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Abstract: With the development of mature Computational Fluid Dynamics (CFD) tools for fluids
(air and liquid) and Finite Element Methods (FEM) for solids and structures, many approaches
have been proposed to tackle the so-called Fluid–Structure Interaction or Fluid–Solid Interaction
(FSI) problems. Traditional partitioned iterations are often used to link available FEM codes with
CFD codes in the study of FSI systems. Although these procedures are convenient, fluid mesh
adjustments according to the motion and finite deformation of immersed solids or structures can
be challenging or even prohibitive. Moreover, complex dynamic behaviors of coupled FSI systems
are often lost in these iterative processes. In this paper, the author would like to review the so-
called monolithic approaches for the solution of coupled FSI systems as a whole in the context of
the immersed boundary method. In particular, the focus is on the implicit monolithic algorithm
for compressible solids immersed inside a compressible liquid. Notice here the main focus of this
paper is on liquid or more precisely liquid phase of water as working fluid. Using the word liquid,
the author would like to emphasize the consideration of the compressibility of the fluid and the
assumption of constant density and temperature. It is a common practice to assume that the pressure
variations are not strong enough to alter the liquid density in any significant fashion for acoustic
fluid–solid interactions problems. Although the algorithm presented in this paper is not directly
applicable to aerodynamics in which the density change is significant along with its relationship
with the pressure and the temperature, the author did revisit his earlier work on merging immersed
boundary method concepts with a fully-fledged compressible aerodynamic code based on high-order
compact scheme and energy conservative form of governing equations. In the proposed algorithm,
on top of a uniform background (ghost) mesh, a fully implicit immersed method is implemented
with mixed finite element methods for compressible liquid as well as immersed compressible solids
with a matrix-free Newton–Krylov iterative solution scheme. In this monolithic approach, with
the simple modulo function, the immersed solid or structure points can be easily located and
thus the displacement projections and force distributions stipulated in the immersed boundary
method can be effectively and efficiently implemented. This feature coupled with the key concept
of the immersed boundary method helps to avoid topologically challenging mesh adjustments
and to incorporate parallel processing commands such as Message Passing Interface (MPI) and
further vectorization of the numerical operation. Once these high-performance procedures are
implemented coupled with the monolithic implicit matrix-free Newton–Krylov iterative scheme with
immersed methods, effective and efficient reduced order modeling techniques can then be employed
to explore phase and parametric spaces. The in-house developed programs are at the moment
two-dimensional. Furthermore, based on the same approach implemented in one-dimensional test
example with one continuum immersed in another continuum, such monolithic implicit matrix-free
Newton–Krylov iterative approach can be extended for the study of composites with deformable
aggregates and matrix.
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1. Introduction

Fluid-Structure interactions (FSI) are ubiquitous in many engineering problems. Many
research efforts have been invested in the development of modeling methods over the past
few decades [1–4]. In practice, iterations are used between existing finite element methods
(FEM) for solids and computational fluid dynamics (CFD) for fluids [5,6]. In engineering
practices, such iterative approaches are effective and convenient, yet complex dynamic behav-
iors of coupled systems can also be filtered out [7,8]. Furthermore, mesh adaption processes
such as the arbitrary Lagrangian Eulerian (ALE) and other mesh updating methods can
be topologically challenging and computationally prohibitive [9–13]. In this paper, the fo-
cus is on the immersed boundary method and its concepts which are initially established
in applied mathematics communities. Interface tracking procedures also include level set
methods [14,15], immersed interface methods [16,17], and front tracking methods [18–20]
which have been proposed to eliminate or bypass numerical problems associated with large
motions of immersed objects [21–25]. Immersed methods do provide a very direct and simple
coupling between immersed deformable solids with the surrounding fluid without specific
interface tracking, which enable effective and efficient exploration of phase and parametric
spaces in the design of complex FSI systems [26–29]. Since its inception [30–32], the immersed
boundary method has been employed for the solutions of wave propagation in cochlea [33],
swimming motions of marine worms [34], wood pulp fiber dynamics [35], and biofilm pro-
cesses [36]. In fact, it has been discovered that the modeling philosophy of immersed methods
is similar to the fictitious domain method [28,37–39]. In fact, such a principle can also be
implemented to handle deformable solids immersed in another deformable solid medium as
discussed in Ref. [40]. In early developments of immersed boundary methods, immersed elas-
tic fibers are employed to construct various objects. As proposed in Ref. [41], torsion, bending,
and transverse shear effects have also been added to immersed structures, namely beams
instead of fibers. In this paper, the author would like to revisit immersed methods for com-
pressible FSI systems ranging from acoustic fluid-solid interactions to compressible (or rather
nearly incompressible) liquid interacting with deformable structures. In particular, mixed
finite element formulations are used for both immersed solids and background fluids [42,43].
The communication between immersed solids and background fluids is accomplished with
various kernels or radial-based interpolation functions widely implemented for meshless
methods [44]. Such delta functions provide a higher order smoothness and can be extended to
non-uniform fluid grids [45–47]. The focus of this paper is on some earlier results presented
by the author and his collaborators [41,43,48,49], in particular those of acoustic fluid-solid
interaction systems for which mixed finite element formulations and mixed finite elements
which either satisfy the Inf-Sup conditions or pass the numerical Inf-Sup tests are essential in
lieu of immersed methods. Similar immersed methods have already been implemented to
electrokinetics and mass and heat transfers [48,50,51]. A fairly comprehensive review from
the perspective of a merger between traditional aerodynamics and the immersed boundary
method is available in Ref. [52].

2. Formulations and Theories
2.1. Mixed Finite Element Formulations

The key feature of immersed methods is to allow independent Lagrangian mesh
of immersed solids to move on top of the background fluid which consists of a fixed
Eulerian mesh. However, in order to be consistent with the actual physics, it is important to
combine the immersed domain (Ωs) and the physical exterior domain (Ω f ) into a complete
background domain (Ω) as illustrated in Figures 1 and 2. It is this complete domain that
stays the same for any instantaneous position of the immersed continuum. Thus, there will
be no need for frequent mesh adjustments. In fact, a background uniform mesh, namely
ghost mesh is often used to effectively locate the vicinity of the immersed solids with
modulo functions.
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(a) Immersed Boundary (b) Immersed Continuum

Figure 1. The concept of fictitious fluid domain vs. immersed domain.

(a) Immersed solid (b) Background fluid

Figure 2. An illustration of a Lagrangian mesh on top of a Eulerian mesh for immersed methods.

As illustrated in Refs. [53,54], the underlining principle of immersed methods is
the energy conservation. In summary, the energy and power inputs to the fluid domain
introduced by the immersed solids or immersed structures are identical to those from the
equivalent body forces. To secure this key feature, the same delta function or kernel function
must be used in both the distribution of the resultant nodal forces and the interpolation of
the solid velocities based on the surrounding or rather background fluid velocities. In fact,
this treatment in immersed methods can be viewed as the synchronization of the fluid
motion with the solid motion within the immersed solid domain Ωs, namely vs = v f .
This important feature is also very similar to what is employed in the fictitious domain
methods [37,38] along with the so-called distributed Lagrange multipliers as the equivalent
body forces. Although in theory, the equivalent body forces can be directly calculated along
with independent fluid and solid velocity vectors [55], the coupling of equivalent body
forces and solid motions is implicit and nonlinear. Therefore, a matrix-free Newton–Krylov
iterative procedures must be established to link both fluid and solid domains. Moreover,
if the surrounding fluid is viscous and incompressible, the immersed solid or immersed
structure must be incompressible in immersed methods and vice versa [56–59].

In this work, we review the implemented mixed finite element formulations for both
compressible immersed solids or rather nearly incompressible solids and compressible
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liquid or rather nearly incompressible fluid. First, the weak form of the fluid-solid system
can be written as ∀w ∈ [H1

0,Γv
(Ω)]d∫

Ω
[wiρ f (v̇i − gi) + wi,jσij]dΩ−

∫
Γ f

wi f
Γ f
i dΓ−

∫
Ωs

ws
i f s

i dΩ = 0, (1)

with ∫
Ωs

ws
i f s

i dΩ = −
∫

Ωs
[wi(ρs − ρ f )(v̇i − gi) + wi,j(σ

s
ij − σ

f
ij)]dΩ. (2)

In continuum model for Newtonian fluids, the stress components σij is a combination
of the pressure p and the deviatoric stress components τij,

σij = −pδij + τij, (3)

with τij = µ(vj,i + vi,j).
Furthermore, the continuity equation of the compressible viscous fluid can be ex-

pressed as

vi,i +
ṗ
κ
= 0, (4)

where κ is the bulk modulus of the fluid.
Notice here we focus on liquid or more precise liquid phase of water as working

fluid in the context of acoustic fluid-solid interactions namely the pressure variations are
not strong enough to alter the water density in any significant fashion as in the case of
underwater detonation where strong shock will trigger both phase transition of water and
density changes must be included. Moreover, from

dp
dρ

= c2 =
κ

ρ
, (5)

we have
∆ρ

ρ
=

∆p
κ

. (6)

For water, the bulk modulus is around 2.1× 109 N/m2 and the density is around
1.0× 103 kg/m3. It is clear that as long as the pressure variation is within the ambient
pressure which is 1.0× 105 N/m2. The change of the water density is very minimum and
should be ignored, so is the density of the immersed solid. Notice that when we deal with
the air as the working fluid, fully-fledged energy conservation form of governing equations
must be used along with non-oscillatory time incremental schemes [60,61].

Likewise, for immersed solids, the solid stress components σs
ij can be decomposed as

the pressure ps and the deviatoric stress components τs
ij,

σs
ij = −psδij + τs

ij. (7)

In nonlinear mechanics, the solid deformation gradient Fij = ∂xs
i (t)/∂xs

j (0) is intro-
duced along with the Green-Lagrangian strain component εij, also defined in the tensor
form as (FTF− I)/2 with an identity matrix I. Consequently, the energy conjugate stress Sij
of the Green-Lagrangian strain, namely the second Piola–Kirchhoff stress can be derived
from the elastic energy W̄, which is often related to the three invariants of the Cauchy-Green
deformation tensor C also defined in the tensor form as FTF.

We must also point out that the solid domain Ωs and the material point position xs

all refer to the current solid configurations, and for clarity they could be denoted as Ωs(t)
and xs(t), respectively. To properly introduce the material constitutive laws, we must first
introduce elastic energy W̄, which is often related to the invariants of the Cauchy-Green
deformation tensor C. A typical hyperelastic material can be described by the Mooney-
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Rivlin material model with large displacements and large strains. Hence, the strain energy
potential W̄ at time t, is defined as

W̄ = C1(J1 − 3) + C2(J2 − 3) + κs(J3 − 1)2/2, (8)

where the invariants Ji are functions of the invariants Ii, namely J1 = I1 I−1/3
3 , J2 = I2 I−2/3

3 ,
and J3 = I1/2

3 , with I1 = Ckk, I2 = [(I1)
2 − CijCij]/2, and I3 = det(C).

In the formulations for acoustoelastic FSI systems, in order to avoid locking issues
due to high bulk modulus for almost compressible solids, an additional elastic energy
term Q̄, or −[ps + κs(J3 − 1)]2/2κs is added to the elastic energy W̄, along with solid
unknown pressure ps. In the mixed finite element formulation, ps is an independent
pressure unknown completely different from the background fluid pressure p,

J3 − 1 +
ps

κs = 0, (9)

where κs is the solid bulk modulus and J3 stands for the determinant of the deforma-
tion gradient.

To delineate this pressure unknown from the pressure calculated based on the volu-
metric strain and the bulk modulus, we introduce

p̄ = −κs(J3 − 1).

Naturally, the continuity equation becomes a constraint between the pressure un-
known expressed as ps and the pressure as the function of the volumetric strain expressed
as p̄. In the displacement-based finite element formulation, such a constraint is strictly
enforced, with ps = p̄. However, for almost incompressible materials with large bulk modu-
lus, which covers many soft materials such as biological materials, the displacement-based
finite element formulation will introduce so-called checkerboard pressure distributions
and need to be replaced with mixed finite element formulations or combined with reduced
integration techniques. Therefore, the second Piola-Kirchhoff stress can be expressed as

Skl =
∂W
∂εkl

=
∂W̄
∂εkl
− [ps + κs(J3 − 1)]

∂J3

∂εkl
, (10)

with W = W̄ + Q̄.
Of course, to relate to the expression in Equation (7), the solid Cauchy stress can often

be recovered from the second Piola-Kirchhoff stress, which is an energy conservative dual
of the Green-Lagrangian strain,

σs
ij =

1
det(F)

Fi,mSmnFj,n. (11)

In immersed methods, within the immersed domain, the solid displacement is depen-
dent on the velocity of the fluid occupying the same immersed domain. Hence, the primary
unknowns for the coupled fluid-solid system are the fluid velocity v, the fluid pressure
p, and the solid pressure ps. Define the Sobolev spaces, the weak form of governing
equations can be expressed as: ∀q ∈ L2(Ω), qs ∈ L2(Ωs), w ∈ [H1

0,Γv
(Ω)]d, which includes

∀ws ∈ [H1(Ωs)]d, and find v and p ∈ Ω, ps ∈ Ωs, such that∫
Ω

wiρ(v̇i − gi)dΩ +
∫

Ω
(wi,jτij − pwi,i)dΩ−

∫
Γ f

wi f
Γ f
i dΓ

+
∫

Ωs
[ws

i (ρs − ρ)(v̇i − gi) + ws
i,j(τ

s
ij − τ

f
ij )− (ps − p)ws

i,i]dΩ+

+
∫

Ω
q(vj,j +

p,t

κ
)dΩ +

∫
Ωs

qs(J3 − 1 +
ps

κs )dΩ = 0.

(12)
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For the fluid domain the following interpolations are introduced for the entire domain Ω :

vh = Nv
I vI , wh = Nv

I wI , ph = Np
I pI , qh = Np

I qI , (13)

where Nv
I and Np

I are the interpolation functions at node I for the fluid velocity vector and
the fluid pressure; and vI , wI , pI , and qI represent the nodal values of the discretized fluid
velocity vector, admissible fluid velocity variation, fluid pressure, and admissible fluid
pressure variation, respectively.

Please note that the interpolation functions for the velocity vector unknowns in general
are denoted by the superscript v, the independent pressure unknowns for immersed solids
are denoted by ps and the independent pressure unknowns for background fluids are
denoted by p.

Likewise for the solid domain Ωs, the discretization is based on the following:

us,h = Nu
J us

J , ws,h = Nu
J ws

J , ps,h = Nps

J ps
J , qs,h = Nps

J qs
J , (14)

where Nu
J and Nps

J are the interpolation functions at node J for the solid displacement vector
dependent of the background fluid velocity vector and the independent solid pressure
unknowns; and us,h

J , ws,h
J , ps,h

J , and qs,h
J stand for the nodal values of the discretized solid

displacement vector, admissible solid displacement variation, solid pressure, admissible
solid pressure variation, respectively.

Now if we substitute both discretizations (13) and (14) into Equation (12), we can
have the following discretization of the weak form: ∀qh ∈ L2(Ωh), qs,h ∈ L2(Ωh

s ), wh ∈
[H1,h

0,Γh
v
(Ωh)]d, which includes ∀ws,h ∈ [H1,h(Ωh

s )]
d,

∫
Ωh

wiI Nv
I ρv̇h

i dΩ−
∫

Γh
f

wiI Nv
I f

Γh
f

i dΓ +
∫

Ωh
(wiI Nv

I,jτij − phwiI Nv
I,i)dΩ

+
∫

Ωh
s

[ws
iJ Nu

J (ρs − ρ)(v̇h
i − gi) + ws

iJ Nu
J,i(σ

s
ij − σ

f
ij)]dΩ−

∫
Ωh

wiI Nv
I ρgidΩ

+
∫

Ωh
qI Np

I (v
h
j,j +

ph
,t

κ
)dΩ +

∫
Ωh

s

qs
J Nps

J (J3 − 1 +
ps,h

κs )dΩ = 0.

(15)

Therefore, in the entire domain Ω, the arbitrariness of the fluid velocity variations
wiI , fluid pressure variations qI , and independent solid pressure variations qs

J yields four
equations for three velocity components and one pressure at each fluid node denoted as I
and one equation for the independent solid pressure at each solid node denoted as J,

rv
iI = 0, rp

I = 0, rps

J = 0, (16)

where the residuals are defined as

rv
iI =

∫
Ωh

Nv
I ρv̇h

i dΩ +
∫

Ωh
[Nv

I,jτij − phNv
I,i]dΩ−

∫
Γh

f

N
v,Γh

f
I f

Γh
f

i dΓ

+
∫

Ωh
s

Ñ[Nu
J (ρs − ρ)(v̇h

i − gi) + Nu
J,i(σ

s
ij − σ

f
ij)]dΩ−

∫
Ωh

Nv
I ρgidΩ,

rp
I =

∫
Ωh

Np
I (v

h
j,j +

ph
,t

κ
)dΩ,

rps

J =
∫

Ωh
s

Nps

J (J3 − 1 +
ps,h

κs )dΩ.

(17)

Please note that in both Equations (15) and (17) an implicit function Ñ is introduced to
map from wI to ws

J , namely from the fluid mesh to the solid mesh, with the kernel functions.
It is the implicit and nonlinear mapping between the immersed solid and the background



Fluids 2021, 6, 273 7 of 25

fluid that consolidates the solid displacement unknowns with the fluid velocity unknowns.
This nonlinear mapping can be better illustrated in specific nestings of subroutines although
it is difficult to assign explicit analytical expression. Furthermore, a mapping function Ñ
represents the mapping from the fluid domain implemented with background ghost mesh
to the immersed sold domain the position of which is identified by the modulo function
and projection will make that mapping efficient and straightforward. Furthermore, both
Equations (12) and (15) are fully-fledged nonlinear form of the governing equation before
any linearization. In fact, in the monolithic approach, the linearization will be coupled
with the geometrical increment of the immersed solids in the program. The geometrical
nonlinearity of the moving structures/solids are hidden in the so-called solid domain Ωs
which is also occupied by the fluid. Therefore, the immersed solid in computation is the
original solid subtract the background fluid which is physically not present as depicted in
Figure 1 and in our monolithic implementation will also be constrained to follow the same
kinematic motions as the immersed solid though with distinct fluid material constitutive
laws identical to the surrounding fluid.

The isentropic compressible fluid formulation adopted in this paper with a constant
density is in fact the same mixed finite element formulations developed for acoustoelastic
FSI systems [62,63]. With sufficient mesh resolution and time step, pressure wave propaga-
tion and related scattering and radiation phenomena can be modeled. In general, small
strain and small deformation assumptions are introduced for the acoustoelastic FSI sys-
tems. Therefore, immersed methods which have the advantage of automatically tracking
the FSI interfaces is not necessary for this type of linear FSI systems [53,54]. However,
with immersed solids, in nonlinear acoustic FSI model with finite interfacial motions,
the monolithic implicit Newton-Krylov iterative procedure with immersed methods be-
comes essential. Furthermore, in the acoustoelastic FSI with free surface as illustrated in
Figure 3, we have also demonstrated that with the same mixed finite element formulation
for both acoustic fluid and immersed two-dimensional solid mimicking the immersed flexi-
ble structure, free surface modes No. 1 and 2 representing low frequency sloshing modes,
solid modes No. 3 and 4 with intermediate frequency coupled or wet structural modes,
along with clearly high and low pressure on top and bottom of the immersed structure,
and acoustoelastic modes No. 5 and 6 with constant pressure on free surface can be evalu-
ated in one monolithic coupled system eigenvalue problem. Moreover, with numerically
stable mixed finite element formulation and mixed elements satisfying the Inf-Sup condi-
tions, even a very coarse mesh can yield insightful results for fully coupled FSI systems.
Naturally, the mesh density must be significantly higher if our aim in the simulation is
to capture the high frequency range such as the acoustoelastic FSI models instead of the
lower frequency ranges such as the wet structural modes or slowing modes as illustrated
in Figure 3. The simple fact that a fairly coarse mesh as depicted in Figure 3 could capture
coupled frequencies and corresponding modes from low to high ranges demonstrates
the promise of this monolithic coupled code with mixed finite element formulations for
immersed compressible solids and compressible (or rather nearly incompressible) liquid
with constant density.
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Figure 3. Pressure distribution of an acoustic fluid-solid interaction system (from the author’s earlier work [29,62,63]).

2.2. Stability Analysis

For nonlinear FSI analysis discussed in this paper, the incremental iteration within each
time step involves a linearized transient analysis, hence, after transformation, the following
equation is considered:(

(K∗uu)h (Kus)h
(Kus)T

h (Kss)h

)(
Ūh
S̄h

)
=

(
R∗h

0

)
, (18)

where R∗h is an effective load vector, (K∗uu)h and (Kus)h represent the effective stiffness
matrix block corresponding to displacement unknowns and pressure unknowns, respec-
tively [4].

The stability of such mixed finite element formulations with corresponding mixed
elements is based on ellipticity and Inf-Sup conditions, which are necessary and sufficient
conditions for well-posedness.

(a) Ellipticity Condition:

V̄T
h (Kuu)

∗
hV̄h ≥ c1 ‖ V̄h ‖2

V for all V̄h ∈ ker[(Kus)
T
h ], (19)

where c1 > 0, ‖ v ‖2
V= ∑

i,j
‖ ∂vi

∂xj
‖2

L2(Vol) and ker[(Kus)T
h ] =

{
V̄h|V̄h ∈ Rn, (Kus)T

h V̄h = 0
}

.

(b) Inf-Sup Condition:

inf
S̄h

sup
Ûh

ŪT
h (Kus)hS̄h
||Ūh||||S̄h||

≥ c2 > 0, (20)

where the constant c2 is independent of the mesh size h and the bulk modulus.



Fluids 2021, 6, 273 9 of 25

The Inf-Sup condition as depicted in (20) for mixed finite element formulations is
elegant and useful, although the analytical proof for specific mixed elements and systems
can be very difficult [64]. In practice, numerical Inf-Sup tests as discussed in [4,65] with
eigenvalues or singular values associated with the coupling matrix Kus are often employed.

2.3. Kernel Functions

The discretized delta functions implemented in the original Immersed Finite Element
Methods proposed in Refs. [39,58,59] are the same as those in the so-called reproducing
kernel particle methods (RKPM) or meshless finite element methods [44,66–69]. In im-
mersed methods, as pointed out in Refs. [53,54], to ensure the energy conservation, we
must employ the same discretized delta function for the distribution of solid nodal forces
and the interpolation from the background fluid velocities to the immersed solid velocities.
Moreover, the modified window function can also be used in the discretized delta function
for non-uniform meshing for the background fluid domain. Both wavelet and smooth
particle hydrodynamics (SPH) methods belong to the same class of reproducing kernel
methods where the "reproduced" function uR(x) is derived as

uR(x) =
∫ +∞

−∞
u(y)φ(x− y)dy, (21)

with a projection operator or a window function φ(x).
In essence, the window function is required to be flatter at ω = 0 in the Fourier

domain as the order of reproducing gets higher. In Figure 4, we provide a comparison
of various kernel functions in function and spectrum domains. With the increase of the
reproducing order, for the same finite support region, the kernel functions approach to the
ideal low pass filter.

(a) Function Domain (b) Spectrum Domain

Figure 4. A comparison of various discretized delta functions and their spectra (from the author’s earlier work [58,70]).

As presented in detail in Ref. [58], consider first a one-dimensional case, in accordance
with the translation invariance [31], for all r, where r is the parameter representing the
position of the submerged boundary point and is scaled with respect to the grid size h,
the discretized delta function satisfies ∑

j
φ2(r− j) = C, where C is a numerical constant.

In addition, to uniquely define the discretized delta function for all r, we also have ∑
j
(r−

j)mφ(r− j) = 0, where the selection of the mth moment depends on the number of support
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points. For instance, the discretized delta function with four support points is uniquely
defined by the following:

1. φ is a continuous function, with φ(r) = 0 for |r| ≥ 2;

2. For all r, ∑
j even

φ(r− j) = ∑
j odd

φ(r− j) =
1
2

;

3. For all r, ∑
j
(r− j)φ(r− j) = 0; and

4. For all r, ∑
j

φ2(r− j) = C, where C is a numerical constant.

In general, for 0 < r < 1, the discretized delta function φ(r− j) covers four non-zero
support points. However, for the degenerate case of the 4-point discretized delta function
centered at r = 0, we have five support points, namely r− j = −2,−1, 0, 1, 2. From the
degenerate case, we can easily derive the constant C. Hence, we obtain the following four
admissible branches of solutions for 0 < r < 1,

φ(r) =
−(2r− 3) +

√
4r− 4r2 + 1

8
,

φ(r− 2) =
1
2
− φ(r),

φ(r− 1) = −1
4
+

r
2
+ φ(r),

φ(r + 1) =
3
4
− r

2
− φ(r). (22)

Naturally, in the three-dimensional case, one of the smoothed approximations to the
delta function is given by

δh(x) =
1
h3 φ(

x1

h
)φ(

x2

h
)φ(

x3

h
). (23)

It is interesting to point out that the discretized delta function in Equation (22) is
very close to (1 + cos πr/2)/4, with r ∈ [−2, 2]. Moreover, it is easy to confirm that
the discretized delta function φ(r), with r ∈ [−2, 2], defined in Equation (22), has C1

continuity [70].
It is noted that in the current version of the implicit code the background ghost mesh

is uniform which enables a very speedy estimate of the immersed solid location, and the
order of accuracy is no more than two. Further work on the improvement of accuracy with
adaptive meshing and much sharper FSI interface capturing techniques is discussed in
Ref. [71].

3. Compressible Fluid Model for General Grids

In this section, unlike the early presentation of compressible fluid with working fluid
as liquid, more specifically liquid form of water, in which the density is kept as constant
due to the nearly compressible condition or rather large bulk modulus in the range of
GPa. In this section, we revisit some early attempt to expand the immersed boundary
method to truly compressible fluid with working fluid as compressible air. Naturally, it is a
common practice to adopt the conservative forms of governing equations for background
compressible fluid domain. Notice that we adopt the same thermodynamic concepts with
an increment of the specific enthalpy dh as cpdT where cp is the specific heat for constant
pressure and T is the temperature in absolute scale, namely Rankine or Kelvin along with
an increment of the specific internal energy du as cvdT where cv is the specific heat for
constant volume. Define the total specific mechanical energy as e, we have e = u + vivi/2.
Notice for ideal gas, we have p = ρRT with cp − cv = R and the gas constant R is defined
as Ru/M where Ru is the universal gas constant and M is the molar mass of the gas.
Hence, the pressure p can also be written as p = ρ(γ− 1)e = ρ(γ− 1)(e− vivi/2) with
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γ = cp/cv. Define the reciprocal of the density ρ as the specific volume v, the first law of
thermodynamics yields

du = −pd(1/ρ) + dq, (24)

where dq is the specific heat transferred to the system from the environment.
For isentropic (quasistatic, adiabatic, and reversible) gas, with dq = 0, we have

cvdT = −pd(1/ρ), (25)

Thus, combine with the ideal gas law, pv = RT, we have

cv/Rd(p/ρ) = −pd(1/ρ). (26)

Consequently, for isentropic gas, the pressure p is governed by p = ργC, where C is
a constant. Furthermore, the speed of sound c is defined as c2 = dp/dρ or γp/ρ = γRT.
Finally, use total specific enthalpy form, h = e + p/ρ = c2/(γ− 1) + vivi/2, and the
Fourier law for thermal conduction, the conservation of energy can be written as

∂(ρe)
∂t

+
∂

∂xi
[(ρe + p)vi]−

∂

∂xi
(k

∂T
∂xi

) =
∂

∂xi
(τijvj) + fivi + qs, (27)

where qs stands for the rate of heat transfer from the surrounding environment to the
system or control volume per unit volume, a so-called heat source.

4. Matrix-Free Newton–Krylov Iteration
4.1. Matrix Operation Specifics

To depict clearly the monolithic implicit immersed method with Newton–Krylov
iterations, we start with the basic linear algebra concepts for the solution of general linear
system of equations and the solution of eigenvalue problems. Assume A is a matrix with
m rows and n columns

A{φ1, φ2, . . . , φ(k−1), φk} = {Aφ1, Aφ2, . . . , Aφ(k−1), Aφk}

the multiplication Aφj represents the linear combination of n columns of the matrix A
using n entities of the vector φj with φj ∈ Rn and 1 ≤ j ≤ k; namely

Aφj =
[
A1, A2, . . . , A(n−1), An

]


φ1j
φ2j
φ3j
. . .

φ(n−1)j
φnj


=

n

∑
i=1

φijAi,

where Ai represents the ith column of the matrix A.
Denote B as a matrix with m rows and n columns

ψT
1

ψT
2

ψT
3

. . .
ψT
(k−1)
ψT

k


B =


ψT

1 B
ψT

2 B
. . .

ψT
(k−1)B
ψT

k B


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the multiplication ψT
i B represents the linear combination of m rows of the matrix B using

m entities of the vector ψi with ψi ∈ Rm and 1 ≤ i ≤ k; namely,

ψT
i B =

[
ψi1, ψi2, . . . , ψi(m−1), ψim

]


B1
B2
. . .

B(m−1)
Bm

 =
m

∑
j=1

ψijBj,

where Bj represents the jth row of the matrix B.
Consequently, reduced row echelon form (rref) of the matrix A after the left multiplica-

tion of the elementary matrix E, namely the row combination and manipulation operation.
Assume the rank of the matrix A is r, the number of pivot variables is r, the number of free
variables is n− r, we derive

EA =

[
I1 F
01 02

]
.

In general, if we have r < m, n, the identity matrix corresponding to the pivot variables
I1 has the size r× r, the free variable matrix F has the size r× (n− r), the zero matrix 01
has the size (m− r)× r, and the zero matrix 02 has the size (m− r)× (n− r). Introduce
the new identity matrix I2 with the size (n− r)× (n− r), the null space vectors can be
expressed as [

−F
I2

]
;

where the last m− r rows of the transformation matrix E, often called elementary matrix,
are the left null vectors.

If r = m ≤ n, we have the full column rank, zero matrices 01 and 02 do not exist,
namely there is no left null vector, and F has the size r× (n− r), or m× (m− r), whereas
if r = n ≤ m, we have the full row rank and the zero matrix 01 has the size (m− r)× r,
or (m− n)× n, namely there is no null vector.

4.2. Matrix-Free Newton–Krylov Iteration

In the matrix-free Newton–Krylov iteration, the target is the solution vector ∆Θ,
or rather ∆V for fluid velocity unknowns, ∆P for fluid pressure unknowns, and ∆Ps for
independent solid pressure unknowns. In this monolithic implicit immersed method with
iterative solutions based on Newton–Krylov and generalized minimal residual method
(GMRES) along with the numerical construction of the Jacobian matrix in the Newton-
Raphson iteration, no specific analytical equation can be established other than an abstract
operator Ñ which is implemented in recursive, iterative, and nested subroutines, the details
of which are also presented and elaborated in the research manuscript by the author and
his collaborator Professor Lucy Zhang in the Department of Mechanical Engineering of
Rensselaer Polytechnic Institute [72]. We start our matrix-free Newton–Krylov with

p = −rm+1,k−1 − rm+1,k−1
,v f ∆V f ,0 − rm+1,k−1

,uc ∆Uc,0 − rm+1,k−1
,us ∆Us,0−

rm+1,k−1
,p f ∆P f ,0 − rm+1,k−1

,pc ∆Pc,0 − rm+1,k−1
,ps ∆Ps,0.

with
J = (rm+1,k−1

,v f , rm+1,k−1
,uc , rm+1,k−1

,us , rm+1,k−1
,p f , rm+1,k−1

,pc rm+1,k−1
,ps ).

A set of orthonormal vectors vi, with 1 ≤ i ≤ n in the Krylov space Kn and an
(n + 1)× n upper-Hessenberg matrix H̄n. If we define Vn = (v1, v2, . . . , vn) and Vn+1 =
(v1, v2, . . . , vn+1),

JVn = Vn+1H̄n, (28)
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and the remaining process in the GMRES method is to solve the least square problem:

min
z∈Kn

‖p− Jz‖ or min
y∈Rn

‖p− JVny‖. (29)

Assuming γ is the length of the initial residual vector p and e1 is the unit vector,
the first column of (n + 1)× (n + 1) identity matrix,

min
y∈Rn

‖γe1 − H̄ny‖, (30)

γ = ‖p‖2, b = γe1, preconditioning matrix Λ, for i = 1 to n, using the modified
Gram-Schmidt orthogonalization process; we then have qi = Λ−1vi and w = Jqi, and for
j = 1 to i, we have hji = wTvj and w is updated with w− hjivj. Consequently, we obtain
h(i+1)i = ‖w‖2 and vi+1 = w/h(i+1)i. w = Jqi with

Jqi ' [r(Θm+1,k−1 + eqi)− r(Θm+1,k−1)]/e. (31)

After we establish the elements of an upper n× n Hessenberg matrix Hn as well as an
upper (n + 1)× n Hessenberg matrix H̄n, for j = 1 to n, and i = 1 to j− 1, a factorization
of Hn is carried out

hij = cihij + sih(i+1)j and h(i+1)j = −sihij + cih(i+1)j, (32)

where the entities of the rotation processes are calculated as

r =
√

h2
jj + h2

(j+1)j, cj = hjj/r, and sj = h(j+1)j/r. (33)

Through this rotation process, the upper Hessenberg matrix is converted to a diagonal
matrix with the coefficients defined as: for j = 1 to n

hjj = r, pj = cjbj, and pj+1 = −sjbj. (34)

Finally, the termination criteria: if |bn+1| < ε, the solution vector ∆Θ, or rather ∆V f ,
∆Uc, ∆Us, ∆P f , ∆Pc, and ∆Ps is expressed as

∆Θk,n = ∆Θk,0 +
n

∑
i=1

yiqi, (35)

or

< ∆V f , ∆Uc, ∆Us, ∆P f , ∆Pc, ∆Ps >= ∆Θk,0 +
n

∑
i=1

yiqi.

Notice here for time increments, we use the trapezoidal temporal discretization is as
the following,

b(t + ∆t) = b(t) +
∆t
2
[
ḃ(t) + ḃ(t + ∆t)

]
ḃ(t + ∆t) = ḃ(t) +

∆t
2
[
b̈(t) + b̈(t + ∆t)

] (36)

and consequently,

b(t + ∆t) = b(t) + ḃ(t)∆t +
∆t2

4
[
b̈(t) + b̈(t + ∆t)

]
(37)
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and more importantly,

δb(t + ∆t) =
∆t
2

δḃ(t + ∆t)

δḃ(t + ∆t) =
∆t
2

δb̈(t + ∆t)
(38)

where b can stand for the fluid interior nodal unknowns V f , the fluid-solid interface
displacement unknowns Uc, the solid interior nodal unknowns Us, the fluid interior
pressure unknowns P f , the FSI coupled interface pressure unknowns Pc, and the solid
interior pressure unknowns Ps.

Furthermore, the solid velocities are based on the projections of the background fluid
velocities within the finite support region. Thus, the solid displacements at the FSI in-
terface and the interior are integrated with the time integration scheme as stipulated in
Equations (36) and (38). To be more specific, the update processes occur in very incremental
iteration within one time step, which means, the positions of the immersed structures/solids
are updated in all iteration within the matrix-free Newton–Krylov iteration.

For specific elaboration of the combination of Newton-Raphson iteration with New-
ton–Krylov iteration, we introduce

A =



−1 1 0 0 0 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 0 0 −1 1
0 0 0 −1 0 1


;

H =



h11 h12 h13 h14 · · · h1k
h21 h22 h23 h24 · · · h2k
0 h32 h33 h34 · · · h3k
0 0 h43 h44 · · · h4k
0 0 0 · · · · · · · · ·
0 0 0 0 · · · h(k+1)k

.

therefore, for k = 1 [
c1 s1
−s1 c1

][
h(1)11

h(1)21

]
y1 =

[
c1 s1
−s1 c1

](
p(1)1

0

)
.

[
h(2)11

0

]
y1 =

(
p(2)1

p(2)2

)
.

with p(1)1 = β, p(1)2 = 0, p(2)1 = c1β, p(2)2 = −s1β. Naturally, if p(2)2 or rather −s1β is
sufficiently small, the second equation will be approximately satisfied, and the iteration
will stop at the level when k = 1.

Moreover, for k = 2 c1 s1 0
−s1 c1 0

0 0 1


 h(1)11 h(1)12

h(1)21 h(1)22

0 h(1)32

[ y1
y2

]
=

 c1 s1 0
−s1 c1 0

0 0 1


 p(1)1

0
0

.

 1 0 0
0 c2 s2
0 −s2 c2


 h(2)11 h(2)12

0 h(2)22

0 h(2)32

[ y1
y2

]
=

 1 0 0
0 c2 s2
0 −s2 c2


 p(2)1

p(2)2
0

.



Fluids 2021, 6, 273 15 of 25

 h(2)11 h(2)12

0 h(3)22
0 0

[ y1
y2

]
=

 p(2)1

p(3)2

p(3)3

.

with p(1)1 = β, p(1)2 = 0, p(1)3 = 0; p(2)1 = c1β, p(2)2 = −s1β, p(2)3 = 0; p(3)1 = p(2)1 ,

p(3)2 = c2 p(2)2 , p(3)3 = −s2 p(2)2 . Naturally, if p(3)3 or rather −s2 p(2)2 is sufficiently small,
the third equation will be approximately satisfied, and the iteration will stop at the level
when k = 2.

Finally, for k = 3


c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1




h(1)11 h(1)12 h(1)13

h(1)21 h(1)22 h(1)23

0 h(1)32 h(1)33

0 0 h(1)43


 y1

y2
y3

 =


c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1




p(1)1
0
0
0

.


1 0 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1




h(2)11 h(2)12 h(2)13

0 h(2)22 h(2)23

0 h(1)32 h(1)33

0 0 h(1)43


 y1

y2
y3

 =


1 0 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1




p(2)1

p(2)2
0
0

.


1 0 0 0
0 1 0 0
0 0 c3 s3
0 0 −s3 c3




h(2)11 h(2)12 h(2)13

0 h(3)22 h(3)23

0 0 h(3)33

0 0 h(1)43


 y1

y2
y3

 =


1 0 0 0
0 1 0 0
0 0 c3 s3
0 0 −s3 c3




p(2)1

p(3)2

p(3)3
0

.


h(2)11 h(2)12 h(2)13

0 h(2)22 h(2)23

0 0 h(4)33
0 0 0


 y1

y2
y3

 =


p(2)1

p(3)2

p(4)3

p(4)4

.

with p(1)1 = β, p(1)2 = 0, p(1)3 = 0, p(1)4 = 0; p(2)1 = c1β, p(2)2 = −s1β, p(2)3 = 0, p(2)4 = 0;

p(3)1 = p(2)1 , p(3)2 = c2 p(2)2 , p(3)3 = −s2 p(2)2 , p(3)4 = 0; p(4)1 = p(2)1 , p(4)2 = p(3)2 , p(4)3 = c3 p(3)3 ,

p(4)4 = −s3 p(3)3 . Naturally, if p(4)4 or rather −s2 p(3)3 is sufficiently small, the third equation
will be approximately satisfied, and the iteration will stop at the level when k = 3.

5. Results and Verifications

In this section, we present several numerical examples to illustrate the efficacy and
accuracy of the monolithic implicit immersed method with matrix-free Newton–Krylov
iterations. The software developed through this work could be available upon request.

A model problem is introduced with a one-dimensional continuum within [L1, L2] im-
mersed in another one-dimensional continuum within [0, L] as shown in Figure 5. The phys-
ical materials occupying region [0, L1] ∪ [L2, L] for one continuum and region [L1, L2] for
another continuum have a constant cross-section area A and are subjected to the gravita-
tional acceleration g in x direction. Thus, the governing equations can be written as
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∂

∂x
(E f

∂u
∂x

) = ρ f
∂2u
∂t2 − ρ f g,

∂

∂x
(Es

∂u
∂x

) = ρs
∂2u
∂t2 − ρsg.

(39)

Figure 5. One-dimensional model problem of one continuum immersed in another continuum.

Equation (39) represent a set of two second-order partial differential equations (PDE)
for both continuum with three connected regions, namely [0, L1], [L2, L], and [L1, L2]. If we
consider the boundaries marked by L1 and L2 dependent of time t and the displacement u,
this problem will be non-trivial. For extreme conditions, let’s look at the corresponding
static sets of equations, namely the right hand sides of Equation (39) which represent a set
of two second-order ordinary differential equations (ODE). Finally, six constants ci will be
introduced for all three regions, namely (0, L1), (L2, L), and (L1, L2), and the solution u(x)
can be simply expressed as

−
ρ f

E f
g

x2

2
+

c1

E f
x + c4;−

ρ f

E f
g

x2

2
+

c2

E f
x + c5; and − ρs

Es
g

x2

2
+

c3

Es
x + c6. (40)

Therefore, six constants ci will be derived based on the following six boundary conditions

u(0) = 0, u(L) = 0,
u(L−1 ) = u(L+

1 ), u(L+
2 ) = u(L−2 ),

E f
∂u
∂x

(L−1 ) = Es
∂u
∂x

(L+
1 ), E f

∂u
∂x

(L+
2 ) = Es

∂u
∂x

(L−2 ).
(41)

In this model study, for simplicity, we assign L1 = L/3 = l, L2 = 2L/3 = 2l,
Es = aE f = aE, and ρs = bρ f = bρ. Moreover, we scale the three constants ci, i = 1, 2, 3
with the same parameter l/E. Finally, with β = ρgl, the solution of the six unknown
constants c can be determined from the boundary conditions (41) as

c =
β

2
〈b + 2,−b + 4, 3b, 0, 3b− 3, 1 + b− 2b/a〉 (42)

The comparisons with analytical solutions as well as existing computational fluid
and solid software package such as ADINA as illustrated in Figures 6 and 7 confirm the
validity of the monolithic implicit immersed method with matrix-free Newton–Krylov
iterations [39]. In addition, this simple one-dimensional model problem also confirms the
subtle shift in math and engineering fields in which the background compressible fluids
are often replaced with the background compressible solids [55].

A clear validation and verification example is the driven cavity for viscous fluid with
a dimension of 1× 1 m as illustrated in Ref. [39]. To compare the dynamical behaviors,
the top shear velocity of the cavity is set as 0.1 sin(2π/40t) m/s. The deformable solid
is situated initially in the center of the cavity with zero velocity. To avoid the overlap of
the mesh for the immersed solid and the background fluid mesh, we choose the typical
immersed solid with the dimension of 0.13× 0.13 m. The submerged solid is made of
a compressible rubber material with the material constant κs = 1× 107 N/m2 and the
density ρs = 1000 kg/m3. For hard solids we use C1 = 200 and C2 = 100 N/m2. The case
with hard solids resembles the same driven cavity problem with immersed rigid bodies [73].
In addition, the viscous fluid is represented with compressible model with a constant wave
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speed. Notice that in this acoustoelastic FSI example, the Mach number is much smaller
than 0.01 just as the case presented in Ref. [74]. Moreover, we have the dynamic viscosity
µ = 1 Pa · s, the bulk modulus κ f = 2.1× 109 N/m2, and the density ρ f = 1000 kg/m3.

(a) Displacement Distribution (b) Force Distribution

Figure 6. Analytical solutions.

(a) Midpoint (b) Spatial Distribution

Figure 7. Comparisons with the monolithic implicit immersed method with matrix-free Newton–Krylov iterations and ADINA.

It is evident that even with the coarse mesh used, the developed formulation with high-
order elements provides reasonable results comparable to a reference solution. In addition,
no spatial oscillation and checkerboard pressure bands are observed, as demonstrated in
Figure 8. Of course, the proposed description can be further improved with refined meshes.
As one of the main messages, we must point out that in engineering practice, before a large
number of finite elements are used, it is always beneficial to employ coarse meshes with
high-order elements to obtain a reasonable estimation of complicated problems.

In the implementation, the background fluid mesh is constructed for the entire cavity,
which includes the space occupied by the immersed solids, consists of 20× 20 9/4c mixed
finite elements as illustrated in detail in Refs. [4,64]. A typical immersed solid is represented
by 4× 4 9/4c mixed finite elements. In the post computation presentation, we split each
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9-node element into four 4-node elements. As a result, the velocity mesh will be two
times denser than the pressure mesh. As shown in Figure 8, the mesh construction clearly
demonstrates the philosophical difference between the monolithic implicit immersed
method with matrix-free Newton–Krylov iterations and the traditional ALE approaches.
In our method, the solid mesh is floating right on top of the background fluid mesh,
whereas in the ALE formulation, the solid mesh is surrounded by the fluid mesh with a
different mesh density.

(a) Immersed Method (b) ADINA FSI

Figure 8. Snapshots of results from the immersed continuum method and the ADINA FSI solver.

For the case with one immersed square solid, as long as the immersed solid does
not move and deform significantly, it is still possible to solve this fluid-solid system with
traditional modeling techniques such as the arbitrary Lagrangian-Eulerian (ALE) formula-
tion. For the comparison of fixed immersed solid, we compare the velocity components
of the midpoint (0.5, 0.5) of the immersed solid. With the same time step size, as shown
in Figure 9, even with the coarse mesh of high-order mixed elements, the results from the
monolithic implicit immersed method with matrix-free Newton–Krylov iterations and the
ADINA FSI solver are very close. Considering the fact that these results are derived from
two completely different approaches with entirely different meshes, these comparisons
are very assuring. Moreover, for the case with the center of the immersed solid tethered
with a soft spring (4 N/m), despite the difference of the fluid mesh shown in Figure 8,
the trajectories of the block center derived from the immersed continuum method and the
ADINA FSI solver do match well with each other as depicted in Figures 9 and 10. Further
studies with different periods also demonstrate in Figure 10 that a slightly larger numerical
viscous exists in comparison with the traditional computational approaches.

It is very important to point that the discretized delta function provides the possibility
of linking the immersed solid node with the surrounding fluid nodes as done in meshless
finite element methods. However, as pointed out in Ref. [56], the immersed solid node
can also be restricted to communicate with the very finite element for the background
fluid domain. As long as the virtual power input to the surrounding fluid is preserved,
the concept of immersed methods will stay the same. This procedure is the same as the
standard finite element procedure to distribute concentrated forces and to interpolate
displacement/velocity within the element. Whether or not this procedure is as efficient as
the meshless type of communication depends very much on the search algorithm for the
purpose of locating the immersed solid nodes.
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(a) Vertical (b) Phase space

Figure 9. A comparison of horizontal and vertical velocities derived from the traditional ALE formulation and the
immersed methods.

(a) Period 4 (b) Period 40

Figure 10. Extra numerical dissipation due to immersed methods.

The benefit of the immersed methods is clear for the case with five immersed solids as
illustrated in Figure 11. For this case, also depicted in Ref. [39], it is no longer feasible to use
the ALE formulation, whereas it is relatively straightforward to add a few more deformable
solids in the monolithic implicit immersed method with matrix-free Newton–Krylov it-
erations. The only possible comparison came from Professor Tsorng-Whay Pan in the
Department of Mathematics of the University of Houston. The simulation animation can
be accessed in Ref. [73].

It is very important to emphasize that in this monolithic implicit matrix-free New-
ton–Krylov iterative solution method, the fluid velocity, the immersed solid velocity,
the fluid pressure, and the solid pressure must converge simultaneously. In fact, since
we obtain the immersed solid velocity based on the projection of the velocity of fluid
occupying the same position, namely their simultaneously convergence is guaranteed.
However, the fluid pressure and the solid pressure are calculated with two completely
different procedures and the concept of addition and subtraction as illustrated in Figure 1,
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which ultimately marks the success of the entire monolithic implicit immersed method
with matrix-free Newton–Krylov iterative solution method. As shown in Figures 12 and 13,
a typical converged data sheet along with two sets of pressure and velocity contour and
band plots are presented for a simple sedimentation and rotation of a compressible solid in
a viscous and slightly compressible fluid.

(a) This Method (b) Fictitious Domain

Figure 11. Driven cavity with five compressible immersed solids.

In Figure 14, we present two time snapshots taken from a case study reported in
Ref. [61] in which a submerged flexible structure is interacting with the surrounding com-
pressible fluid, more specifically, air. In this case, fully-fledged energy conservation form of
governing equations in aerodynamics based on conformal mapping and compact schemes
have been coupled with non-oscillatory time incremental schemes [60,61]. The specific
details are imbedded in the proprietary code in Wright-Patterson Air Force Base. In order
to illustrate the efficacy of immersed boundary methods for compact schemes, we inten-
tionally set the boundaries to reflect the shock waves. It is clear that shocks are captured
nicely as well as their interactions with the immersed structure.

In these implementations, we have a uniform background (ghost) mesh which allow
us to employ the simple modulo function to locate the immersed solid or structure points
and to implement the displacement projections and force distributions. This feature along
with the concept of immersed methods enable us to avoid the topologically challenging
mesh adjustments which are often prohibitive. The uniform background (ghost) mesh
adopted for the compact scheme is also the important attributes for high accuracy and
high computational efficiency. These features also naturally fit into parallel processing
commands such as MPI and further vectorization of the operation.
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Figure 12. Simultaneous convergence of the monolithic implicit immersed method with matrix-free Newton–
Krylov iteration.

(a) Sedimentation (b) Rotation

Figure 13. Fully converged velocity and pressure contours and bandplots.

(a) Time one (b) Time two

Figure 14. Shockwave propagating within compressible air with compact schemes (from the author’s earlier work Ref. [61]).



Fluids 2021, 6, 273 22 of 25

6. Conclusions and Discussion

In this study, we confirm that immersed boundary methods can be applicable to
compressible liquid interacting with immersed compressible solid in acoustic FSI problems.
It seems equally valid for shock wave propagating in compressible fluid and acoustic
waves interacting with both compressible fluid and immersed solid with the help of
compact schemes.

In the monolithic implicit immersed method with Newton–Krylov iterations, in order
to satisfy energy conservation, namely the energy input to the fluid domain from the
immersed solid is the same as that from the equivalent body force, the same delta function
must be used in both the distribution of the resultant nodal force and the interpolation of
the solid velocity based on the surrounding fluid velocities. In fact, the key treatment in this
fully implicit and monolithic immersed method, the synchronization of the fluid motion
occupying the same geometric locations marked by the domain Ωs with the immersed
solid, namely vs = v f . Although no explicit mathematical expression is possible in the
implicit monolithic algorithms for compressible solid immersed inside a compressible
fluid. However, an operator Ñ is introduced in Equation (17) to summarize such a nested
fully implicit Newton–Krylov iterative procedure. In this procedure, the iterative solution
based on Newton–Krylov and generalized minimal residual method (GMRES) along
with the numerical construction of the Jacobian matrix in the Newton-Raphson iteration
are combined as a single iterative procedure which is elaborated in detail in this paper.
Furthermore, preliminary results derived with two- and three-dimensional compressible
solver based on compact schemes are also included.

The constraint of Equation (42) introduces the (distributed) Lagrange multiplier as the
equivalent body force. In this case, the equivalent body forces can be directly calculated
along with independent fluid and solid velocity vectors. Of course, such a procedure
will introduce a set of new unknowns equal to the number of velocity unknowns for
solids. The early success of immersed finite element formulations for the type of immersed
methods is only the beginning of this type of modeling treatment for complex FSI systems.
Recent mathematical studies and extensions to electrokinetics and mass and heat transfers
can also be found in Refs. [48,51].
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