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Abstract: In this study, numerical computation is used to investigate the hydrodynamic characteristics
of a torpedo-shaped underwater glider. The physical model of a torpedo-shaped underwater glider is
developed by Myring profile equations and analyzed by the computational fluid dynamics approach.
The Navier–Stokes equations and the energy equation coupled with the appropriate boundary
conditions are solved numerically by using Comsol Multiphysics software. The numerical results
contribute to the major part of reducing the effects of fluid flow on the glider’s profile and make
the underwater glider more hydrodynamically efficient. The drag and lift forces acting on the
underwater glider are enhanced by a higher velocity and a larger angle of attack of the underwater
glider. Since the obtained results show a good observation with the experimental works, the need
and the practicality of using CFD in the glider design process are proven.

Keywords: numerical simulation; hydrodynamic; torpedo; underwater glider; computational
fluid dynamics

1. Introduction

In recent years, the underwater glider has received widespread attention because of its
potential applications, such as oceanographic, military purposes, and mineral exploration
programs for economic development. [1–4]. This is a new type of autonomous underwater
vehicle (AUV) that uses adjustments in buoyancy and mass center position [5,6]. It is
typically equipped with many different types of sensors to collect data in remote locations
that are too difficult and risky for humans. In early 1957, the conceptual design of AUVs
was first developed at the University of Washington by Murphy et al. Another early
AUV was proposed by Myring that gives the shape of nose and tail with a minimal drag
coefficient [7]. According to Myring’s works, there are several factors of the glider’s profile
that can change the drag coefficient (CDA). The results indicated that a change in the tail
and nose profile might not obtain much difference in CDA. However, the other parts of the
glider tend to make significant changes in the drag coefficient at the same thickness ratio.
In addition, the new type of underwater vehicle is designed in a torpedo shape with fixed
wings, which can travel long distances over long periods by using a pump to change its
buoyancy [8–10]. To go down or come up continuously to the water’s surface, the wings
of the underwater glider generate the lift force, which is created by the buoyancy. Since
the underwater glider pumps in and pumps out water alternately, its trajectory is formed
in a sawtooth operating pattern and has a slow speed [11]. The glider angle of attack and
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buoyancy are two of the main factors that affect the glider velocity. The more change in the
buoyancy, the higher the gliding velocity at a certain angle of attack.

Computational fluid dynamics (CFD) is known as a very useful tool to solve numerical
problems that relate to fluid mechanics. The scheme for CFD simulations modeled by
Le et al. [12–16] is used to investigate the fluid motion and hydrodynamic characteristics
(pressure, velocity, etc.) in a microchannel or a sterilization chamber. CFD simulation meth-
ods used to determine the hydrodynamic characteristics of AUVs have been investigated
in numerous studies [17–25]. Jia et al. [17] used the kinematic equations and parameters’
relations to calculate the hydro-drag and lift of underwater gliders by using CFD software.
Their results showed that the coefficients of hydro-drag and lift depend on the steady-state
velocity of the underwater glider. Pan et al. [18] analyzed the hydrodynamic characteristics
of unmanned underwater vehicles (UUV) based on the CFD technique. The numerical
results indicated that the hydrodynamic characteristics of underwater gliding UUV were
in good agreement with engineering estimation results. Amory et al. [19] used CFD to illus-
trate the pressure and velocity distributions over the AUV bodies. Their results showed the
streamlined SEMBIO hull has a smaller hydrodynamic parameter than the torpedo-shaped
MONSUN hull. Sousa et al. [20] presented and analyzed the hydrodynamic characteristics
of the turbulent fluid flow over the different shapes of an AUV hull to optimize the AUV
hull design. The numerical results indicated the optimized design of the AUV hull has
a lower drag force and a reduction in energy consumption. The use of CFD to study the
hydrodynamic interaction between the motion of two underwater bodies is also studied
by Randeni et al. [21]. Their results demonstrated both the CFD model and the simplified
method obtain the hydrodynamic coefficients that are critical for a valid prediction of an
AUVs performance under alternating conditions. Furthermore, Dantas et al. [22] used
CFD to consider the effect of control surfaces on the maneuverability of an AUV. It was
confirmed that the control surface stall occurrence is based on a linear relationship between
the attack angle and the control surface deflection [23–26]. Tyagi et al. [27] showed the
transverse hydrodynamic coefficients of an AUV hull computed by CFD simulations are
very important in the maneuverability work of underwater vehicles. In addition, most
studies [24,27–29] used two-equation turbulence models (k-ε and k-ω) for the flow over
the AUV to optimize the design. However, they are limited in turbulence physics because
of their assumptions (the eddy viscosity hypothesis and the gradient diffusion hypothesis).
As a consequence, the recent works [30–38] are altering Reynolds stress models. Although
there are a lot of studies about hydrodynamic characteristics of AUVs, it rarely has research
on the subject related to torpedo-shaped underwater gliders. It is very interesting to use the
CFD approach to analyze the hydrodynamic characteristics of torpedo-shaped underwater
gliders. This is a promising idea to minimize drag force and increase propulsion efficiency
for torpedo-shaped underwater gliders. Hence, it would produce an optimized design of a
torpedo-shaped underwater glider in the future.

In the present study, the CFD method is used to investigate the hydrodynamic char-
acteristics of a torpedo-shaped underwater glider. The Navier–Stokes equations and the
energy equation subjected to the prevalent boundary conditions are solved numerically
by Comsol Multiphysics software [39]. The underwater glider motion with the various
velocities, different angles of attack, and the optimized shape that minimizes the drag force
is also considered in this study.

2. Physical Model and Numerical Approach
2.1. Physical Model

The profiles of the nose and tail of a torpedo-shaped underwater glider are shown in
Figure 1. The torpedo shape is initially selected to be a cylindrical body with the length of
the nose a, the length of hull b, the length of tail section c, the maximum diameter of the
glider d, and the angle at the tip 2θ. For modeling the profiles of the nose and tail of the
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torpedo, Myring’s equations were used to minimize the drag force acting on the torpedo
body [7]. The given shape of the glider’s nose and tail is described as:

r1(x) =
1
2

d

[
1−

(
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a

)2
] 1

n

(1)
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)
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where r1 and r2 are the torpedo shapes of nose and tail, respectively. In the above equations,
the parameter n can be chosen to have different shapes of nose and tail. A body with a
blunt nose that has a large n tends to have greater drag-lift characteristics due to having
larger surface areas. In the present study, the geometric parameters of a torpedo-shaped
underwater glider considered are shown in Table 1.
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Figure 1. Body shape of a torpedo.

Table 1. Torpedo geometric parameters used for computation.

Parameter Value

a (mm) 200
b (mm) 1650
c (mm) 600
d (mm) 324
θ (◦) 25

The three-dimensional (3-D) governing equations for the conservation of mass, mo-
mentum, turbulent kinetic energy, and its dissipation rate used to investigate the single-
phase flow of seawater around the torpedo are written as:

∂ρ

∂t
+ ρ(∇.U) = 0 (3)
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where U = (u, v, w) is the velocity vector; ∈ is the dissipation of turbulent kinetic energy;
ρ is the density of water; g is the acceleration of gravity; p is the pressure; µ is the fluid
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dynamic viscosity; k is the turbulent kinetic energy; µt is the turbulent viscosity; Pk is the
turbulence production and Pb is the affection of buoyancy; and YM is the contribution of
pulsatile expansion incompressible turbulence. The values of the correlation constants are
C1ε = 1.44, C2ε = 1.92, C3ε = 0.09, σk = 1, σε = 1.3. The parameters µt, Pk, and Pb are
given as follows:

µt = ρCµ
k2

∈ (7)

Pk = µtS2 (8)

Pb = βgi
µt

Prt

∂T
∂xi

(9)

where Cµ is a dimensionless constant; S is the rate of deformation.
The total pressure pt is estimated by:

pt = ps + pd (10)

where ps is the static pressure and pd is the dynamic pressure.
The total drag force includes the friction force caused by surface shear stress in the

boundary layer and the pressure force generated by the pressure difference exerting on
a torpedo body. Therefore, the total drag coefficient (Cd) and the lift coefficient (CL) are
written as:

Cd = Cd f + Cdp =
Fd f

1
2 ρU2.A f

+
Fdp

1
2 ρU2.A f

(11)

CL =
FL

1
2 ρU2.A f

(12)

where Cdf is the coefficient of skin friction drag, Cdp is the coefficient of pressure drag, Fdf
is the friction drag force that is caused by the roughness of the surfaces of the glider, Fdp
is the pressure drag force, and Af is the submerged surface area of a torpedo body. The
hydrodynamic lift force FL is expressed in terms of the dimensionless lift coefficient CL.

The fluid domain related to the boundary conditions is shown in Figure 2. The pre-
scription of the boundary conditions for the fluid around a torpedo body is shown in Table 2.
The parameters of the fluid (seawater) selected in the simulations are salinity S = 35 g/kg,
temperature T = 15 ◦C, density ρ = 1027 kg/m3, and fluid viscosity µ = 1.25 mPa.s [40–42].
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Table 2. Boundary conditions used for numerical computation.

Boundary Condition

Inlet Prescribed velocity

Wall Pressure on the depth of 100 m

Torpedo surface No-slip

Outlet Pressure on the depth of 100 m

Symmetry plane Symmetry

2.2. Numerical Approach

The hydrodynamic characteristics of a torpedo-shaped underwater glider are numer-
ically investigated by CFD simulations in the present study. For a challenging problem,
the physical variables change significantly around the torpedo surface. A dense mesh
must be located around the torpedo surface during the actuation process to guarantee the
exact solution (Figure 3). It is very necessary to track the fine mesh moving simultaneously
with the torpedo body. Therefore, the arbitrary Lagrangian–Eulerian (ALE) method is
used to handle this problem. On the other hand, the 3-D governing equations with the
relevant boundary conditions are solved by using the finite element method (FEM) with
second-order Lagrange triangular elements. The dependency of the number of elements
on the numerical results is determined to guarantee the exact solution. The poor quality
of mesh elements can lead to collapse and inversion of the mesh, and elements could
be wrapped inside-out or have zero volume. In this torpedo model, the mesh structure
generated by a 3-D tetrahedral meshing technique is proposed. The finer mesh at the
fluid-solid interface of the glider is carried out to ensure the accuracy of the numerical
results [43].
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Figure 3. The dense mesh around the torpedo surface used for computation.

3. Results and Discussion

The computational domain around the gilder is the water with the density (at 20 ◦C)
ρ = 1027 kg/m3 and the dynamic viscosity µ = 1.25 MPa.s. The maximum operational depth
is 100 m, where the absolute pressure is about 105 Pa. The hull’s profile was improved
several times. The numerical results are based on the circumstance that the glider moves in
a forward direction with the velocity U = 1 m/s and angle of attack θ = −10◦. The velocity
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fields, streamlines, and pressure distribution are presented in Figure 4. The wake region is
located at the tail part of the underwater glider. In this simulation, the speed of fluid flow
is set at 1 m/s, and the angle of attack is −10◦. It reduced the strength of the wake that
could be seen in Figure 4 based on the direction of arrows.
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θ = −10◦.

To obtain the hydrodynamic characteristics of the underwater glider in this present
work, the different glider velocities (from 0.9 m/s to 1.1 m/s) and angles of attack (−30◦,
−10◦, −2◦, 2◦, 10◦, 30◦) are considered in this study. The numerical results of the drag
and lift coefficients, flow behavior, force, and pressure distribution, which are computed
using CFD analysis, are presented and discussed. Figure 5 demonstrates the pressure
distribution at the tip of the nose at different torpedo velocities. From the present results,
it can be seen that the tip of the nose is strongly affected by the fluid flow. During this
period, the value of pressure at the bow of the glider slightly fluctuates around 10,000 Pa.
This phenomenon should be noted to select the appropriate material in further studies.
The contribution of the profile of the hull and wings is significant. While the wings of the
glider mainly generate the lift force, the glider’s hull is one of the factors that create the
hydrodynamic drag force of the glider’s body. Figure 6 shows the drag force acting on
the glider body at the different velocities versus time. The drag force increases rapidly
at the initial time and then approaches a constant as time goes on. The average lift force
with the angle of attack θ = −10◦ at the different velocities of the glider is presented in
Figure 7. The numerical results indicate that the higher the underwater glider velocity, the
larger the drag force and lift force acting on the glider. Figure 8 gives information about
drag and lift coefficients at five different values of glider speed. These coefficients are
calculated by using hydrodynamic parameters obtained from the numerical simulations.
As can be seen from the numerical results, the drag and lift coefficients decrease gradually
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when the glider velocity reduces. Table 3 indicates the average values of drag force, lift
force, drag coefficient, and lift coefficient of the underwater glider at the different velocities
when its angle of attack θ = −10◦. The lift to drag ratio (L/D) at the different speeds of the
underwater glider is presented in Figure 9. The numerical results indicated that the higher
the velocity of the glider, the larger the drag and lift forces due to higher pressure acting on
the glider body. It can be seen that the lift to drag ratio increased gradually when the glider
velocity increases.
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Table 3. Data obtained from the computation by using CFD for the different velocities of the glider.

Velocity (m/s) Drag Force (N) Lift Force (N) Drag Coefficient Lift Coefficient

0.9 105.30 30.19 0.35 1.01

0.95 111.80 32.37 0.33 0.96

1 118.57 34.58 0.32 0.94

1.05 121.20 36.33 0.30 0.89

1.1 127.39 39.11 0.29 0.87

Figure 10 illustrates the distribution of fluid flow around the torpedo-shaped hull with
the glider velocity U = 1 m/s at different angles of attack, from −30 to 30◦. The streamlines
surrounding the glider’s body demonstrate good hydrodynamic performance. Based on
the streamlines located after the body and the hull of the glider, the laminar boundary
layer has been maintained as much as possible in all directions. Low hydrodynamic drag
is considered to be a significant factor in the glider’s design. The magnitude of the skin
friction, which occurs in the laminar boundary layer, is generated 5 to 10 times smaller than
in a turbulent flow in the same condition. As a result, a glider with a natural laminar flow
design can delay the turbulent transition, which reduces the pressure in the wake region.
The pressure force and torpedo velocity are taken into account for the interaction between
the fluid and the torpedo’s body. In this study, the maximum value of pressure is colored
blue, which occurs at the tip of the nose of the vehicle and on the side of the hydrofoils. Its
exact value is 97,700 Pa. On the other parts of the underwater glider, the pressure is not as
high as the tip due to the smooth flow and the shape of the hull. The minimum pressure
is located at the section that connects the nose and hull parts. The lift force depends on
the angle of attack since its pressure distribution at the lifting body affects the magnitude
of the lift force. When the attack angle increases, the magnitude of pressure generated
by the lift force increases at the lift surface. Figure 11 shows the tendency of both drag
coefficient and lift coefficient versus the angle of attack with the different velocities of the
glider. At the angle of attack θ = 0◦, the magnitude of drag and lift coefficients reaches its
lowest point since the torpedo profile helps to increase laminar flow and reduce the drag
force. The numerical results of the drag and lift coefficients show a good agreement with
the experimental observation [11].
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than in a turbulent flow in the same condition. As a result, a glider with a natural laminar 

flow design can delay the turbulent transition, which reduces the pressure in the wake 

region. The pressure force and torpedo velocity are taken into account for the interaction 

between the fluid and the torpedo’s body. In this study, the maximum value of pressure 

is colored blue, which occurs at the tip of the nose of the vehicle and on the side of the 

hydrofoils. Its exact value is 97,700 Pa. On the other parts of the underwater glider, the 

pressure is not as high as the tip due to the smooth flow and the shape of the hull. The 

minimum pressure is located at the section that connects the nose and hull parts. The lift 

force depends on the angle of attack since its pressure distribution at the lifting body af-

fects the magnitude of the lift force. When the attack angle increases, the magnitude of 

pressure generated by the lift force increases at the lift surface. Figure 11 shows the ten-

dency of both drag coefficient and lift coefficient versus the angle of attack with the dif-

ferent velocities of the glider. At the angle of attack θ = 0°, the magnitude of drag and lift 

coefficients reaches its lowest point since the torpedo profile helps to increase laminar 

flow and reduce the drag force. The numerical results of the drag and lift coefficients show 

a good agreement with the experimental observation [11]. 

Figure 9. Lift to drag ratio with the angle of attack θ = −10◦ at the different velocities.
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4. Concluding Remarks

The hydrodynamic characteristics of a torpedo-shaped underwater glider are numer-
ically investigated in this study. The design of an underwater glider based on Myring
profile equations is to reduce the underwater resistance acting on the underwater glider
body. The numerical results indicated that the nose of the underwater glider is subjected
to a huge pressure when it moves through the water. The underwater glider velocity and
angle of attack strongly affected the drag and lift coefficients. These present results are
appropriate to reality and suitable to be used in further designs.
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