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Abstract: This paper presents a simple model for slightly charged gas expanding into a vacuum from
a planar exit. The number density, bulk velocity, temperature, and potential at the exit are given.
The electric field force is assumed weaker than the convection term and is neglected in the analysis.
As such, the quasi-neutral condition is naturally adopted and the potential field is computed with
the Boltzmann relation. At far field, the exit degenerates as a point source, and simplified analytical
formulas for flow and electric fields are obtained. The results are generic and offer insights on many
existing models in the literature. They can be used to quickly approximate the flowfield and potential
distributions without numerical simulations. They can also be used to initialize a simulation. Based
on these results, more advanced models may be further developed.

Keywords: gaskinetic theory; free molecular flow; jet; plasma; electrostatics

1. Introduction

Highly dilute neutral or slightly charged gaseous jet is a fundamental problem with
many applications. In the literature, many comprehensive investigations are reported on
neutral jet flows. However, due to the complex physics, there are less work reports on
slightly charged gaseous jets. Most work relies on numerical simulations, and theoretical
models are rare. This paper aims to provide such a theoretical model with numerical
validations.

The paper continues as follows. Section 2 reviews related past work, Section 3 presents
recent modeling work on potentials and farfield properties, Section 4 provides validations
and discussions, and Section 5 summarizes the work with a few conclusions.

2. Past Work on Dilute Jet Flows

For a dilute jet expanding into a vacuum, the past work concentrates on two scenarios:
with or without charges. The scenario without charges is more fundamental. Both flows
are widely observed, e.g., plume impingement, in the astrophysical context, negatively
charged dust particles in cometary tails expanding into the interplanetary space [1,2], or the
expansion of the solar wind plasma into the wake region of inert objects, such as asteroids
or the moon [3]. Woronowicz [4] described validation effort to assess the viability of
applying a set of analytic point source transient free molecule equations to model behavior
ranger from molecular effusion to rocket plumes. For numerical simulations, particle
methods are widely used to simulate the second problem due to the complex physics. For
example, the direct simulation Monte Carlo (DSMC) method [5] is commonly adopted
to simulate neutral gas flows, and the Particle-In-Cell (PIC) method [6] for charged gas
flows. For example, Roy, Hastings and Gatsonis [7] proposed an asymmetric model of the
plume and back-flow contamination from an ion-thruster plume, and performed hybrid
PIC simulations to simulate charge-exchange efflux ions. We can only name a few.

Many past theoretical studies or modeling work focused on one-dimensional, un-
steady flows, most of them adopted hydrodynamics approaches, and most of them pro-
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vided flow and electric field results. Due to the complexities, it is challenging to obtain com-
plete solutions for two-dimensional and three-dimensional flows and the results are scarce.
In the past decade, thorough investigations (e.g., [8,9]) on the first problem with a gaskinetic
method were performed. The planar scenario is illustrated in Figure 1. A collisionless and
neutral gas fires from a planar exit with a semi-height H. At the exit, the gas has a number
density n0, a bulk velocity U0, and a temperature T0. The flow field can be represented either
with a Cartesian coordinate system (X, Y), or equivalently a polar coordinate system (r, α0).
Several key angles are defined in Figure 1: tan θ1 = (Y − H)/X, tan θ2 = (Y + H)/X,
tan θ3 = H/X and tan α0 = Y/X. A gaskinetic method was adopted, and the theoretical
flowfield formulas include density n(X, Y), velocity components U(X, Y) and V(X, Y),
and temperature T(X, Y). The flowfield properties at a specific point P(X, Y) are:

n(X, Y)
n0

=
e−S2

0

2π

∫ θ2

θ1

A(S0 cos θ)dθ, (1)

U(X,Y)√
2RT0

= e−S2
0

2π
n0

n(X,Y)

∫ θ2
θ1

B(S0 cos θ) cos θdθ, (2)

V(X,Y)√
2RT0

= e−S2
0

4S0
√

π
n0
n

(
t1et2

1 [1 + erf(t1)]− t2et2
2 [1 + erf(t2)]

)
= e−S2

0
2π

n0
n
∫ θ2

θ1
B(t) sin θdθ, (3)

T(X, Y)
T0

=
2
3

e−S2
0

π

n0

n(X, Y)

∫ θ2

θ1

C(S0 cos θ)dθ − U2(X, Y) + V2(X, Y)
3RT0

, (4)

where S0 = U0/
√

2RT0, t = S0 cos θ,

A(t) = 1 +
√

πtet2
[1 + erf(t)], B(t) = t +

√
π( 1

2 + t2)et2
[1 + erf(t)],

C(t) = 3
4 + t2

2 +
√

π
(

t + t3

2

)
et2

[1 + erf(t)].
(5)

There are two relations among them, dA(t)/dt = 2B(t) and dB(t)/dt = 4C(t) − A(t).
The above results can be also written in a polar coordinate system (r, α), which is more
convenient for farfield flow solutions.

Figure 1. Illustrations for the problem of a neutral and collision-less jet expanding into a vacuum.

3. Potential and Farfield Approximations

One example for the second problem is electro-sprays in a vacuum condition, e.g., for
space propulsion. The related flow stages for an electro-spray flow with ions and charged
droplets [10,11] include a liquid meniscus, a Taylor cone, a cone-jet connection, a jet, a jet
end (with a diameter of micro-meters) where ions evaporate into a vacuum, and form a
final spray with a size of centimeters or beyond. The jet end is critical but it is rather small
to be recognized in computational fluid simulations where usually the mesh size can not
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be micro-meters. As such, sub-grid modeling work on the jet end and plume flows must
be done to resolve this issue. A recent paper [12] has reported the development of such an
axisymmetric model, and the purpose of this paper is to complete the counterpart model
for a two-dimensional flow scenario. The fundamental assumptions are still the exit speeds
are very high, and the local potential changes are very mild.

Translational temperatures. For high speed gaseous neutral plume flows, the local
translational temperatures Tx(X, Y) and Ty(X, Y) along the stream and transverse direc-
tions can be quite different and their effects on charges can be quite different; hence, the
analytical expressions for Tx and Ty are studied first. Following the same vein to obtain
Equations (1)–(4), they are obtained and presented as follows:

Tx(X, Y)
T0

=
e−S2

0

π

n0

n(X, Y)

∫ θ2

θ1

D(S0 cos θ) cos2 θdθ − U2(X, Y)
RT0

, (6)

Ty(X, Y)
T0

=
e−S2

0

π

n0

n(X, Y)

∫ θ2

θ1

D(S0 cos θ) sin2 θdθ − V2(X, Y)
RT0

, (7)

D(t) = 1 + t2 +
√

π

(
3
2

t + t3
)

et2
[1 + erf(t)] = 2C(t)− 1

2
A(t). (8)

As shown, there are “cos2 θ” and “sin2 θ” in the integrands, and the corresponding
velocity components are different as well.

Potential and electric fields. It is well known that, plasma flows are described by the
kinetic equation for the velocity distribution function f for ions:

∂ f
∂t

+∇x f · −→v − (∇v f · ∇xφ)
e

M
= 0, (9)

where e is the unit charge, and M is the ion mass. By comparing the 2nd and the 3rd terms
in the above equation, under certain conditions, such as the velocity magnitude |v| is very
large or the bulk velocity U0 is very large, and the change in local potential φ is very mild,
then the 3rd term is small and can be neglected. As such, the plasma flows can be treated
as quasi-neutral gas flows, and it may be feasible to use the above gaskinetic approach to
study the plasma plume flows.

In this work, we introduce the widely used Boltzmann relations for electrons in a
quasi-neutral plasma flows:

φ(X, Y) = φre f +
kTre f

e
ln

n(X, Y)
nre f

, (10)

where subscript re f represents related reference values, k is the Boltzmann constant, and e
is the standard electron charge. With almost the same amount of electron and ion number
densities, ne ≈ ni, and an ion and an electron have the same amount of charge and the
same electric forces, a crude approximate condition Te ≈ Ti is obtained.

With the Boltzmann relation, the potential and temperature at the exit, φ0 and T0, are
chosen as the reference values in Equation (10), and the local density formula, Equation (1)
for n(X, Y), is used to compute the local potential φ(X, Y). This is a direct and probably
the simplest method, and the expression is:

φ(X, Y)
φre f

= 1 +
kTre f

eφre f

(
ln
∫ θ2

θ1

A(S0 cos θ)dθ − ln(2π)− S2
0

)
. (11)

From Equation (11), with the aid of the Leibniz integral rule [13], and chain rule for
derivations, the corresponding electric field components at point P(X, Y) can be derived as:

Ex = − ∂φ

∂X
=

kTre f

eX
∫ θ2

θ1
A(t)dθ

(
A(t2)

2
sin 2θ2 −

A(t1)

2
sin 2θ1 − 2S0

∫ θ2

θ1

B(t) sin2 θ cos θdθ

)
, (12)
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Ey = − ∂φ

∂Y
=

kTre f

eX
∫ θ2

θ1
A(t)dθ

(
A(t1) cos2 θ1 − A(t2) cos2 θ2 + 2S0

∫ θ2

θ1

B(t) sin θ cos2 θdθ

)
. (13)

Correspondingly, Er(r, α0) and Eα0(r, α0) can be derived as:

Er(r, α0) = Ex(X, Y) cos α0 + Ey(X, Y) sin α0,
Eα0(r, α0) = Ey(X, Y) cos α0 − Ex(X, Y) sin α0.

(14)

Far Field Properties. At a farfield point P(X, Y) in a Cartesian coordinate system, or
P(r0, α0) in a polar coordinate system, the distance to the coordinate origin, r0 =

√
X2 + Y2

is assumed to be much larger than the exit width, 2H, the angle is α0 = arctan(Y/X), and
the exit degenerates as one source point. The solid angle subtended by the point and the
two exit lips, ∆θ = θ2 − θ1, is quite small, and there are two following relations:

∆θ = atan
(2H)X

X2 + Y2 − H2 ≈
2H cos α0

r0
, erf(t2) ≈ erf(t1)−

2S0 sin θ1√
π

∆θe−t2
1 . (15)

With these relations, the simplified number density, velocity components, temperature
components, potentials, the electric field components, are derived from Equations (1)–(7).
The results are listed as follows, with 0 ≤ α0 < π/2:

n1(X, Y)
n0

≈ e−S2
0

2π

(2H) cos α0

r0
A(t0), (16)

U1(X, Y)√
2RT0

≈ B(t0)

A(t0)
cos α0,

V1(X, Y)√
2RT0

≈ B(t0)

A(t0)
sin α0, (17)

T1(X,Y)
T0

≈ 4
3

C(t0)
A(t0)

− 2
3

B2(t0)
A2(t0)

, (18)

T1x
T0
≈ 2

A(t0)D(t0)− B2(t0)

A2(t0)
cos2 α0,

T1y

T0
≈ 2

A(t0)D(t0)− B2(t0)

A2(t0)
sin2 α0, (19)

where A, B, C and D are defined by Equations (5) and (8). They are not related with r0, but
they are functions of t0 = S0 cos α0.

The total current within the angle smaller than α0 is computed by Equations (16)
and (17):

J(r0, S0, α0)

en0r0
√

2RT0
≈ e−S2

0

π

H
r0

∫ α0

0
B(S0 cos θ) cos θdθ. (20)

This formula indicates at farfield, the current within a certain angle α0 is constant.
The potential field is derived from Equation (16) and the Boltzmann relation:

φ1(X, Y)
φre f

≈ 1 +
kTre f

eφre f

(
ln(A(S0 cos α0))− ln(2π)− S2

0 + ln
2H cos α0

r0

)
. (21)

The electric field components in a polar or a Cartesian coordinate are:

Er0,1 ≈ kTre f
er0

, Eα0,1 ≈
kTre f
er0

(
1 + 2t0

B(t0)
A(t0)

)
tan α0,

Ex ≈ kTre f
er0

(
1− tan2α0 − 2t0tan2α0

B(t0)
A(t0)

)
cos α0, Ey ≈

kTre f
er0

(
2 + 2t0

B(t0)
A(t0)

)
sin α0.

(22)

Eα and Ex have singular values at α0 = π/2, because in this model, no particle can
move upwards along that line. Hence, the density along α0 = π/2 is zero, resulting in a
singularity for the potential due to the log function. This gaskinetic model shall be applied
within a smaller angle range, for example, α0 ≤ 80◦.
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Centerline Properties. With the relations, that Y = 0, θ2 = −θ1 = θ3, the correspond-
ing results are:

n2(X, 0)
n0

=
e−S2

0

πG(θ3)
, (23)

U2(X,0)√
2RT0

= 1
G(θ3)

∫ θ3
0 B(t) cos θdθ, (24)

T2(X, 0)
T0

=
4

3G(θ3)

∫ θ3

0
C(t)dθ − U2(X, 0)

3RT0
, (25)

Tx,2(X, 0)
T0

=
2

G(θ3)

∫ θ3

0
D(t) cos2 θdθ −U2(X, 0)/(RT0), (26)

Ty,2(X, 0)
T0

=
2

G(θ3)

∫ θ3

0
D(t) sin2 θdθ, (27)

φ2(X, 0) = φre f (X, 0) +
kTre f

e

(
lnG(θ3)− S2

0 − lnπ
)

, (28)

Ex,2(X, 0) =
kTre f

eXG(θ3)

(
sin θ3 cos θ3 A(S0 cos θ3)− S0

∫ θ3

0
B(t) sin2 θ cos θdθ

)
, (29)

where G(θ3) =
∫ θ3

0 A(S0 cos θ)dθ. Different from most past work by other investigators,
the above results are relatively complex, but they are complete and compact. Crucial
parameters, S0 and angles, are clearly included. They are obtained directly from the
generalized accurate solutions.

4. Discussions and Farfield Property Validations

Figure 2a compares the density expressions, Equations (1) and (16), within an angle
range 0 ≤ α0 ≤ 90◦. Because Equation (16) includes a factor of (2H)/r0, it is more
convenient to plot and compare n1

n0

r0
2H . The exit speed ratios are set as S0 = 0.5 and

S0 = 2.0, the distance ratios are chosen as r0/(2H) = 10 and 100. The two curves in this
figure are farfield approximations, described by Equation (16), and the symbols represent
the exact solutions, described by Equation (1). As shown, results from the exact and
simplified far field approximations are identical. With a higher exit speed ratio, S0 = 2.0,
the jet core further extends along the stream direction.

Figures 2b and 3a present normalized U- and V-velocity components, with the an-
alytical expressions (Equations (2) and (3)) and farfield simplifications (Equation (17)).
It is also evident that at large angles, the exact and farfield approximations have larger
discrepancies. The real situation is not so severe because the density at a large α0 is small,
and the related V- momentum flux at a large α0 is quite small. Equation (17) indicates the
velocity components are closely related, and there is a relation, U(X, Y)/V(X, Y) = tan α0.
The exit is a point source, and particles from the exit can be considered shooting outwards
without deflections.
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Figure 2. (a) Normalized farfield density profiles, n1(X,Y)
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)
; (b) Normalized farfield U-velocity component pro-

files, U1(X,Y)√
2RT0

.
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Figure 3. (a) Normalized farfield V-velocity component profiles, V1(X,Y)√
2RT0

; (b) Normalized farfield temperature pro-

files, T1(X,Y)
T0

.

Figures 3b and 4a,b compare T(X, Y), Tx(X, Y) and Ty(X, Y), predicted by Equa-
tions (4), (6), (7), (18) and (19). Within the jet core, the agreements among the analytical
and the farfield approximations are satisfying, and with a larger angle α0, the discrepancy
increases. The largest discrepancy in T is due to the related Ty which further traces back
to the V-velocity component. However, for high speed plumes, for many situations, the
plume core can be defined as a small region [14] within α0 ≤ 30◦. As such, it is proper to
utilize these temperature expressions to evaluate local temperature fields.
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Figure 4. (a) Normalized farfield temperature profiles, Tx(X,Y)
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; (b) Normalized farfield temperature profiles, Ty(X,Y)
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.

Figure 5a shows normalized farfield number density flux nVr at a constant radius
r0/(2H) = 10. The profiles are similar to those for density and but this property is more
helpful. In general, the profiles are steeper at the centerline because the centerline velocity
is much larger.
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Figure 5. (a) Density flux profiles, r0/(2H) = 10; (b) Normalized electric field component, er0Ex/(kT0), at different angles.

Figure 5b shows the normalized exact and farfield electric field component along the
X-direction, at locations r0/(2H) = 10 and 100, and S0 = 0.5 and 2.0, correspondingly. The
curves are computed with Equations (12) and (22). For the exact solutions and specific S0
value, the solutions for r0/(2H) = 10 and 100 coincident. There are appreciable difference
between the exact and farfield approximations, and the deviations depend on the S0 values.
However, there is no doubt that they share the same trend.
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Figure 6a shows farfield electric field component along the Y-direction, at locations
r0/(2H) = 10 and 100, and S0 = 0.5 and 2.0, correspondingly. The curves are com-
puted with Equations (13) and (22). Similar patterns to the Ex direction results, about the
deviations and the same trends are evident.
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Figure 6. (a) Normalized electric field component, er0Ey/(kT0), at different angles; (b) Normalized electric field component,
er0Er/(kT0), at different angles.

Figure 6b presents the normalized farfield Er(r, α0) variations. It includes six curves
with different exit speed ratios S0 = 0.5 and 2.0, r0 = 0.5 and 2.0, Equations (14) and (22)
are used for computation. As shown, the variations are very small, close to the unity as they
shall be. As shown, at a location relatively closer to the exit, r0/(2H) = 10, the S0 = 0.5
and S0 = 2.0 curves are slightly different from the unit value of 1.0. At a place relatively far
away from the exit, r0/(2H) = 100 and farfield, the values are unit as described Figure 6a.

Equations (16)–(22) can be used to quickly estimate the farfield properties, and the
crucial factors are the specific speed ratio, S0, and the geometry locations. A calculator
may be sufficient to compute a farfield property, and there is no need of a particle simu-
lation. However, it shall be kept in mind that those farfield simplified solutions are the
approximations to the exact solutions—certain deviations may exit.

The results in this work can conveniently explain many experimental measurements
as well. More accurate analysis is needed in the future to better explain the plasma plume
flow results because the current work is for jet from a planar slit or a crack, while the
plasma plume flows in space are axisymmetric from a round exit.

In the end, we want to explain the relations between this paper and another recently
published paper [12]. Both focus on highly dilute slightly charged jet out of an exit; this
paper is scenario from a planar exit, and the other is the scenario from a planar exit. The
latter [12] includes more details and can aid readers understand the work. For highly dilute
neutral gaseous jets out of an exit, there are another two past papers [8,9] which can help
understand the work presented in this work—the first one is from a planar exit, and the
other is from a round exit.

5. Conclusions

The work concentrated on the electric fields related with highly rarefied weakly
ionized gas. The work is based on collisionless neutral gaseous jet and the Boltzmann
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relation. The analytical solutions and approximate expressions at farfield (i.e., large r/(2H))
are derived and are compared.

The simplified far field solutions illustrate insights which is not evident in the corre-
sponding exact solutions. For example, Equation (17) indicates at farfield the streamlines
are straight, and the two components are constant; however, the corresponding exact
solutions, Equations (2) and (3), can not offer such information.

Evidently, this new model offers a full set of exact solutions to the flow and electric
fields in front of a nozzle, we shall keep in mind that they are based on neutral gas solutions,
and the simplest potential relation, i.e., the Boltzmann relation is adopted to aid the study.
This model is crude; however, thorough validations can be performed in a systematic
manner in the future.
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