resolution. In addition, for supersonic flows, the AWC method is supplemented with
a shock capturing scheme [53], which uses wavelet coefficients to define local numerical
viscosity in the neighborhood of the shock waves and to automatically switch it off away
from them.

3. Numerical Results and Discussion

The original CBVP method was already demonstrated for a number of problems
with smooth solutions, such as heat equation, acoustic wave reflection, and low Mach
compressible viscous flow around a two-dimensional cylinder [43]. The present study
focuses on evaluating the novel aspects of the extended method that is developed for
solving systems of hyperbolic PDEs with discontinuous solutions, in the presence of
stationary or moving obstacles of arbitrary complexity. For that purpose, a number of
different benchmark tests are performed. Specifically, the first test is represented by
the one-dimensional shock tube problem, where the shock reflection from the wall is
quantitively evaluated, with the wall being approximated by the GI-CBVP method. The
second and third benchmark problems test the ability of the new method to correctly
model the effect of the obstacle for the generation of oblique and detached shock waves,
while the fourth test demonstrates the Galilean invariance of the GI-CBVP approach. In
addition, the two-dimensional benchmark problems illustrate the efficiency of using the
adaptive wavelet-based mesh refinement with the GI-CBVP method and the ability of the
integrated approach to adequately resolve the obstacle geometry without over-resolving
flow structures and minimizing the number of grid points inside the solid obstacles.

3.1. Benchmark I: Normal Shock Wave Reflection

Let us consider the one-dimensional Sod’s (shock tube) test problem in the spatial
domainR = [−0.5, 1.5], where the wall is prescribed as a volumetric obstacle occupying
the region Ω = [1, 1.5], and the shock is initially located at x0 = 0. The initial states in front
and behind the shock are chosen according to the Rankine–Hugoniot jump conditions.
Practically, after prescribing the post-shock conditions ρL = 1, uL = 2 and pL = 1, as
well as uR = 0, the pre-shock conditions ρR and pR, as well as the shock velocity S, are
found according to the given jump conditions. The schematic diagram of this problem is
reported in Figure 2, where xS represents the shock location and L stands for the length of
the computational domain.

xS
L

S

⇢L

uL

pL

9
=
;

8
<
:

⇢R

uR

pR

Figure 2. Schematic diagram of the one-dimensional shock tube problem.

Different calculations are conducted for a series of uniformly spaced, non-adaptive
computational meshes consisting of a number of grid points N between 29 and 213. Pressure
seepage and amplitude error are significantly reduced when compared to the results
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obtained with the compressible BP method [36], but a phase lag is still present. In Figure 3,
local pressure plots at the end of the simulation, when the reflected shock front is far
from the wall, are presented for coarse and fine mesh resolutions, with the penalization
coefficients being set to the values of ηc = 10−3 and ηb = 10−5.

(a) (b)

Figure 3. Pressure profiles along the shock tube for (a) coarse (N = 29) and (b) fine (N = 211) grid
resolutions. The penalized solution for the reflected shock is compared with that obtained using
exact algebraic boundary conditions. The theoretical shock location is also indicated.

The penalty parameters determine the transition time of the shock wave reflection
from the wall, while the spatial discretization size ∆x determines the shock thickness, with
all three parameters contributing to the phase lag. In fact, the characteristic timescale of the
finite width shock wave reflection from the solid wall is τswr = S/∆x, while the timescale
of the transitional effects due to the penalization procedure is τη = max(ηb, ηc). Taking into
account the different rates of convergence for Brinkman and CBVP methods that are, respec-
tively, O(η1/2

b ) and O(ηc) [43], the BP parameter is constrained as ηb = η2
c , for a given value

of ηc. Results of parametric sweep for ηc ∈
[
10−3, 10−1], corresponding to four different

grid resolutions, are provided in Figure 4. One can see that, as long as the penalization
transitional timescale is shorter than the shock reflection timescale, τη < τswr, the numerical
discretization error associated with finite width shock readjustment is dominating. For the
opposite case, when τη > τswr, the error converges linearly as O(ηc).

Figure 4. L2-norm of the error for different values of ηc.

3.2. Benchmark II: Oblique Shock Wave

In order to demonstrate the ability of the proposed methodology to correctly capture
both oblique and detached shock wave reflections, supersonic inviscid flow past wedges
with subcritical and supercritical wedge angles are simulated. The presence of the wedge
is modeled, employing the GI-CBVP methodology. The incident shock wave conditions are
chosen to be the same as in the previous benchmark problem, namely, uL = 1.6, pL = 1,
ρL = 1, uR = 0 and ρR, pR and S corresponding to the Rankine–Hugoniot jump conditions.
The two-dimensional computational domain is R = [−0.5, 1.5] × [0, 4] and the wedge
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apex is located at the point (0.28, 0). The AWC method [48], supplied with the shock
capturing scheme [53], with the effective mesh resolution of 513× 1025 points and eight
levels of resolution, is used for this test. Inflow boundary conditions are applied on the left
boundary with values equal to the left shock state values. On the top boundary, and on the
portion of the bottom boundary located before the wedge, symmetry boundary conditions
are used. Outflow boundary conditions are imposed on the right boundary, outside of
the wedge. Moreover, tangential diffusion boundary conditions are used on the wedge
domain boundaries.

For subcritical flow, the angle of the reflected shock is given analytically by the
following relation

tan θ = 2 cot β
Ma2 sin2 β− 1

Ma2(γ + cos 2β) + 2
, (20)

where θ is the wedge angle, β is the deflected shock angle, and Ma is the Mach number of the
incident shock wave. The inviscid supersonic flow past a wedge with the deflection angle
of θ = 10◦ is simulated. The solution of the problem is shown in Figure 5a with the object
geometry displayed in black. The adaptive computation mesh, demonstrating the adaptive
resolution of solid surfaces and shock structures, is demonstrated in Figure 5b. The attached
oblique shock wave with the oblique angle of β ≈ 51◦ is illustrated in Figure 5a,b by the
yellow line, with the theoretical value of β = 51.1◦ being predicted by Equation (20) with
Ma = 1.6. The adaptive computation mesh, demonstrating the adaptive resolution of solid
surfaces and shock structures is shown in Figure 5b. It is worth noting the presence of the
fine local mesh inside of the obstacle at the expansion corner, which is caused by ill-defined
normal vectors.

(a) (b)

Figure 5. Supersonic flow reflecting from a wedge with the deflection angle θ = 10◦, and the oblique
shock angle of β ≈ 51◦ indicated by the yellow line: (a) density field, (b) adaptive grid colored by the
pressure field.

3.3. Benchmark III: Two-Dimensional Supersonic Flows around Blunt Bodies

In order to demonstrate the ability of the proposed GI-CBVP method to approximate
the supersonic flows around stationary blunt bodies and the efficiency of the adaptive
wavelet-based mesh refinement to adequately resolve the geometry, while minimizing the
number of grid points inside the solid obstacle, unsteady simulations of two-dimensional
inviscid flows around multiple circular cylinders are performed. The inflow parameters
are the same as in Section 3.2. The computational domain for the supersonic inviscid
flow around an array of randomly placed cylinders of radius r = 0.5 in the domain
R = [−4, 4]× [−4, 4] is considered. Inflow boundary conditions are applied on the left
boundary with values equal to the left shock state values. Outflow boundary conditions are
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used for the right boundary, while periodic boundary conditions in the vertical direction
are assumed.

The AWC method [48] supplied with a shock capturing scheme [53], with the effective
mesh resolution of 1025× 1025 and eight levels of resolution, is used for the problem. The
penalized Euler equations are solved with the obstacle geometry approximated by the
GI-CBVP methodology (10).

Results of the unsteady AWC simulation with the GI-CBVP method of the flow around
an array of randomly placed cylinders are presented in Figure 6, where the instantaneous
solution is examined in terms of the numerical schlieren image and corresponding adaptive
computational mesh colored by the pressure field. These results illustrate the ability of the
proposed method to effectively represent more complicated flow geometry and highlight
the advantages of using the GI-CBVP method in combination with wavelet-based AMR.
The use of the AWC methodology allows for the efficient resolution of solid surfaces and
shock structures, while minimizing the computational costs of the simulation.

(a) (b)

Figure 6. Numerical schlieren image (a) and the adaptive grid colored by the pressure field (b) for supersonic flow past an
array of cylinders.

3.4. Benchmark IV: Galilean Invariance

In order to illustrate the Lagrangian modification introduced for moving obstacles
in Section 2.4 and demonstrate the conformity with Galilean invariance, two additional
simulations using the modified governing Equation (16) are performed. Both simulations are
conducted in the computational domainR = [0, 6]× [0, 2]. In the first simulation, uniform
flow with velocity 1.5 Ma past a fixed solid cylinder of radius r = 0.2 is considered. In the
second simulation, a solid cylinder of the same radius is moving with the non-dimensional
velocity Uo

x = −1.5 Ma in still fluid. Inflow boundary conditions are applied on the left
boundary, while outflow boundary conditions are used for the right boundary. Symmetry
boundary conditions are applied on top and bottom boundaries. In Figure 7, the initial setup
and snapshot of the density and pressure fields at both the beginning and the end of the two
simulations are provided. These simulations were run until the second cylinder reached the
same location as the first one. Apparently, resolved fields and underlying adaptive grids are
the same, with only minuscule discrepancies in the wake region, associated with different
instability triggering for stationary and moving cylinders.
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(a) (b)

Figure 7. Density and pressure field plots for fixed (upper half) and moving (bottom half) solid disks at (a) the beginning
and (b) the end of simulations.

The proven computational Galilean invariance is important, since mathematical (in
terms of governing equations) and physical (in terms of inertial frames of reference) equiva-
lence of the simulations were not guaranteed numerically by the original CBVP method [43]
without proper modifications. In fact, the results of the numerical simulation of the moving
cylinder without the Lagrangian correction term (not presented here) demonstrated a
significant loss of accuracy as well as slow convergence of boundary conditions to tar-
get values.

4. Conclusions

This work originally extends the characteristic-based volume penalization method
to a hyperbolic system of PDEs that governs compressible flows with moving complex
geometries. The proposed methodology results in being general, Galilean-invariant, and
allowing the imposition of homogeneous and inhomogeneous Dirichlet, Neumann and
Robin type boundary conditions. Both stationary and moving geometries can be treated,
where the approximation error is defined a priori, being controlled by the penalization
parameters. The method permits the generic formulation of boundary conditions for
both integrated and non-integrated variables in a systematic manner that parallels the
prescription of exact boundary conditions.

The novel approach is demonstrated to be applicable to both Euler and Navier–Stokes
equations across all speed regimes. The proper approximation of boundary conditions for
moving geometries is achieved by means of the inclusion of Lagrangian terms into the
penalized equations, which makes the formulation Galilean-invariant and increases both
stability and accuracy of the methodology, especially in the context of Euler equations,
where tangential velocity is not continuous across the fluid–solid interface. Moreover,
the proposed methodology is demonstrated to be well suited for use in conjunction with
wavelet-based adaptive mesh refinement methods. This is particularly notable in the case
of moving obstacles, where transients can be exploited to optimize the computational cost
of the simulations.
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Abbreviation
The following abbreviations are used in this manuscript:

AMR adaptive mesh refinement
AWC adaptive wavelet collocation
BP Brinkman penalization
CBVP characteristic-based volume penalization
GI-CBVP Galilean-invariant characteristic-based volume penalization
IB immersed boundary
PDEs partial differential equations
VP volume penalization

References
1. Thompson, J.F.; Warsi, Z.U.A.; Mastin, C.W. Boundary fitted coordinate systems for numerical solution of partial differential

equations—A review. J. Comput. Phys. 1982, 47, 1–108. [CrossRef]
2. Thomas, P.D.; Middlecoff, J.F. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAA J.

1980, 18, 652–656. [CrossRef]
3. Kaul, U.K. Three-dimensional elliptic grid generation with fully automatic boundary constraints. J. Comput. Phys. 2010,

229, 5966–5979. [CrossRef]
4. Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [CrossRef]
5. Tseng, Y.H.; Ferziger, J.H. A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 2003,

192, 593–623. [CrossRef]
6. Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [CrossRef]
7. Fadlun, E.A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J. Combined immersed-boundary finite-difference methods for three-

dimensional complex flow simulations. J. Comput. Phys. 2000, 161, 35–60. [CrossRef]
8. Arquis, E.; Caltagirone, J.P. Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux:

Application à la convection naturelle. CR Acad. Sci. Paris II 1984, 299, 1–4.
9. Lai, M.C.; Peskin, C.S. An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J.

Comput. Phys. 2000, 160, 705–719. [CrossRef]
10. Saiki, E.M.; Biringen, S. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. J.

Comput. Phys. 1996, 123, 450–465. [CrossRef]
11. Goldstein, D.; Handler, R.; Sirovich, L. Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 1993,

105, 354–366. [CrossRef]
12. Angot, P.; Bruneau, C.; Fabrie, P. A penalization method to take into account obstacles in viscous flows. Numer. Math. 1999,

81, 497–520. [CrossRef]
13. Feireisl, E.; Neustupa, J.; Stebel, S. Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differ. Equ.

2011, 250, 596–606. [CrossRef]
14. Carbou, G.; Fabrie, P. Boundary layer for a penalization method for viscous incompressible flow. Adv. Differ. Equ. 2003,

8, 1453–1480.
15. Peskin, C.S. Flow Patterns around Heart Valves: A Digital Computer Method for Solving the Equations of Motion. Ph.D. Thesis,

Albert Einstein College of Medicine, New York, NY, USA, 1972.
16. Purvis, J.W.; Burkhalter, J.E. Prediction of critical mach number for store configurations. AIAA J. 1979, 17, 1170–1177. [CrossRef]
17. Clarke, D.K.; Salas, M.D.; Hassen, H.A. Euler calculations for multielement airfoils using cartesian grids. AIAA J. 1986,

24, 353–358. [CrossRef]
18. Zeeuw, D.D.; Powell, K.G. An adaptively refined cartesian mesh solver for the Euler equations. J. Comput. Phys. 1993, 104, 56–68.

[CrossRef]
19. Berger, M.J.; Aftosmis, M.J. Aspects (and aspect ratios) of cartesian mesh methods. In Proceedings of the Sixteenth International

Conference on Numerical Methods in Fluid Dynamics, Arcachon, France, 6–10 July 1998.
20. Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J.P. Fictitious domain approach for numerical modelling of Navier-Stokes

equations. Int. J. Numer. Methods Fluids 2000, 34, 651–684. [CrossRef]
21. Kevlahan, N.R.; Ghidaglia, J.M. Computation of turbulent flow past an array of cylinders using a spectral method with

Brinkman Penalization. Eur. J. Mech. B Fluids 2001, 20, 333–350. [CrossRef]
22. Reckinger, S.; Vasilyev, O.V.; Fox-Kemper, B. Adaptive Volume Penalization for Ocean Modeling. Ocean Dyn. 2012, 62, 1201–1215.

[CrossRef]
23. Kevlahan, N.K.R.; Vasilyev, O.V. An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds

numbers. SIAM J. Sci. Comput. 2005, 26, 1894–1915. [CrossRef]
24. Pasquetti, R.; Bwemba, R.; Cousin, L. A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer.

Math. 2007, 58, 946–954. [CrossRef]

http://doi.org/10.1016/0021-9991(82)90066-3
http://dx.doi.org/10.2514/3.50801
http://dx.doi.org/10.1016/j.jcp.2010.04.028
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1016/j.jcp.2003.07.024
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1006/jcph.2000.6484
http://dx.doi.org/10.1006/jcph.2000.6483
http://dx.doi.org/10.1006/jcph.1996.0036
http://dx.doi.org/10.1006/jcph.1993.1081
http://dx.doi.org/10.1007/s002110050401
http://dx.doi.org/10.1016/j.jde.2010.09.031
http://dx.doi.org/10.2514/3.7617
http://dx.doi.org/10.2514/3.9273
http://dx.doi.org/10.1016/0021-9991(92)90033-U
http://dx.doi.org/10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
http://dx.doi.org/10.1016/S0997-7546(00)01121-3
http://dx.doi.org/10.1007/s10236-012-0555-3
http://dx.doi.org/10.1137/S1064827503428503
http://dx.doi.org/10.1016/j.apnum.2007.04.011


Fluids 2021, 6, 293 16 of 17

25. Jause-Labert, C.; Godeferd, F.; Favier, B. Numerical validation of the volume penalization method in three-dimensional
pseudo-spectral simulations. Comput. Fluids 2012, 67, 41–56. [CrossRef]

26. Kolomenskiy, D.; Schneider, K. A Fourier spectral method for the Navier–Stokes equations with volume penalization for
moving solid obstacles. J. Comput. Phys. 2009, 228, 5687–5709. [CrossRef]

27. Engels, T.; Kolomenskiy, D.; Schneider, K.; Sesterhenn, J. FluSI: A novel parallel simulation tool for flapping insect flight using a
Fourier method with volume penalization. SIAM J. Sci. Comput. 2016, 38, S3–S24. [CrossRef]

28. Ramière, I.; Angot, P.; Belliard, M. A fictitious domain approach with spread interface for elliptic problems with general
boundary conditions. Comput. Methods Appl. Mech. Eng. 2007, 196, 766–781. [CrossRef]

29. Vasilyev, O.V.; Kevlahan, N.K.R. Hybrid Wavelet Collocation-Brinkman Penalization Method for Complex Geometry Flows.
Int. J. Numer. Methods Fluids 2002, 40, 531–538. [CrossRef]

30. Schneider, K.; Farge, M. Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalisation.
Appl. Comput. Harmon. Anal. 2002, 12, 374–380. [CrossRef]

31. Wirasaet, D.; Paolucci, S. Adaptive wavelet method for incompressible flows in complex domains. J. Fluids Eng. 2005,
127, 656–665. [CrossRef]

32. Keetels, G.H.; D’Ortona, U.; Kramer, W.; Clercx, H.J.H.; Schneider, K.; Van Heijst, G.J.F. Fourier spectral and wavelet solvers for
the incompressible Navier-Stokes equations with volume-penalization: Convergence of a dipole-wall collision. J. Comput. Phys.
2007, 227, 919–945. [CrossRef]

33. Ghias, R.; Mittal, R.; Lund, T.S. A non-body conformal grid method for simulation of compressible flows with complex
immersed boundaries. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8
January 2004.

34. Cohen, R.; Ooi, A.; Iaccarono, G. Towards the application of the impedance mismatch method to the expansion about
incompressible flow acoustic equations. In Proceedings of the Summer Program 2006, Kiten, Bulgaria, 3–9 July 2006.

35. Chung, C. Wave Propagation and Scattering in Computational Aeroacoustics. Ph.D. Dissertation, Department of Aerospace
Engineering, Pennsylvania State University, University Park, PA, USA, 1995.

36. Liu, Q.; Vasilyev, O.V. A Brinkman penalization method for compressible flows in complex geometries. J. Comput. Phys. 2007,
227, 946–966. [CrossRef]

37. Bae, Y.; Moon, Y. On the use of Brinkman Penalization Method for computation of acoustic scattering from complex boundaries.
Comput. Fluids 2012, 55, 48–56. [CrossRef]

38. Bernardini, M.; Modesti, D.; Pirozzoli, S. On the suitability of the immersed boundary method for the simulation of high-
Reynolds-number separated turbulent flows. Comput. Fluids 2016, 130, 84–93. [CrossRef]

39. De Vanna, F.; Picano, F.; Benini, E. A sharp-interface immersed boundary method for moving objects in compressible viscous
flows. Comput. Fluids 2020, 201, 104415. [CrossRef]

40. Ehsan Khalili, M.; Larsson, M.; Müller, B. Immersed boundary method for viscous compressible flows around moving bodies.
Comput. Fluids 2018, 170, 77–92. [CrossRef]

41. Boukharfane, R.; Ribeiro, F.; Bouali, Z.; Mura, A. A combined ghost-point-forcing / direct-forcing immersed boundary method
(IBM) for compressible flow simulations. Comput. Fluids 2018, 162, 91–112. [CrossRef]

42. Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing immersed boundary
methods for compressible viscous flows. Comput. Fluids 2016, 136, 272–284. [CrossRef]

43. Brown-Dymkoski, E.; Kasimov, N.; Vasilyev, O.V. A characteristic based volume penalization method for general evolution
problems applied to compressible viscous flows. J. Comput. Phys. 2014, 262, 344–357. [CrossRef]

44. Brown-Dymkoski, E.; Kasimov, N.; Vasilyev, O.V. Characteristic-based volume penalization method for arbitrary Mach flows
around solid obstacles. In Direct and Large-Eddy Simulation IX; Frohlich, J., Kuerten, H., Geurts, B., Armenio, V., Eds.; ERCOFTAC
Series; Springer: Berlin/Heidelberg, Germany, 2015; pp. 109–115.

45. Lavoie, P.; Radenac, E.; Blanchard, G.; Laurendeau, É.; Villedieu, P. An improved characteristic based volume penalization
method for the Euler equations towards icing applications. Comput. Fluids 2021, 222. [CrossRef]

46. Komatsu, R.; Iwakami, W.; Hattori, Y. Direct numerical simulation of aeroacoustic sound by volume penalization method.
Comput. Fluids 2016, 130, 24–36. [CrossRef]

47. Thompson, J.F.; Soni, B.K.; Weatherill, N.P. (Eds.) Handbook of Grid Generation; CRC Press: Boca Raton, FL, USA; London, UK;
New York, NY, USA, 1999.

48. Vasilyev, O.V.; Bowman, C. Second-Generation Wavelet Collocation Method for the Solution of Partial Differential Equations. J.
Comput. Phys. 2000, 165, 660–693. [CrossRef]

49. Vasilyev, O.V. Solving Multi-Dimensional Evolution Problems with Localized Structures Using Second Generation Wavelets.
Int. J. Comput. Fluid Dyn. 2003, 17, 151–168. [CrossRef]

50. Vasilyev, O.V.; Kevlahan, N.K.R. An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys.
2005, 206, 412–431. [CrossRef]

51. Nejadmalayeri, A.; Vezolainen, A.; Brown-Dymkoski, E.; Vasilyev, O.V. Parallel Adaptive Wavelet Collocation Method for PDEs.
J. Comput. Phys. 2015, 298, 237–253. [CrossRef]

52. De Stefano, G.; Brown-Dymkoski, E.; Vasilyev, O.V. Wavelet-based adaptive large-eddy simulation of supersonic channel flow.
J. Fluid Mech. 2020, 901, A13. [CrossRef]

http://dx.doi.org/10.1016/j.compfluid.2012.06.026
http://dx.doi.org/10.1016/j.jcp.2009.04.026
http://dx.doi.org/10.1137/15M1026006
http://dx.doi.org/10.1016/j.cma.2006.05.012
http://dx.doi.org/10.1002/fld.307
http://dx.doi.org/10.1006/acha.2002.0378
http://dx.doi.org/10.1115/1.1949650
http://dx.doi.org/10.1016/j.jcp.2007.07.036
http://dx.doi.org/10.1016/j.jcp.2007.07.037
http://dx.doi.org/10.1016/j.compfluid.2011.10.015
http://dx.doi.org/10.1016/j.compfluid.2016.02.018
http://dx.doi.org/10.1016/j.compfluid.2019.104415
http://dx.doi.org/10.1016/j.compfluid.2018.04.033
http://dx.doi.org/10.1016/j.compfluid.2017.11.018
http://dx.doi.org/10.1016/j.compfluid.2016.06.001
http://dx.doi.org/10.1016/j.jcp.2013.12.060
http://dx.doi.org/10.1016/j.compfluid.2021.104917
http://dx.doi.org/10.1016/j.compfluid.2016.02.016
http://dx.doi.org/10.1006/jcph.2000.6638
http://dx.doi.org/10.1080/1061856021000011152
http://dx.doi.org/10.1016/j.jcp.2004.12.013
http://dx.doi.org/10.1016/j.jcp.2015.05.028
http://dx.doi.org/10.1017/jfm.2020.536


Fluids 2021, 6, 293 17 of 17

53. Regele, J.; Vasilyev, O.V. An adaptive wavelet-collocation method for shock computations. Int. J. Comput. Fluid Dyn. 2009, 23,
503–518. [CrossRef]

54. De Stefano, G.; Vasilyev, O.V. Wavelet-based adaptive simulations of three-dimensional flow past a square cylinder. J. Fluid
Mech. 2014, 748, 433–456. [CrossRef]

55. De Stefano, G.; Nejadmalayeri, A.; Vasilyev, O.V. Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body
flows with variable thresholding. J. Fluid Mech. 2016, 788, 303–336. [CrossRef]

56. Schneider, K.; Vasilyev, O.V. Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 2010, 42, 473–503.
[CrossRef]

57. De Stefano, G.; Vasilyev, O.V. Hierarchical adaptive eddy-capturing approach for modeling and simulation of turbulent flows.
Fluids 2021, 6, 83. [CrossRef]

58. Sethian, J.A. Level Set Methods; Cambridge University Press: Cambridge, UK, 1996.
59. Toro, E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed.; Springer: Berlin/Heidelberg,

Germany, 2009.

http://dx.doi.org/10.1080/10618560903117105
http://dx.doi.org/10.1017/jfm.2014.193
http://dx.doi.org/10.1017/jfm.2015.708
http://dx.doi.org/10.1146/annurev-fluid-121108-145637
http://dx.doi.org/10.3390/fluids6020083

	Introduction
	Characteristic-Based Volume Penalization
	Mathematical Formulation
	Volume Penalization of Euler Equations
	Volume Penalization of Navier–Stokes Equations
	Moving Obstacles
	Adaptive Wavelet Collocation Method

	Numerical Results and Discussion
	Benchmark I: Normal Shock Wave Reflection
	Benchmark II: Oblique Shock Wave
	Benchmark III: Two-Dimensional Supersonic Flows around Blunt Bodies
	Benchmark IV: Galilean Invariance

	Conclusions
	References

