
fluids

Article

Modelling of Ocean Waves with the Alber Equation:
Application to Non-Parametric Spectra and Generalisation to
Crossing Seas

Agissilaos G. Athanassoulis 1,* and Odin Gramstad 2

����������
�������

Citation: Athanassoulis, A.G.;

Gramstad, O. Modelling of Ocean

Waves with the Alber Equation:

Application to Non-Parametric

Spectra and Generalisation to

Crossing Seas. Fluids 2021, 6, 291.

https://doi.org/10.3390/

fluids6080291

Academic Editors: Richard Manasseh

and Alberto Alberello

Received: 30 April 2021

Accepted: 7 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK
2 Hydrodynamics, MetOcean & SRA, Energy Systems, DNV, 1363 Høvik, Norway; Odin.Gramstad@dnv.com
* Correspondence: aathanassoulis@dundee.ac.uk

Abstract: The Alber equation is a phase-averaged second-moment model used to study the statistics
of a sea state, which has recently been attracting renewed attention. We extend it in two ways: firstly,
we derive a generalized Alber system starting from a system of nonlinear Schrödinger equations,
which contains the classical Alber equation as a special case but can also describe crossing seas, i.e.,
two wavesystems with different wavenumbers crossing. (These can be two completely independent
wavenumbers, i.e., in general different directions and different moduli.) We also derive the associated
two-dimensional scalar instability condition. This is the first time that a modulation instability
condition applicable to crossing seas has been systematically derived for general spectra. Secondly,
we use the classical Alber equation and its associated instability condition to quantify how close a
given nonparametric spectrum is to being modulationally unstable. We apply this to a dataset of
100 nonparametric spectra provided by the Norwegian Meteorological Institute and find that the
vast majority of realistic spectra turn out to be stable, but three extreme sea states are found to be
unstable (out of 20 sea states chosen for their severity). Moreover, we introduce a novel “proximity
to instability” (PTI) metric, inspired by the stability analysis. This is seen to correlate strongly with
the steepness and Benjamin–Feir Index (BFI) for the sea states in our dataset (ą85% Spearman rank
correlation). Furthermore, upon comparing with phase-resolved broadband Monte Carlo simulations,
the kurtosis and probability of rogue waves for each sea state are also seen to correlate well with the
PTI (ą85% Spearman rank correlation).

Keywords: ocean waves; Alber equation; modulation instability; rogue waves; crossing seas

1. Introduction

Ocean waves are a very active field of mathematical modelling and analysis. The first
principles of hydrodynamic models for gravity waves are by now well understood [1–3].
An array of approximate models are well established and widely used, including the
nonlinear Schrödinger equation (NLS) and its variants [4,5], the Zakharov equation [6],
the coupled-mode systems [7–9], the High Order Spectral Method (HOSM) [10–12] and
others. (In shallow water, an even larger collection of models is being used, but here we
focus on deep water.) One reason for the wide use of approximate models in oceanography
is the need to study large wavefields, with hundreds or thousands of individual wave-
lengths. Thus, there is a trade-off between hydrodynamic fidelity and the ability to scale
up models, as well as the accessibility of powerful qualitative insights.

In fact, actual ocean waves include multi-physics and nondifferentiable phenomena,
such as wind forcing, wave breaking, etc. These are not accounted for in the classical “exact”
hydrodynamic model anyway and understanding of them is still developing on different
levels [13–17].

In this paper, we will use stochastic modelling of ocean waves and, furthermore,
explore what phase-averaged stochastic models may reveal about rogue waves in particular.
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This will lead us to novel mathematical results; it is also worth mentioning that this kind of
overall approach has been identified as a priority within the broader marine research and
industry community [18].

The most well known stochastic models for ocean waves include the CSY equation [19–21],
Hasselmann’s equation [22] and the Alber equation [23], which we will focus on here. For a
recent review of various stochastic models, one can see [24]. Broadly speaking, they are
moment equations, starting from phase-resolved equations for the sea surface (such as
Zakharov’s equation or the NLS) as an approximation for deterministic wave dynamics.
One then takes stochastic moments of the deterministic equations; due to the nonlinearity
of these equations, an infinite hierarchy of moments is produced. A Gaussian second-order
moment closure is then used to produce a closed equation for the second stochastic moment.
The resulting equation is phase-averaged, meaning that it no longer resolves individual
wave peaks and troughs, but instead the evolution and propagation of the statistics of
the wavefield.

A key approximation step is the Gaussian moment closure. This is of course not exact,
but in many cases the free surface is indeed close to being Gaussian [25,26], making the
Gaussian closure plausible. It is important to keep in mind that fidelity to the deterministic,
phase-resolved model is not the only consideration: for example, the exact infinite hierarchy
of moments is not just more complicated as a mathematical model, it is impossible to
initialize meaningfully. The vast majority of synoptic data collected from the ocean are,
or can be converted to, some kind of second moment [26]. There are some data involving
moderately higher moments, but very few data and little know-how exists for moments
higher than fourth order.

The question of using realistic data for initialisation is extremely important; all the
more so in the study of extreme sea states and rogue waves. For example, every determinis-
tic model can produce “rogue waves” on demand, by carefully preparing particular initial
conditions; however, the real-life question is how often would these “initial conditions
leading to rogue waves” realistically appear? A stochastic approach can directly answer
this question e.g., by a phase-resolved Monte Carlo approach [27]; this has a number of
advantages, but is clearly expensive to apply indiscriminately. Another possibility would
be using phase-averaged stochastic models, such as the moment equations discussed above,
to directly investigate whether a sea state could likely support the rapid concentrations of
energy. In this way, sea states of interest could be selected and computational resources
focused on them. In fact, it appears that the sea states highlighted as more unstable by the
Alber equation turn out to exhibit a higher probability of extreme events in a phase-resolved
Monte Carlo simulation (details in Section 3.2.3 and Figure 5).

2. Ocean Wave Modelling with the Alber Equation

The Alber equation, its derivation and interpretation have been widely studied and
explained. We refer readers who are interested to [23,28–30] and the references therein for
more details. Here, we will briefly present its derivation and main features in order to
make the paper self-contained.

2.1. Derivation

The cubic focusing on the nonlinear Schrödinger equation (NLS)

iBtu´ p∆u´ q|u|2u “ 0. (1)

is an approximate model for the envelope of a narrow-banded wavetrain with a carrier
wavenumber k0 along its direction of propagation (unidirectional propagation), cf. e.g., [31].
Thus, in deep water the sea surface elevation ηpx, tq is related to the complex-valued
envelope upx, tq through

ηpx, tq “ Re
”

upx, tqeipk0x´ω0tq
ı

, ω0 “
a

gk0.
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where k0 “ |k0|, and

p “
?g

8k
3
2
0

, q “
?g
2

k
5
2
0 .

This is an asymptotic model, where the order parameter is the steepness of the
waves, and moreover assumes narrow-bandedness of the wavefield around the carrier
wavenumber. The NLS and its variants are widely used as they are considered relevant to
a wide array of realistic scenarios [27]. There are some key facts behind this: water waves
cannot get too steep, since they break at a slope of about 0.13, and typically they are less
steep than that. Moreover, wavelengths for gravity waves vary over no more than two
orders of magnitudes, „5–500 m. In fact, sea state spectra are known to often be more
narrowly supported even within that range. In contrast, crossing seas (i.e., two Op1q wave
systems coming from different directions) cannot be considered narrowband due to the
different directions; thus, they provide a prime example of a realistic situation where the
NLS (1) would not be a satisfactory model.

A different kind of limitation of the NLS is that it is a deterministic phase-resolved
model—i.e., any prediction with it will not be better or more accurate than the initial
condition used. However, realistic wave systems are not widely available as phase-resolved
initial conditions, as opposed to power spectra. In this context, Alber [23] proposed
generating a second-order moment equation from the NLS, considered with stochastic
initial data. Denoting by

Rpx, y, tq “ Erupx, tqupy, tqs

the autocorrelation of the envelope u, one obtains

iBtRpx, y, tq ` p
`

∆x ´ ∆y
˘

Rpx, y, tq
` qE

”

upx, tqupy, tqrupx, tqupx, tq ´ upy, tqupy, tqs
ı

“ 0.
(2)

By using the Gaussian closure

Er|upα, tq|2upα, tqupβ, tqs “ 2Rpα, α, tqRpα, β, tq, (3)

the autocorrelation can now be seen to satisfy

iBtRpx, y, tq ` p
`

∆x ´ ∆y
˘

Rpx, y, tq ` 2qRpx, y, tqrRpx, x, tq ´ Rpy, y, tqs “ 0. (4)

A key restriction the Alber equation inherits from its starting point, the NLS equation,
is narrowbandedness. This is arguably not too restrictive for unidirectional sea states [27];
however, it completely fails for crossing seas, i.e., sea states where several different direc-
tions carry substantial wave energy. To address this limitation, we will derive a generalized
Alber equation valid in a crossing seas scenario. This is made possible by starting from
a system of NLS equations describing the crossing wavetrains which was derived in [32].
The resulting generalized Alber equation is reported in Section 3 and derived in detail in
Section 4. Crossing seas are receiving increased attention as a possible incubator of rogue
waves [33,34], so it is important to have a moment equation applicable to such scenarios.

2.2. The Stability-of-Homogeneity Question

It is empirically known that sea states are typically homogeneous and stationary,
at least for appropriate length scales and timescales [25,26,35,36]. This feature is reflected
in the Alber equation; for example, it can be seen Rpx, y, tq “ Γpx ´ yq is a solution of
Equation (4) for any smooth function Γ. The next step is to investigate the stability of such
homogeneous and stationary solutions: let us consider a weakly inhomogeneous initial sea
state, i.e., assume that the autocorrelation is initially of the form

Rpx, y, 0q “ Erupx, 0qupy, 0qs “ Γpx´ yq ` ερpx, y, 0q, ε ! 1 (5)
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for some nice functions Γ, ρ (e.g., Schwartz class test functions). By inserting Equation (5)
into Equation (4), one can reformulate the problem in terms of the inhomogeneity ρ,

iBtρpx, y, tq ` p
`

∆x ´ ∆y
˘

ρpx, y, tq ` 2qrΓpx´ yq ` ερpx, y, tqsrρpx, x, tq ´ ρpy, y, tqs “ 0. (6)

So, stability of homogeneous states is controlled by the boundedness (or lack thereof)
of the inhomogeneity ρ in Equation (6). Can ρ grow in time to the extent that ερpx, y, tq
is no longer small? Or is there a guarantee that ρ stays bounded? In the latter case of
stability, the autocorrelation will simply stay close to Γpx´ yq for all times. In the unstable
case, however, even if initially it is very close to homogeneous, the autocorrelation could
develop significant inhomogeneities.

In [23], a sufficient condition for linear instability was derived in terms of the spectrum
Spkq, namely the Fourier transform of the autocorrelation function Γ,

Spkq “ FyÑkrΓpyqs.

Indeed, it was shown that the homogeneous sea state with autocorrelation Γpx´ yq is
unstable if, for some X P R, there exists ΩpXq P C so that

1`ω0k2
0

ż

k

Spk` X
2 q ´ Spk´ X

2 q

Ω`
ω0
4k2

0
kX

dk “ 0. (7)

This was called an “eigenvalue relation” in [23]; we will call it an “instability condi-
tion”. In [30], it was further shown that if the instability condition does not hold, then
linear stability follows. The instability condition (7) itself can be refined in two ways: One
concerns a technical issue related to X “ 0. However, the more important one is that, in (7),
we are asked to guarantee the existence or nonexistence of solutions for a nonlinear system
of two equations (the real and imaginary parts of Equation (7)) in three real unknowns
(X, Re Ω, Im Ω). This is not straightforward in general, and historically it has been a chal-
lenge to use the Alber equation more widely [29]. In [30], this condition is reformulated so
that a more constructive method to check it can be found: by dividing both sides of the
fraction by X and setting

X1 “
X
k0

, Ω1 “ ´
Ω4k0

Xω0
, k1 “

k
k0

,

Equation (7) becomes

1
4π

“
1
π

k3
0

ż

k1

S
`

pk1` X1
2 qk0

˘

´S
`

pk1´ X1
2 qk0

˘

X1

Ω1 ´ k1
dk1

This becomes very simple if we recognize it as the Hilbert transform of the divided
difference of a rescaled spectrum. So, denoting

Ppkq :“ k3
0Spkk0q, DXPpkq “

#

Ppk` X
2 q´Ppk´ X

2 q

X , X ‰ 0
P1pkq, X “ 0.

,

Hruspxq “ 1
π p.v.

ş

tPR

uptq
x´t dt

(8)

and dropping the primes, the condition for instability finally becomes

DX P R : DΩ “ ΩpXq P C : HrDXPspΩq “
1

4π
. (9)

The benefit is that now the argument principle (for a holomorphic function f defined
on a closed domain A Ď C, f : A Ñ C, it follows that z P f pAq if and only if the curve
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f pBAq is circumscribed around z P C) can be used to reformulate this to a constructive
condition that we can directly check [30,37,38]. To this end, we will also need to introduce
the signal transform

Sruspxq :“ Hruspxq ´ iupxq; (10)

we are now ready to state the equivalent instability condition:

Definition 1 (Penrose–Alber condition). Consider a homogeneous sea state with an auto-
correlation function Γpx ´ yq and carrier wavenumber k0, and denote Spkq “ FyÑkrΓpyqs,
Ppkq :“ k3

0Spkk0q. Then, the sea state is Penrose–Alber unstable if

dpΓ,
1

4π
q “ 0,

where
ΓX :“ tSrDXPp¨qsptq, t P Ru Y t0u,

˝

ΓX “ tz P C|z enclosed by ΓXu, Γ :“
Ť

XPR

˝

ΓX .
(11)

Any X for which 1{4π P
˝

ΓX is called an unstable wavenumber.

This notion of instability is equivalent to condition (9) [30]. The closed curves ΓX are
visualized for a concrete example at the top of Figure 1.

Figure 1. Curves ΓX for a nonparametric spectrum on the complex plane. The smaller closed curves
correspond to larger |X|; here, X “ p1` 120 ¨ nq5 ¨ 10´4, n “ 0, . . . , 7. Taking |X| ă 5 ¨ 10´4 does not
change the outermost curve noticeably, as DX P has effectively converged to P1. The real number
1{4π « 0.08 is not circumscribed by any of the curves, i.e., the spectrum does not exhibit modulation
instability (cf. Definition 1). The spectrum used is a unimodal spectrum with a reference steepness of
around 7%, taken out of the dataset of 100 nonparametric spectra.

We call this the Penrose–Alber instability condition after Alber’s “eigenvalue relation” (7) [23]
and Penrose’s introduction of the argument principle in an analogous problem in plasma [37].
The point with this is that this formulation of the condition boils down to drawing closed
curves on the complex plane and looking at whether the point 1{4π is inside or outside of
them, cf. Figure 2. It was used in [30] to study parametric JONSWAP spectra; here, we will
apply it to nonparametric spectra as well.

This stability-of-homogeneity question that was first studied in [23] is in fact a variant
of a much better known stability question. The modulation instability (MI) is well under-
stood and widely studied in a phase-resolved setting with a plane wave background [39].
It can easily be seen that a sequence of spectra approaching a plane wave Spkq “ aδpk´ k0q

would become unstable in the Penrose–Alber sense. In fact, the Penrose–Alber instability
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is just the modulation instability for more general backgrounds than plane waves. A mod-
ulationally unstable sea state supports the rapid concentrations of energy—a possible
mechanism for the formation of rogue waves [38,40–42].

Figure 2. We can quantify how close each spectrum is to being modulationally unstable by measuring
the distance between ΓX and 1{4π (plotted here as a red star). In practice, it suffices to carry this
out for X « 5 ¨ 10´4, as much smaller values of X yield similar results, and large values of X lead to
smaller and smaller curves, cf. Figure 1. So, now we can say that spectrum no. 11300 needs to be
around 42% in order to be modulationally unstable.

Unlike the classical MI, where every plane-wave solution is always unstable, a spec-
trum can be stable or unstable in the Penrose–Alber sense. In the case of stability, the ho-
mogeneity of the sea state is robust, and small perturbations will merely disperse. In these
cases, despite having nonlinearity and infinite energy present, the dynamics are going to be
dominated by the linear dispersion for all times. This is a familiar leading order approxima-
tion in ocean waves, but it does not necessarily have a name to itself in an oceanographic
context. As the rigorous stability analysis of [30] highlighted, mathematically this stable
regime looks exactly like what is called Landau damping for Vlasov equations (indeed this
parallel was also drawn before [43]).

2.3. Implications
2.3.1. Quantifying Stability

As above, a key feature of the Alber equation is a classification of a given spectrum
as either stable or unstable. A careful look at the asymptotics can offer more nuance.
For example, consider two sea states: one with a barely stable spectrum Spkq and the
other with a slightly perturbed version, e.g., p1` εqSpkq, so that it becomes barely unstable.
These sea states will behave similarly on physically realistic timescales—as one would
intuitively expect. In particular, there is not a violent bifurcation from Landau damping to
modulation instability, but rather a gradual transition [30,38]. On the other hand, as we will
see in some detail here, a spectrum exhibiting Landau damping can be “more stable” than
another spectrum which also exhibits Landau damping. In short, the effective stability of a
spectrum is better thought of as belonging to a continuous range of values rather than a
binary “stable / unstable” classification. One of the results of this paper is a nondimensional
index quantifying this “effective stability”, cf. Figures 2 and 4.

This is important because, even in the presence of Landau damping (i.e., for “stable”
spectra), only small enough inhomogeneities are guaranteed to disperse if the nonlinearity
is taken into account. Large inhomogeneities are not well understood and could very well
behave differently. This is a harder mathematical problem, because now, by definition,
asymptotics are not sufficient. To better understand this question, there is a numerical
requirement (efficient and reliable solvers for the Alber equation both in the stable and
unstable regimes) as well as a dat a requirement (quantify how large inhomogeneities are
in the ocean; this may be possible, e.g., with X-band radar imaging [44]). It is quite possible
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that, if a spectrum is close enough to MI, the likelihood of nonlinear events under realistic
perturbations may substantially increase, even if technically the spectrum still exhibits
Landau damping.

2.3.2. Nonparametric Spectra

The fundamental scaling of the problem shows that the vast majority of plausible sea
states would be stable, in accordance with the well known fact that linearized dynamics
very often do a good job in describing phase-averaged energy propagation. On the other
hand, it seems that instability is within reach, i.e., the scaling of the problem does not
make instability so far removed as to be considered impossible. This much was established
in [28–30], working in the context of fitted parametric JONSWAP spectra. While fitted
spectra are widely used, realistic spectra from the field come in many different shapes
and forms. In this paper, we work with a set of nonparametric unidirectional spectra. We
investigate whether they are stable or unstable in the Penrose–Alber sense, and proceed to
examine how well the “proximity to instability” (defined more precisely in Equation (19))
correlates with the probability of rogue waves appearing in the given sea state.

The dataset, methodology and results of our investigation are described in detail in
Section 3.2.

2.3.3. Emergence of Coherent Structures

Another area with many open questions is what happens when instability arises.
For modulationally unstable spectra with small inhomogeneity, formal asymptotics can
be used to describe the early evolution of the instability. A particular coherent structure
emerges, determined by the unstable wavenumbers for the particular spectrum and their
rate of growth. In that sense, the coherent structure, at least in its early stages, is determined
by the spectrum (and not by the inhomogeneity) and the Penrose–Alber instability analysis
suffices to predict it [38]. Rather surprisingly, the same kind of universal coherent structure
was reported in a fully numerical study by van den Eijden et al. [45], for the fully nonlinear
stage of the instability, cf. Figure 3. This is a direction with many open questions, where
more work is needed.

Figure 3. Predicted profile of emergent localized extreme events for NLS, computed according to
the methodology of [38]. A virtually identical universal profile of fully developed rogue waves is
reported in Figure 2 of [45] for the largest extreme waves. This brings to mind the “three sisters”
discussion [46–51], or the Greek τρικυµια.

3. Main Results
3.1. The Alber Equation for Crossing Seas

The original derivation of the Alber equation [23] allows for an oblique but small
inhomogeneity on a unidirectional sea state. This does include some two-dimensional
aspects; however, it does not allow for two large, different wavesystems, with different
main directions of propagation, crossing. Such a situation is called “crossing seas” and is
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recently attracting a lot of interest. In particular, it is thought that modulation instability
and rogue waves may be more prominent in crossing seas, but this is still very far from
fully understood [32–34,41,52].

One way to study crossing seas is by deriving a coupled system of equations, each
governing the evolution of one (quasi-uni-directional) wavefield. Let us denote the di-
rection of propagation for the wavetrain A by kA “ pkA

1 , kA
2 q and for the wavetrain B by

kB “ pkB
1 , kB

2 q. The corresponding frequencies are

ωA “

b

g|kA|, ωB “

b

g|kB| (12)

for ocean waves (i.e., in the limit of infinite depth). In [32], the following system of NLS
equations for the envelopes of two wavetrains, vA, vB, in two spatial dimensions is derived:

i
d
dt

vA ` iCA ¨∇xvA ` α1B
2
x1

vA ` β1B
2
x2

vA ` γ1Bx1Bx2 vA `
´

ξ1|vA|2 ` ζ1|vB|2
¯

vA “ 0, (13)

i
d
dt

vB ` iCB ¨∇xvB ` α2B
2
x1

vB ` β2B
2
x2

vB ` γ2Bx1Bx2 vB `
´

ξ2|vB|2 ` ζ2|vA|2
¯

vB “ 0. (14)

All the coefficients are completely determined in terms of kA, kB [32].

Theorem 1. Consider the two crossing wavefileds of Equations (13) and (14), and assume moreover
that their autocorrelations at t “ 0 can be written as

ErvApx, tqvApy, tqs “ GApx´ yq ` εr0px, yq,
ErvBpx, tqvBpy, tqs “ GBpx´ yq ` εs0px, yq

(15)

for some ε “ op1q. Then, the systems (13) and (14) exhibit modulation instability if

DP P R2, ω P C : p1´ ξ1hApP, ωqqp1´ ξ2hBpP, ωqq “ ζ1ζ2hApP, ωqhBpP, ωq (16)

where hA, hB, rn0
A, rn0

B are defined in terms of the data of the problem in Equation (47). In that case,
inhomogeneities are expected to grow in time.

On the other hand, if

inf
Re ωą0

PPR2

ˇ

ˇ

ˇ
p1´ ξ1hApP, ωqqp1´ ξ2hBpP, ωqq ´ ζ1ζ2hApP, ωqhBpP, ωq

ˇ

ˇ

ˇ
“ κ ą 0 (17)

and
sup

Re ωą0
PPR2

`

|hApP, ωq| ` |hBpP, ωq|
˘

ă `8 (18)

hold, then formally the problem exhibits linear Landau damping, i.e., inhomogeneities are expected
to disperse and thus deviation from homogeneity is expected to not grow noticeably.

The proof is found in Section 4.

Remark 1. Roughly speaking, hA and hB are transfer functions generated by the homogeneous
backgrounds ΓA, ΓB, and rn0

A, rn0
B express the free space (i.e., ξ1 “ ξ2 “ ζ1 “ ζ2 “ 0) evolution of

the initial inhomogeneities.
Furthermore, condition (17) is a Penrose–Alber condition for a system, and it is consistent

with the condition for the scalar case. To see this, assume that vB Ñ 0; then, according to the
definition of hB (cf. Equation (47)) hB Ñ 0 as well, the condition becomes

inf
Re ωą0

PPR2

ˇ

ˇ

ˇ
1´ ξ1hApP, ωq

ˇ

ˇ

ˇ
“ κ ą 0
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which is exactly of the same type as requiring

inf
Re Ωą0

XPR

ˇ

ˇ

ˇ
1´ 4πHrDXPspΩq

ˇ

ˇ

ˇ
“ κ ą 0

in the scalar case.
Just like in the scalar case, Condition (17) can also be resolved with the argument principle

since, for each P P R2, it asks whether a holomorphic function attains the value 0 on the right
half-plane, infRe ωą0, PPR2 |FPpωq| ą κ. Condition (18) apparently boils down to general regularity

conditions for the spectra xΓA, xΓB. Working these ideas out in full detail will require the extension of
some technical results to a nonstandard “two-dimensional Hilbert transform” which arises here.

3.2. Stability of Unidirectional Nonparametric Spectra and Proximity to Instability (PTI)
3.2.1. The Data

For the present analysis we have used 100 realistic nonparametric spectra taken from
the Norwegian Meteorological Institute’s operational spectral wave model [53], which is
a third-generation wave model based on WAM. The model provides wave spectra every
hour for many locations in the North Atlantic. For this study, 100 spectra from one specific
location south-west of the Norwegian coast (56˝361 N, 3˝121 E) were used. The selected
spectra consisted of 80 spectra randomly selected from the full database (26,255 spectra
covering the period from October 2016 to September 2019), as well as the 10 spectra having
the largest mean wave steepness ε “ Hsk0{2 and the 10 spectra with the largest BFI values.
Recall that the Benjamin–Feir Index (BFI) was defined from the frequency spectrum Epωq as

BFI “
ε

?
2δω

,

where δω is a measure for the frequency bandwidth here defined in terms of Godas’
peakedness factor Qp, as suggested, e.g., in [54]:

δω “
1

Qp
?

π
where Qp “

2
m2

0

ż

ωE2pωqdω,

and where m0 “
ş

Epωqdω is the total energy of the spectrum.
Note that for the following analysis the original frequency spectra Epωq were con-

verted into wavenumber spectra Spkq using the linear dispersion relation ω “
a

gk.

3.2.2. The Algorithm for Checking the Instability Condition

Here, we will implement the stability criterion of Definition 1 to a number of non-
parametric ocean spectra. First of all we will rescale them Spkq ÞÑ Ppkq :“ k3

0Spk ¨ k0q.
Actually, the selection of k0 is a nontrivial issue. For example, one could plausibly use the
mode, the mean or the median wavenumber. For narrow, unimodal spectra the choice
would make very little difference, but for more irregular shapes, including, e.g., bimodal
spectra, the resulting differences might be noticeable. In this case, we use the k0 provided
in the dataset by the Norwegian Meteorological Institute, which has been used for the
computation of the BFI, steepness contained in the dataset, etc.

Once k0 is determined and the rescaling is complete, we will need to interpolate the
discrete data to a finer grid. (The original discrete spectra come sampled in 36 nonuniformly
spaced wavenumbers.) This will be crucial in using effective quadrature methods. Splines
are well suited to this task; the additional requirement is to minimize overshooting at max-
ima, as this could make a big difference with regard to our investigation. To this end, we use
pchip, a piecewise polynomial interpolation routine in MATLAB that minimizes overshoot.

The nontrivial part of the computation is the Hilbert transform, which is a singular
integral. To this end we will use the Sokhotski–Plemelj formula,



Fluids 2021, 6, 291 10 of 19

@u P CpRq X L1pRq lim
ηÑ0`

1
π

ż

s

upsq
t´ s´ p

?
´1qη

ds “ Hrusptq ´ iuptq “ Srusptq

and truncate the limit by taking an appropriate η “ compl_tol ! 1. After extensive testing
it was found that the result did not change noticeably once η « 10´4. In this way, we
avoided the singular integral. A detailed pseudocode for how the curve ΓX is generated is
presented in Algorithm 1.

It is a moderately heavy computation if a good approximation for all of ΓX is required,
as a few million points are typically required in order to achieve stringent error tolerances
(„10´2 relative error tolerance or „10´6 absolute error tolerance). However, one can check
stability more quickly by checking only the points t˚ where DXPpt˚q “ 0; these are the
points where the curve ΓX crosses the real axis. If it never crosses the real axis to the right
of 1{4π, then topologically 1{4π cannot possibly be in the interior of the curve.

Some more details involve the selection of X; it was found that X ! 1 will produce
the curves that have the most chance of coming closer to 1{4π, as when X increases the
curves ΓX shrink to zero, see Figure 1. Numerical testing shows that X « 10´4 gives a
good picture of what happens as X Ñ 0. So, if for X « 10´4 ΓX is not winding around
1{4π, nor coming very close to it, we can accept the spectrum as stable.

3.2.3. Summary of the Results

Most of the nonparametric spectra examined were found to be stable, i.e., exhibit
Landau damping. However, three spectra were found to be modulationally unstable, and a
handful more were extremely close to being unstable.

We also define as proximity to instability (PTI) the quantity

PTI “ 1´
dpΓ, 1

4π q

1
4π

; (19)

this is 1 for any modulationally unstable spectrum, and 0 for the zero spectrum. It provides
a nondimensional way to quantify how close a spectrum comes to being modulationally
unstable in the sense of Definition 1. We will compare this with quantities of interest for
the same spectrum (cf. Figure 4), along with a Monte Carlo estimation of the likelihood of
rogue waves and nonlinear events (cf. Figure 5).

Figure 4. The new metric of PTI offers a quantitative and nondimensional way to assess how far a
spectrum is from being modulationally unstable. The Benjamin-Feir Index (BFI), essentially a rescaled
version of steepness, was introduced with a similar task in mind; so, it is only natural to ask how well
the two are correlated. In the left graph above, we see a log-log scatterplot of the BFI vs. PTI. In the
right graph we see a similar scatterplot of a representative wave steepness, ε “ Hsk0{2, vs. PTI.
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Figure 5. Comparison of PTI to Monte Carlo results, please see Section 3.2.3 for more details on how
these are defined and computed. Left: Rogue wave probability (understood as Ppwave crest ą Hsq)
vs. PTI. Right: Kurtosis vs. PTI. See Section 3.2.3 for more details and context.

Algortithm 1 Pseudo-code for the computation of ΓX

Input Sj, k j (Sampled values of wavenumber-resolved spectrum, k j P r0.00479, 3.78s.)
Rescale pSj, k jq ÞÑ pk3

0Sj, k j{k0q “ pPj, ξ jq (k0 is simply taken to be the peak wavenumber.)
Interpolate Ppξq
Set compl_tol„ 10´4, rel_tol„ 10´2, abs_tol„ 10´6

For ti :“ tmin to tmax step δt
While rel_err ą rel_tol AND abs_err ą abs_tol

Integrate

I “
1
π

ż

s

Pps` X
2 q´Pps´ X

2 q

X
ti ´ s´ p

?
´1q compl_tol

ds

using composite Simpson on two quadrature grids: a finer one and a coarser
one, generating two approximations, I_fine and I_coarse. (Fine grid has
3ˆ the number of points compared to coarse grid.)
Set rel_err “ |I_fine´I_coarse|

I_fine , abs_err “ |I_fine´ I_coarse|.

End While
Set Γptiq “ I_fine

End For

Plot the line
´

Re ΓXptiq, Im ΓXptiq
¯

, i “ 1, 2, ... and the point p 1
4π , 0q

Check whether p 1
4π , 0q is inside ΓX (This can be achieved with the MATLAB inpolygon

function.)

Indeed, for each of the 100 spectra selected for this study, we have run numerical
simulations with the Higher Order Spectral Method (HOSM) [10,11] in a Monte Carlo
approach where each spectrum was simulated 100 times with different initial random
phases and random amplitudes run. That is, for a given spectrum Spkq, the initial surface
elevation is in the form

ηpx, t “ 0q “ Re
n
ÿ

j“1

Aj exp pik jxq where Aj “ Zj

b

2Spk jq∆k j (20)

where ∆k j “ k j`1 ´ k j is the grid spacing between the discrete wavenumbers and where Zj
represents independent complex standard normal variables. That is, the real and imaginary
parts of Zj are independent normally distributed random variables with zero mean and
variance 1{2, meaning that |Zj| are Rayleigh distributed with parameter σ “ 1{

?
2 so that

Er|Zj|
2s “ 1 and Er|Aj|

2s “ 2Spk jq∆k j and the phases ArgpZjq are uniformly distributed on
r0, 2πq.
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HOSM applies a regular discretisation of the wavenumbers so that ∆k “ 2π{xmax “ 2π{n∆x,
leading to a periodic domain of length xmax in space. In the present simulations, we used n “ 1024,
representing wavenumbers up to kmax “ 8k0. This means that ∆k “ 2kmax{n, corresponding to
∆x “ λ0{16 and xmax “ 64λp, where λ0 “ 2π{k0 is the reference wavelength.

Each simulation was run for 30 min, from which time series of surface elevation were
extracted from four locations distributed over the simulation domain. Thus, 200 h of
surface elevation time series were obtained for each sea state. Since here we are interested
in relations between the instability (or proximity of such) obtained from the stochastic
approach (i.e., Alber equation) and the occurrence of rogue and extreme events in random
realisations of the sea states (i.e., phase-resolved Monte Carlo simulations), we will consider
the following parameters related to the occurrence of extreme wave events: the sea surface
kurtosis and the probability of extreme wave crests.

The sea surface kurtosis is a measure of how much the tail of the distribution devi-
ates from Gaussian statistics. For a Gaussian distribution, the kurtosis is equal to zero,
while a positive value for kurtosis indicates more large events than in a Gaussian popula-
tion. Hence, the kurtosis is often used as an indicator for the probability of extreme and
rogue waves.

Secondly, we consider the probability that a wave crest, defined as the maximum
between each zero-crossing of the surface elevation, exceeds the significant wave height Hs;
PpC ą Hsq Recall that wave height is defined as the difference between a local maximum
and a subsequent local minimum, i.e., in a sine wave it would be equal to two wave crests.
Moreover, the significant wave height Hs is defined as the mean value of the highest 33% of
wave heights. This is a common definition of a rogue wave, which under linear and Gaus-
sian assumptions (Rayleigh distributed crests) has the probability PpC ą Hsq “ exp p´8q.
The probability of crest exceedance is estimated as the relative frequency of individual
crests in the HOSM simulations that exceed the threshold Hs. For brevity, we will refer to
this probability simply as “rogue wave probability”.

4. Proof of Theorem 1

First of all, it should be noted that, by virtue of a simple gauge transform,

vApx1, x2, tq “ eipκAx1`λAx2`τAtqApx1, x2, tq,
vBpx1, x2, tq “ eipκBx1`λBx2`τBtqBpx1, x2, tq

(21)

we can eliminate the terms with the first derivatives. Indeed, by inputting (21) into
Equation (13), we see that eliminating the linear terms containing A and ∇A leads to

κA2α1 ` λAγ1 “ ´CA
1 ,

κAγ1 ` λA2β1 “ ´CA
2 ,

τ “ ´CA
1 κA ´ CA

2 λA ´ α1pκ
Aq2 ´ β1pλ

Aq2 ´ γ1κAλA.

The first two lines represent a 2ˆ 2 system, and for the third, nonlinear equation we
only need to substitute the obtained κA, λA values from above. The same steps lead to a
symmetric expression for B.

Thus, without loss of generality, we will work with the simplified system

i
d
dt

A` α1B
2
x1

A` β1B
2
x2

A` γ1Bx1Bx2 A`
´

ξ1|A|2 ` ζ1|B|2
¯

A “ 0, (22)

i
d
dt

B` α2B
2
x1

B` β2B
2
x2

B` γ2Bx1Bx2 B`
´

ξ2|B|2 ` ζ2|A|2
¯

B “ 0. (23)

Special symmetric cases of this system which simplify the coefficients have been
studied in [41,52], but we can in fact derive an Alber system for the general case.

To proceed, we will use some shorthand notations, namely

x “ px1, x2q, y “ py1, y2q, Lj
x “ αjB

2
x1
` β jB

2
x2
` γjBx1x2 , j P t1, 2u. (24)
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Now Equation (22) can be compactified as

i
BA
Bt
` L1

x A`
´

ξ1|A|2 ` ζ1|B|2
¯

A “ 0

and similarly for Equation (23) with L2
x.

At this point, let us introduce the autocorrelation functions for A, B :

RApx, y, tq “ ErApx, tqApy, tqs, RBpx, y, tq “ ErBpx, tqBpy, tqs. (25)

It can be seen that the relationship with the autocorrelations of the original vA, vB

variables is
RApx, y, tq “ e´ipκApx1´y1q`λApx2´y2qqErvApx, tqvApy, tqs (26)

and similarly for RB.
By a straightforward computation, we see that

d
dt RApx, y, tq “ ErApx, tq d

dt Apy, tq ` Apy, tq d
dt Apx, tqs

“ E
”

Apx, tq
´

´iL1
y Apy, tq ´ i

`

ξ1|Apy, tq|2 ` ζ1|Bpy, tq|2
˘

Apy, tq
¯ı

` E
“

Apy, tq
`

iL1
x Apx, tq ` i

`

ξ1|Apx, tq|2 ` ζ1|Bpx, tq|2
˘

Apx, tq
˘‰

“ ipL1
x ´ L1

yqRApx, y, tq
` iξ1Er|Apx, tq|2 Apx, tqApy, tqs ´ iξ1Er|Apy, tq|2 Apy, tqApx, tqs
` iζ1Er|Bpx, tq|2 Apx, tqApy, tqs ´ iζ1Er|Bpy, tq|2 Apy, tqApx, tqs.

The last two lines consist of fourth order stochastic moments, and it is these terms
that will have to be approximated by some closure scheme. For the fourth order moments
involving A only, we will use the same idea as in the standard Alber equation; namely, we
will use the fact that for Gaussian processes the relationship

Er|Apx, tq|2 Apx, tqApy, tqs “ 2RApx, x, tqRApx, y, tq (27)

holds (cf. Theorem A1). This now provides the Gaussian closure for all terms of the same
form, since

Er|Apy, tq|2 Apx, tqApy, tqs “ 2RApy, y, tqRApx, y, tq (28)

follows the same argument. The new kinds of terms that come into play for the first time
are the joint A´ B moments. In physical terms, A and B represent two different wavetrains
meeting in the ocean, each having been generated and propagated independently from
each other. It is thus a reasonable assumption that they are stochastically independent.
In that case, the joint moments simplify to

Er|Bpx, tq|2 Apx, tqApy, tqs “ RBpx, x, tqRApx, y, tq,

Er|Bpy, tq|2 Apy, tqApx, tqs “ RBpy, y, tqRApx, y, tq.
(29)

So, using these closures, we finally end up with the following equation (whenever the
independent variables are not shown explicitly, it is understood that RA :“ RApx, y, tq):

i d
dt RA ` pL1

x ´ L1
yqRA

` 2ξ1pRApx, x, tq ´ RApy, y, tqqRA ` 2ζ1pRBpx, x, tq ´ RBpy, y, tqqRA “ 0.
(30)

By the symmetry of Equations (22) and (23), one can sees that, using the same kinds
of closures,

i d
dt RB ` pL2

x ´ L2
yqRB

` 2ξ2pRBpx, x, tq ´ RBpy, y, tqqRB ` 2ζ2pRApx, x, tq ´ RApy, y, tqqRB “ 0.
(31)
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Now, we invoke the assumption of Equation (15), i.e.,

RApx, y, tq “ ΓApx´ yq ` ερpx, y, tq, RBpx, y, tq “ ΓBpx´ yq ` εσpx, y, tq (32)

where now ρ, σ are the inhomogeneous components of the autocorrelation (recall that the
conversion between second moments of A, B and vA, vB follows Equation (26)). It should
be noted, under the condition (32), the system (30) and (31) is equivalent to (like earlier,
ρ :“ ρpx, y, tq and similarly for σ)

i d
dt ρ` pL1

x ´ L1
yqρ` 2ξ1pρpx, x, tq ´ ρpy, y, tqqpΓApx´ yq ` ερq

` 2ζ1pσpx, x, tq ´ σpy, y, tqqpΓApx´ yq ` ερq “ 0,

i d
dt σ` pL2

x ´ L2
yqσ` 2ξ2pσpx, x, tq ´ σpy, y, tqqpΓBpx´ yq ` εσq

` 2ζ2pρpx, x, tq ´ ρpy, y, tqqpΓBpx´ yq ` εσq “ 0,

(33)

and ρ “ σ “ 0 is a solution. Following the terminology of Wigner equations, the terms

nApy, tq :“ ρpy, y, tq, nBpy, tq :“ σpy, y, tq (34)

will be called position densities; they are real values, and they control the RMS amplitude
of the inhomogeneities, for each wavetrain, on the coordinates py, tq.

The question that we will focus on is whether ρ “ σ “ 0 is a linearly stable solution.
To this end, we will consider nonzero initial data ρpx, y, 0q, σpx, y, 0q. We will also need to
introduce the change of variables

ρpx, y, tq “ qf pp, q, tq, σpx, y, tq “ qgpp, q, tq

p “ x`y
2 , q “ x´ y

(35)

which leads to

∇x “
1
2∇p `∇q, ∇y “

1
2∇p ´∇q,

Lj
x “ αjp

1
2Bp1 ` Bq1q

2 ` β jp
1
2Bp2 ` Bq2q

2 ` γjp
1
2Bp1 ` Bq1qp

1
2Bp2 ` Bq2q,

Lj
y “ αjp

1
2Bp1 ´ Bq1q

2 ` β jp
1
2Bp2 ´ Bq2q

2 ` γjp
1
2Bp1 ´ Bq1qp

1
2Bp2 ´ Bq2q,

x “ p` q
2 , y “ p´ q

2 ,

nApx, tq “ ρpx, x, tq “ qf px, 0, tq “ qf pp` q
2 , 0, tq,

nApy, tq “ ρpy, y, tq “ qf pp´ q
2 , 0, tq,

(36)

and similarly for nB. So, finally we arrive at the following system in the p, q variables
(qf :“ qf pp, q, tq, qg :“ qgpp, q, tq):

i d
dt
qf `

“

2α1Bp1Bq1 ` 2β1Bp2Bq2 ` γ1pBp1Bq2 ` Bp2Bq1q
‰

qf
` 2

”

ξ1
`

qf pp` q
2 , 0, tq ´ qf pp´ q

2 , 0, tq
˘

` ζ1
`

qgpp` q
2 , 0, tq ´ qgpp´ q

2 , 0, tq
˘

ı

pΓApqq ` ε qf q “ 0,

i d
dt qg`

“

2α2Bp1Bq1 ` 2β2Bp2Bq2 ` γ2pBp1Bq2 ` Bp2Bq1q
‰

qg
` 2

”

ξ2
`

qgpp` q
2 , 0, tq ´ qgpp´ q

2 , 0, tq
˘

` ζ2
`

qf pp` q
2 , 0, tq ´ qf pp´ q

2 , 0, tq
˘

ı

pΓBpqq ` εqgq “ 0

(37)

Finally, by linearising (setting ε “ 0) and taking the Fourier transform of both variables,

f pP, Q, tq “ Fp,qÑP,Qr
qf pp, qqs, gpP, Q, tq “ Fp,qÑP,Qrqgpp, qqs, (38)
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we obtain

i d
dt f ´ 4π2r2α1P1Q1 ` 2β1P2Q2 ` γ1pP1Q2 ` P2Q1qs f
` 2

`

xΓApQ´ P
2 q ´

xΓApQ` P
2 q
˘“

ξ1
ş

f pP, s, tqds` ζ1
ş

gpP, s, tqds
‰

“ 0,

i d
dt g´ 4π2r2α2P1Q1 ` 2β2P2Q2 ` γ2pP1Q2 ` P2Q1qsg
` 2

`

xΓBpQ´ P
2 q ´

xΓBpQ` P
2 q
˘“

ξ2
ş

gpP, s, tqds` ζ2
ş

f pP, s, tqds
‰

“ 0

(39)

where of course xΓApQq “ FqÑQrΓApqqs and similarly for xΓBpQq. Moreover, it can be seen
that

ż

f pP, s, tqds “ F´1
pÑPrnApp, tqs,

ż

gpP, s, tqds “ F´1
pÑPrnBpp, tqs; (40)

hence, the notation

qnApP, tq :“
ż

f pP, s, tqds, qnBpP, tq :“
ż

gpP, s, tqds (41)

is natural. Additionally, in the interest of brevity, let us introduce the bilinear forms

LP, QMj :“ 4π2“2αjP1Q1 ` 2β jP2Q2 ` γjpP1Q2 ` P2Q1q
‰

, j P t1, 2u. (42)

Now, taking the Laplace transform in time

rf pP, Q, ωq “ LtÑωr f pP, Q, tqs, rgpP, Q, ωq “ LtÑωrgpP, Q, tqs,
rnApP, ωq “ LtÑωrqnApP, tqs, rnBpP, ωq “ LtÑωrqnBpP, tqs

(43)

we obtain the system

iω rf ´ LP, QM1
rf

` 2
`

xΓApQ´ P
2 q ´

xΓApQ` P
2 q
˘

rξ1rnApP, ωq ` ζ1rnBpP, ωqs “ f pP, Q, 0q,

iωrg´ LP, QM2rg
` 2

`

xΓBpQ´ P
2 q ´

xΓBpQ` P
2 q
˘

rξ2rnBpP, ωq ` ζ2rnApP, ωqs “ gpP, Q, 0q.

(44)

By dividing with the free-space part we obtain

rf ` 2
xΓApQ´ P

2 q´
xΓApQ` P

2 q

iω´LP,QM1
rξ1rnA ` ζ1rnBs “

f pP,Q,0q
iω´LP,QM1

,

rg` 2
xΓBpQ´ P

2 q´
xΓBpQ` P

2 q

iω´4π2LP,QM2
rξ2rnB ` ζ2rnAs “

gpP,Q,0q
iω´LP,QM2

.

(45)

The two key observations here are the following:

• The rhs of both equations correspond to the linear free-space solutions (and thus can
be treated as known and well behaved functions);

• We can now integrate both equations in the Q variables and obtain a closed system
for the position densities rnA, rnB; achieving this is in fact the motivation for all the
transforms and changes of variables.

rnA ` rξ1rnA ` ζ1rnBs2
ş

Q

xΓApQ´ P
2 q´

xΓApQ` P
2 q

iω´LP,QM1
dQ “

ş

Q

f pP,Q,0q
iω´LP,QM1

dQ,

rnB ` rξ2rnB ` ζ2rnAs2
ş

Q

xΓBpQ´ P
2 q´

xΓBpQ` P
2 q

iω´LP,QM2
dQ “

ş

Q

gpP,Q,0q
iω´LP,QM2

dQ.

(46)
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We can summarize the result by denoting

rn0
ApP, ωq :“

ş

Q

f pP,Q,0q
iω´LP,QM1

dQ, rn0
BpP, ωq :“

ş

Q

gpP,Q,0q
iω´LP,QM2

dQ,

hApP, ωq :“ 2
ş

Q

xΓApQ` P
2 q´

xΓApQ´ P
2 q

iω´LP,QM1
dQ, hBpP, ωq :“ 2

ş

Q

xΓBpQ` P
2 q´

xΓBpQ´ P
2 q

iω´LP,QM2
dQ

(47)

so that system (46) becomes

$

&

%

`

1´ ξ1hA˘
rnA ´ ζ1hA

rnB “ rn0
A,

´ζ2hB
rnA ` p1´ ξ2hBqrnB “ rn0

B

,

.

-

(48)

leading to

rnA “
1´ξ2hB

p1´ξ1hAqp1´ξ2hBq´ζ1ζ2hAhB rn0
A `

ζ1hA

p1´ξ1hAqp1´ξ2hBq´ζ1ζ2hAhB rn0
B,

rnB “
´ζ2hB

p1´ξ1hAqp1´ξ2hBq´ζ1ζ2hAhB rn0
A ´

1´ξ1hA

p1´ξ1hAqp1´ξ2hBq´ζ1ζ2hAhB rn0
B

(49)

as long as the determinant (itself a function of P, ω) is nonzero,

p1´ ξ1hApP, ωqqp1´ ξ2hBpP, ωqq ´ ζ1ζ2hApP, ωqhBpP, ωq ‰ 0.

So, the problem is altogether linearly stable if Equations (17) and (18) hold.
If both Conditions (17) and (18) hold, then

qnApP, tq “ L´1rrnApP, ωqs, qnBpP, tq “ L´1rrnBpP, ωqs (50)

inherit an L2-type decay in time, and one expects that Landau damping estimates sim-
ilar to what was carried out in the scalar case in [30] are possible. Even without the
rigorous estimates, one readily sees that there is no exponential growth possible, i.e., no
modulation instability.

5. Conclusions

Using the same approach as in the classical Alber equation, we derived a system
applicable to crossing seas, i.e., two quasi-unidirectional wave systems meeting in the
ocean. This is a genuinely two-dimensional situation, and we produce for the first time
the stability condition that controls whether Landau damping or modulation instability is
present. This enables, for the first time, a systematic detection of modulation instability
in crossing seas, including realistic data. Such a study is now made possible but involves
several tedious steps that are beyond the scope of the current paper.

In this paper, we also study a collection of nonparametric unidirectional spectra; this
can be thought of as a first step towards the study of the two-dimensional situation. The first
subtlety that becomes apparent is that the choice of k0, the carrier wavenumber, is an
important aspect that can affect the results in a non-negligible way. (For example, the mean,
mode or median wavenumbers are all plausible choices, and we did see spectra where
these were significantly different, and would even lead to different stability/instability
classifications for a handful of spectra.) Here we used the k0 provided by the Norwegian
Meteorological Institute and found that the vast majority of spectra in our collection are
stable; however, among the most extreme sea states, it is possible to find spectra that would
be classified as (barely) unstable. This is in agreement with the main findings of [30,38]
and indicates that the Penrose–Alber instability really is a limiting factor of how narrow a
spectrum can be in the ocean. The fact that there exist spectra all the way up to instability
places additional emphasis on the question of how would unstable (or even borderline
stable) spectra behave in the field, something that is really not well understood at all.
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Moreover, we find that the novel Proximity to Instability (PTI) metric, defined in
Equation (19), correlates well (>85% Spearman rank correlation) with the Benjamin–Feir
Index (BFI) and the steepness of a sea state, as well as with Monte Carlo estimates for
the kurtosis and the probability of rogue waves. This validates the PTI as a meaningful
metric for the study of sea states in the unidirectional setting, where things are relatively
well understood.

Given that now we have a version of the Alber equation (and the corresponding
stability condition) applicable to crossing seas, the natural next step is to investigate
crossing sea situations and see how well a generalized version of the PTI metric would
correlate, e.g., with Monte Carlo estimates of the probability of rogue waves appearing
there, as well as directional generalisations of the BFI [55,56]. Another option for this
kind of analysis would be by working with the stability condition for the broadband
Crawford–Saffman–Yuen equation (CSY) [19,21].
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Appendix A

Theorem A1 (A complex Isselris theorem). Following [57]; see also [58]. Let zpxq be a Gaussian,
zero mean, stationary process with the additional property that

Erupxqupx1qs “ 0 @x, x1 P R. (A1)

Then

Erzpx1qzpx2qzpx3qzpx4qs “ Erzpx1qzpx3qsErzpx2qzpx4qs ` Erzpx2qzpx3qsErzpx1qzpx4qs.

Remark A1. This result directly implies the closure relation

Erupα, tqupβ, tqupα, tqupα, tqs “ 2Erupα, tqupα, tqsErupβ, tqupα, tqs, (A2)

which is exactly Equation (3). Moreover, condition (A1) is equivalent to circular symmetry, i.e., the
condition that

teiθupxquθPr0,2πq are identically distributed for all θ P r0, 2πq (A3)

which is natural for ocean waves.
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