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Abstract: The present paper reports on an analytical and numerical study of combined Soret and
Dufour effects on thermosolutal convection in a horizontal porous cavity saturated with an electrically
conducting binary fluid under a magnetic field. The horizontal walls of the system are subject to
vertical uniform fluxes of heat and mass, whereas the vertical walls are assumed to be adiabatic
and impermeable. The main governing parameters of the problem are the Rayleigh, the Hartmann,
the Soret, the Dufour and the Lewis numbers, the buoyancy ratio, the enclosure aspect ratio, and the
normalized porosity of the porous medium. An asymptotic parallel flow approximation is applied
to determine the onset of subcritical nonlinear convection. In addition, a linear stability analysis is
performed to predict explicitly the thresholds for the onset of stationary, overstable and oscillatory
convection, and the Hopf bifurcation as functions of the governing parameters. The combined effect
of a magnetic field, Soret and Dufour parameters have a noticeable influence on the intensity of the
convective flow, the heat and mass transfer rates, and the thresholds of linear convection. It is found
that the imposition of a magnetic field delays the onset of convection and its intensification can lead
to the total suppression of the convective currents. The heat transfer rate increases with the Dufour
number and decreases with the Soret number and vice versa for the mass transfer rate.

Keywords: thermosolutal convection; porous cavity; Soret; Dufour; magnetic field; Hopf bifurcation

1. Introduction

The problem of thermosolutal natural convection in enclosures filled with saturated
porous media with or without the presence of a magnetic field had been the subject of
numerous recent and past studies. The interest rose from the occurrence of the phenomenon
in many engineering applications such as geothermal energy, diffusion of moisture in
fibrous insulations, food processing, drying processes, spread of pollutants in soil, solar
ponds, crystal growth in fluids, and metal casting [1–5].

Thermosolutal natural convection was studied widely in square or rectangular cavities
at different thermal and solutal boundary conditions as reported in the literature [6–15],
where the authors examined numerically and performed scale analyses of the effect of
the permeability ratio and other governing parameters on the flow structure, isotherms,
isoconcentrations, and on heat and mass transfer rates in two- and three-dimensional
double diffusive convection generated by combined thermal and solutal gradients in a
bi-layered porous enclosures. The authors showed that the permeability of the two porous
layers and the variation of the ratios of thermal conductivities and mass diffusivities had
a significant influence on the double diffusive convection, the flow structure, and on
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the heat and mass transfer rates. The onset of double-diffusive convection in a shallow
enclosure subject to vertical gradients of heat and solute was investigated analytically and
numerically by Mamou and Vasseur [16]. On the basis of the parallel flow approximation,
the onset of convection from the rest state was subcritical for opposing flow when the
Lewis number was greater than unity. Multiple solutions and travelling waves were found
to exist. Kalla et al. [17] presented analytical and numerical studies of double-diffusive
natural convection in a rectangular enclosure filled with fluid or porous medium for both
aiding and opposing flow cases. The authors demonstrated the existence of multiple
convective solutions for a wide range of the governing parameters. A stability analysis of
double-diffusion convection in a horizontal porous enclosure subject to different thermal
and solutal boundary conditions was performed by Mamou [18]. It was found that an
increase in the porosity of the porous media delayed the appearance of oscillatory flows.
Rebhi et al. [19,20] recently carried out analytical and numerical studies of convective flows
induced in vertical and horizontal porous cavities filled with a binary mixture using the
Dupuit–Darcy model. Studying the linear stability of the parallel flow approximation,
the authors predicted explicitly and implicitly the onset of convective motion and the
triggering point of Hopf bifurcation characterizing the transition from convective steady
to oscillatory states. The form drag was found to have a significant influence on all the
critical conditions, and on the heat and mass transfer rates. In addition, the authors
demonstrated numerically that multiple solutions were possible for a given set of the
governing parameters.

Changhao and Payne [21] presented a mathematical study on the thermosolutal
convection in a porous medium where the Darcy model was employed. The authors
established a continuous dependence of the flow solution on the Soret effect. Theoretical
and numerical analysis of Soret-driven convection in a horizontal porous layer saturated by
an n-component mixture was investigated by Mutshler and Mojtabi [22]. In the first part,
an analytical and numerical study of the onset of Soret driven convection was presented.
The study was based on the classical Darcy–Boussinesq equations, which admitted a
mechanical solution associated with the pure double-diffusive regime. In the second part,
the analytical solution for the unicellular flow was obtained, and the separation was
expressed in terms of the Lewis number, the separation ratio, the cross-diffusion coefficient
and the Rayleigh number. Benano-Molly et al. [23] investigated the effect of Soret coefficient
within a rectangular porous medium saturated by a binary fluid mixture when the thermal
and solutal buoyancy forces were opposing each other. It was shown that, when the
solutal buoyancy force ratio was negligible, the theory represented well the solute behavior.
Mansour et al. [24] studied the Soret effect on double diffusive convection and on heat and
mass transfer rates in a square cavity. The heat transfer rate was found to be significantly
affected by the Soret effect.

Furthermore, Joly et al. [25] presented an analytical and numerical study of the influ-
ence of the Soret effect on the onset of convection in a vertical porous cavity saturated with
a binary mixture. The vertical walls were subjected to uniform heat fluxes. The Brinkman-
extended Darcy model was used to solve the governing equations. The results indicated
that the critical Rayleigh number depended strongly upon of the control parameters such
as the aspect ratio of the cavity, the Darcy and the Lewis numbers. Gaikwad et al. [26] made
an analysis of thermosolutal convection in a horizontal anisotropic saturated porous layer
with Soret effect. The heat and mass transfer rates increased with the anisotropy parameters
and the Lewis number; in addition, the heat transfer increased with the negative Soret
parameter while it decreased with the positive one. A reverse trend was found for the mass
transfer rate. Malashetty et al. [27] presented a numerical investigation of thermosolutal
convection in a porous layer saturated by a couple–stress fluid with Soret effect. Linear
and weak nonlinear stability analyses were performed. The heat and mass transfer rates
decreased with increasing the Taylor number and the couple–stress parameter, while both
increased with increasing the solute Rayleigh number. The heat transfer rate decreased
with increasing the Lewis number while the mass transfer rate increased significantly.



Fluids 2021, 6, 243 3 of 27

In addition, Mojtabi et al. [28] carried out an analytical and numerical analysis of
the species separation in a parallelepipedic cell filled by a binary mixture. Constant
velocity was imposed on the top and/or the bottom plate of the cavity. The fixed velocity
was obtained from the superposition of the flow generated by the velocity of the wall
under weightless condition and thermoconvective flow under gravity only. 2D and 3D
direct numerical simulations were performed using a finite difference method in order to
corroborate the analytical results. The authors showed that the effective species separation
admitted a partial optimum as a function of the velocity ratio of the moving walls and the
wall velocity. The aspect ratio in the y-direction had an effect on the species separation.
The same problem was considered by Mojtabi [29] taking into account the possibility of
greatly improving the species separation of a binary mixture in weightlessness by using a
rectangular cavity with opposite tall walls moving at equal but opposite optimal velocities.
The authors observed that, for a fixed temperature difference, the species separation was
optimal for an optimum thickness. The species separation decreased sharply when the
thickness decreased. For mixtures with a negative thermo-diffusion coefficient, the heaviest
component migrated towards the upper part of the column and the lightest one toward
the lower part. The loss of stability of the configuration led to a brutal homogeneity of the
binary solution.

Tai and Char [30] analyzed the Soret and Dufour effects on free convective flow
of non-Newtonian fluids across a porous medium with thermal radiation. The results
indicated that, for aiding flows, the local Nusselt number increased with increasing the
power–law index and the Soret number or decreased with the radiation parameter and the
Dufour number. Er-Raki et al. [31] analyzed the effect of the Soret effect in a porous cavity.
The results showed the significant effect of the Soret parameter on the vertical boundary
layer thickness for aiding and opposing flows (N < 0 and N > 0), the boundary layer
thickness increased when the Soret parameters increased. Lakshmi et al. [32] investigated
the effect of Soret and Dufour diffusion on natural convection in a saturated porous
medium. The results indicated that the Nusselt number increased linearly with the increase
of Dufour parameter for aiding buoyancy. However, it decreased nonlinearly with the
Lewis number. In addition, it increased when the Soret parameter increased, and the
Sherwood number increased nonlinearly with increasing Lewis number and decreased
linearly with increasing Soret and Dufour parameters. Tsai and Huang [33] discussed
numerically the Soret and Dufour effects on natural convection flow over a vertical plate
with a power-low heat flux embedded within a porous media. Partha et al. [34] analyzed
the effects of Soret and Dufour on thermosolutal convection in a non-Darcy electrically
conducting fluid saturated porous medium for both aiding and opposing buoyancy forces.
It was observed that the Soret and Dufour effects influenced strongly the heat and mass
transfer rates. The magnetic field parameter reduced the heat and mass transfer coefficients.

Teamah [35] performed a numerical study of double-diffusive convective flow in a
rectangular enclosure. The vertical walls of the enclosure were subject to constant tempera-
tures and concentration and a uniform horizontal magnetic field, whereas the upper and
lower surfaces were insulated and impermeable. The results showed that the heat and
mass transfer rates and the flow characteristics within the enclosure depended strongly
on the strength of the magnetic field and on the heat generation or absorption effects.
In addition, the presence of a heat source or sink slightly reduced the average Sherwood
number. Maatki et al. [36] performed a numerical study of double diffusive convection in a
cubic enclosure filled with a binary mixture subject to a magnetic field. The results were
presented in terms of flow structures, temperature and concentration distributions, and the
average Nusselt and Sherwood numbers. The results of this investigation indicated that
increasing the intensity of the magnetic field caused a monotonic reduction of intensities
of the three-dimensional main transverse flows when the flow was thermally dominated,
but there was a significant intensification of three-dimensional flow with a multi-cell
structure of secondary flow when the flow was solutably dominated. Costa et al. [37] in-
vestigated numerically a natural convection in square porous enclosures under a magnetic



Fluids 2021, 6, 243 4 of 27

field. The Darcy flow model was used. The results were presented and analyzed in terms
of streamlines and isotherms. It was shown that the effect of the induced magnetic field
resulted in a reduction of the convective flow and the heat transfer rates inside the cavity.
Recently, a more complete asymptotic and numerical investigation of double-diffusive con-
vection in the presence of a magnetic field was performed by Rebhi et al. [38,39]. The study
was generalized using Neumann and Dirichlet boundary condition types for temperature
and solute concentrations, and various convective modes were identified.

In most if not all of the past studies on thermosolutal convection in porous enclosures,
based on the above literature survey, the Soret and Dufour effects under the influence of a
magnetic field on the unsteady double diffusive natural convection and the determination
of the thresholds for the onset of subcritical, oscillatory, and stationary convections have
not been addressed yet. Therefore, the present investigation focuses on the examination
of the combined effects of Soret and Dufour with the presence of a magnetic field on the
unsteady double diffusive natural convection, and on the structure and intensity of the
convective flow, and on the heat and mass transfer characteristics inside a horizontal rect-
angular enclosure saturated with an electrically conducting binary mixture. The numerical
confirmation of the stable analytical results is also presented. The critical Rayleigh num-
ber characterizing the onset of subcritical convection Rsub

TC is determined analytically us-
ing the parallel flow approximation. The linear stability analysis is also conducted to
predict numerically the thresholds for the onset of supercritical, Rsup

TC , overstable, Rover
TC ,

and oscillatory, Rosc
TC, convection for a wide range of the governing parameters. In addition,

the linear stability of the predicted convective state is performed to predict the threshold
of Hopf’s bifurcation, RHop f

TC , which marks the transition from steady convective flow to
oscillatory behavior. Within the present analysis, a whole picture is drawn about various
convection modes from rest state to unsteady convection modes within their delineated
regions of existence.

2. Geometry and Governing Equation

The physical problem considered in the present work consists of a horizontal saturated
porous layer as sketched in Figure 1. The layer has an aspect ratio A = L′/H′, where H′
is the height and L′ is the width. Thermo-diffusion and Dufour effects are considered.
The porous layer is considered as isotropic and homogeneous, filled with an electrically

conducting binary fluid mixture. A magnetic field with uniform strength
→
B
′
0 is applied in

the vertical direction. All the boundaries are assumed to be hydrodynamically impermeable.
No external electric field is assumed to exist, and the Hall effect of magneto-hydrodynamics
is supposed to be negligible. The magnetic Reynolds number is supposed to be very small
so that the induced magnetic field is negligible in front of the applied magnetic field. Both
the viscous dissipation and inertial terms are assumed to be negligible. The convective
flow in the enclosure is assumed to be laminar, two-dimensional, incompressible and
Newtonian. The mixture physical properties are assumed independent of temperature and
solute except the density in the buoyancy term, which is supposed to vary according to the
Boussinesq approximation. Thus, the density variation with temperature and concentration
is described by the linearized state equation, ρ = ρ0[1− βT(T′ − T0) + βS(S′ − S0.)], where
ρ0 is the fluid mixture density at temperature T′ = T0 and mass fraction S′ = S0, and βT
and βS are the thermal and concentration expansion coefficients, respectively.
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Figure 1. The physical model and coordinate system.

According to Gray and Giorgini [40], the Boussinesq approximation was linearly de-
veloped with the assumption of small variation in the fluid thermophysical properties over
a valid range of temperature, concentration and pressure. The application of the approxi-
mation for a given fluid with a reasonable accuracy is valid only within a predetermined
range of temperature, concentration and pressure variation.

The equations relating the fluxes of heat, q′, and matter, j′ST , to the thermal and solute
gradients within the binary fluid mixture are given respectively by q′ = −k∇T′ − DTS∇S′

and j′ST = −D∇S′ − DST∇T′, where k and D are the thermal conductivity and the mass
diffusivity of the saturated porous medium, respectively. The properties DTS and DST are
respectively the Dufour and the Soret diffusion coefficients.

Assuming a well packed porous medium, so that the Brinkman and form drag effects
are negligible, the flow is governed by the Darcy law and the averaged energy and species
convection-diffusion equations, which are stated as follows:

∂u′

∂x′
+

∂v′

∂y′
= 0 (1)

µ

K

→
V
′
= ∇p′ + ρ

→
g +

→
J
′
×
→
B
′
0 (2)

σ
∂T′

∂t′
+
→
V
′
· ∇T′ = α∇2T′ + DTS∇2S′ (3)

φ
∂S′

∂t′
+
→
V
′
· ∇S′ = D∇2S′ + DST∇2T′ (4)

→
J
′
= κ(

→
E
′
+
→
V
′
×
→
B
′
0) , ∇ ·

→
J
′
= 0 (5)

where
→
V
′

is the Darcy velocity vector,
→
g is the gravitational acceleration vector, µ is the fluid

dynamic viscosity, p′ is the hydrodynamics pressure, K is the porous medium permeability,

φ is the porosity of the porous medium,
→
J
′

is the electric current density, κ is the electrical

conductivity,
→
E
′

is the electrical field magnitude, and σ = (ρC)p/(ρC) f is the saturated
porous medium to fluid heat capacity ratio, with (ρC) f and (ρC)p being the heat capacities
of the fluid and the saturated porous medium, respectively, and α is the thermal diffusivity
of the fluid mixture.

The dimensionless form of the above equations is worked out using the following
dimensionless variables:
(x, y) = (x′, y′)/H′, (u, v) = (u′, v′)/U∗, t = t′α/H′2, P = P′/P∗, Ψ = Ψ′/α,
T = (T′ − T0)/∆T∗ and S = (S′ − S0)/∆S∗,
where U∗, P∗, ∆T∗, and ∆S∗ are the characteristic velocity, pressure, temperature,
and solutal scales, defined as:
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U∗ =
α

H′
, P∗ =

Pr
Da

ρ0U∗2, ∆T∗ =
q′H′

k
and ∆S∗ =

j′ST H′

D
,

where Da is the Darcy number and Pr is the Prandtl number.
To satisfy the continuity equation, a stream function Ψ is defined as function of the

fluid velocity components such that u = ∂Ψ/∂y and v = −∂Ψ/∂x.
The dimensionless governing equations for the problem under consideration are

obtained as:

∇2Ψ + Ha2 ∂2Ψ
∂y2 = −RT

∂

∂x
(T + ϕS) (6)

∂T
∂t

+
∂Ψ
∂y

∂T
∂x
− ∂Ψ

∂x
∂T
∂y

= ∇2(T + DuS) (7)

ε
∂S
∂t

+
∂Ψ
∂y

∂S
∂x
− ∂Ψ

∂x
∂S
∂y

= Le−1∇2(S + SrT) (8)

The hydrodynamic boundary conditions for the Darcy model are given by:

x = ±A
2

, u = Ψ = 0 and y = ±1
2

, v = Ψ = 0 (9)

The thermal and solutal boundary conditions are given by:

y = ±1
2

,
∂T
∂y

+ Du
∂S
∂y

= −1,
∂S
∂y

+ Sr
∂T
∂y

= −1 (10)

x = ±A
2

,
∂T
∂x

=
∂S
∂x

= 0 (11)

for the impermeable and adiabatic end walls.
From Equations (6)–(8), eight controlling parameters emerged from the dimensionless

formation; these are:

Ha = B0

√
κK
µ

, RT =
ρgβT∆T∗H′3

αµ
, ϕ =

βS
βT

∆S∗

∆T∗
, ε =

φ

σ
, Le =

α

D
, A =

L′

H′
,

Du =
DST∆S∗

α∆T∗
and Sr =

DTS∆T∗

D∆S∗
which are, respectively, the Hartmann number, Rayleigh number, buoyancy ratio, normal-
ized porosity, Lewis number, aspect ratio, and Dufour and Soret parameters.

The heat and mass transfer rates at any station, x, are expressed in terms of the Nusselt,
Nu, and Sherwood, Sh, numbers defined as:

Nu(x)−1 = ∆T + Du∆S =
(

T(x,−1/2) − T(x,+1/2)

)
+ Du

(
S(x,−1/2) − S(x,+1/2)

)
(12)

Sh(x)−1 = ∆S + Sr∆T =
(

S(x,−1/2) − S(x,+1/2)

)
+ Sr

(
T(x,−1/2) − T(x,+1/2)

)
(13)

The average Nusselt and Sherwood numbers are computed using the following integral:

Num = A−1
∫ A/2

−A/2
Nu(x)dx (14)

Shm = A−1
∫ A/2

−A/2
Sh(x)dx (15)

3. Numerical Solutions

The full governing equations associated with their respective boundary conditions
are solved numerically using the finite difference method. The equations are discretized
using a second-order central finite difference scheme in time and space on a uniform
grid. The discretized governing equations are converted into a system of algebraic equa-
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tions. The energy and species equations, Equations (7) and (8), are solved iteratively in a
time-accurate mode using the alternating-direction implicit method (A.D.I). The system
of algebraic equations for each variable is solved by means of the Thomas algorithm.
The momentum equation, Equation (6), is solved using the well-known S.O.R. (successive-
over-relaxation method). At each new time step, the S.O.R iterative procedure is repeated
until the convergence criterion

∣∣∣∑m
i,j Ψk+1

i,j −∑m
i,j Ψk

i,j

∣∣∣/∣∣∣∑m
i,j Ψk+1

i,j

∣∣∣ ≤ 10−6 is satisfied, where

Ψk
i,j is the stream function value at the node (i, j) at the iteration, kth. The results presented

in this study are obtained with a grid of 300 × 200, which is judged to be adequate after a
grid sensitivity study.

The numerical algorithm is tested for the classical natural convection problem in a
rectangular cavity. The grid sensitivity test is performed using a grid size ranging from
50 × 100 to 250 × 300, and the results are listed in Table 1 for a rectangular enclosure
heated and salted from below having an aspect ratio of A = 10. The numerical results
are computed for RT = 100, Le = 2, ϕ = −0.5, Sr = Du = 0.1 and Ha = 0. Compared
to the accurate analytical solution reported in the next section, the results indicated that,
for the refined grid, there is a relative difference of 0.02% for the stream function, which
is less than 0.05% for the heat transfer rate and nearly 0.11% for the mass transfer rate.
Thus, a grid size of 250 × 300 is found to be adequate to simulate accurately the convective
flow. The results obtained from the present method are also compared to those reported in
the literature as shown in Table 2 for A = 10, RT = 100 and Ha = 0.

Table 1. Grid sensitivity study for A = 10, RT = 100, Le = 2, ϕ = −0.5, Sr = Du = 0.1 and Ha = 0.

Nx×Ny
Numerical Solution Analytical

Solution50 × 100 100 × 150 150 × 200 200 × 250 250 × 300

Ψ0 3.0327 3.0285 3.0269 3.0262 3.0259 3.0255
Error (%) 1.66 0.10 0.04 0.03 0.02 Reference

Nu 3.1639 3.1496 3.1431 3.1403 3.1389 3.1371
Error (%) 0.85 0.62 0.19 0.10 0.05 Reference

Num 3.0230 3.0100 3.0042 3.0018 3.0007 . . .
Sh 4.4160 4.4106 4.4010 4.3954 4.3823 4.3834

Error (%) 0.64 0.52 0.30 0.22 0.11 Reference
Shm 4.2405 4.2346 4.2257 4.2206 4.2179 . . .

Table 2. Comparison of Ψ0, Nu, Num, Sh and Shm with some previous studies numerical results for A = 10, RT = 100 and
Ha = 0.

Le = 10, ϕ = −0.24 and Sr = Du = 0 Le = 2, ϕ = 1, Sr = −0.1 and Du = 0.1

Mamou [18] Present Study Present study versus
Mamou [18] Attia et al. [41] Present Study Present Study versus

Attia et al. [41]

Ψ0 3.685 3.652 0.89% 4.6986 4.6987 0.002%

Nu 3.734 3.716 0.48 4.2454 4.2418 0.084

Num 3.597 3.571 0.72 . . . 4.1142 . . .

Num 6.029 6.031 0.03 5.7574 5.7652 0.1353

Shm 6.726 6.728 0.05 . . . 5.7314 . . .

Numerical results are presented in Figure 2a–f for different values of the governing
parameters. Streamlines, isotherms, and isoconcentrations are presented in the figure
from top to bottom. The results indicate, independently of the governing parameters
and for a shallow cavity, A >> 1, the flow in the central part of the enclosure is parallel,
while the temperature and concentration are linearly stratified in the horizontal direction.
The analytical solution, developed in Section 4, relies on these numerical observations.
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 Mamou [18] Present Study 
Present study 

versus Mamou 
[18] 

Attia et al. [41] Present Study 
Present Study 
versus Attia et 

al. [41] 

0Ψ  3.685 3.652 0.89% 4.6986 4.6987 0.002% 
Nu  3.734 3.716 0.48 4.2454 4.2418 0.084 

mNu  3.597 3.571 0.72 … 4.1142 … 

mNu  6.029 6.031 0.03 5.7574 5.7652 0.1353 

mSh  6.726 6.728 0.05 … 5.7314 … 

Numerical results are presented in Figure 2a–f for different values of the governing 
parameters. Streamlines, isotherms, and isoconcentrations are presented in the figure 
from top to bottom. The results indicate, independently of the governing parameters and 
for a shallow cavity, 1A >> , the flow in the central part of the enclosure is parallel, while 
the temperature and concentration are linearly stratified in the horizontal direction. The 
analytical solution, developed in Section 4, relies on these numerical observations. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Contours of stream (top), temperature (middle) and concentration (bottom) for = 500TR , Le = 2 , = 0 .5φ -  
and =1ε : (a) = 0.6rS , = 0uD , Ha = 1 , 0Ψ = 5.249 , Nu = 4.569  and Sh = 4.412 , (b) = 0.6rS - , = 0uD , Ha = 1 , 

Figure 2. Contours of stream (top), temperature (middle) and concentration (bottom) for RT = 500, Le = 2, ϕ = −0.5
and ε = 1: (a) Sr = 0.6, Du = 0, Ha = 1, Ψ0 = 5.249, Nu = 4.569 and Sh = 4.412, (b) Sr = −0.6, Du = 0, Ha = 1,
Ψ0 = 5.127, Nu = 4.502 and Sh = 7.576, (c) Sr = 0, Du = 0.3, Ha = 1, Ψ0 = 5.127, Nu = 4.265 and Sh = 5.520, (d) Sr = 0,
Du = −0.3, Ha = 1, Ψ0 = 5.249, Nu = 4.827 and Sh = 5.560, (e) Sr = −0.3, Du = −0.3, Ha = 2, Ψ0 = 3.097, Nu = 3.620
and Sh = 6.619, (f) Sr = −0.3, Du = −0.3, Ha = 5, Ψ0 = 0.455, Nu = 1.188 and Sh = 1.676.

4. Analytical Solution

In this section, an analytical solution is obtained for a thin porous layer, which is
equivalent to a cavity with a large aspect ratio (A >> 1). In this case, even though the
Rayleigh–Bénard multi-cellular flow could be encountered, unicellular cell flow filling up
the entire cavity is possible and deemed to be stable even for a high Rayleigh number.
In this situation, under steady conditions and a bit away from the end walls, the streamlines
remain parallel to the horizontal walls. The flow pattern is assumed to be parallel in the
x-direction such that Ψ(x, y) ≈ Ψ(y). Therefore, the governing Equations (6)–(8) can be
considerably simplified under this assumption Ψ(x, y) ≈ Ψ(y), T(x, y) ≈ CTx + θT(y),
and S(x, y) ≈ CSx + θS(y), where CT and CS are respectively unknown constants of
temperature and concentration gradients in the x-direction.

Using these approximations, the governing Equations (6)–(8) are reduced to the
following set of ordinary differential equations:

(
1 + Ha2

)d2Ψ
dy2 = −RT(CT + ϕCS) (16)

d2θT

dy2 + Du
d2θS
dy2 = CT

dΨ
dy

(17)

d2θS
dy2 + Sr

d2θT

dy2 = CSLe
dΨ
dy

(18)
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The solution of Equation (16) satisfying the boundary conditions, Equations (9)–(11),
is given by:

Ψ(y) = Ψ0(1− 4y2) (19)

From Equation (19), the velocity field, u, derived from the stream function is given by
the following expression:

u(y) = −8 Ψ0 y (20)

where Ψ0 = RT(CT + ϕCS)/[8(1 + Ha2)] is the stream function value at the center of
the enclosure.

From Equations (17) and (18), the temperature and concentration profiles are obtained
as follows:

T(x, y) = CTx +
CT − CTLeDu

3(1− DuSr)
Ψ0

(
3y− 4y3

)
− aT y (21)

S(x, y) = CSx +
CSLe− CTSr

3(1− DuSr)
Ψ0

(
3y− 4y3

)
− aS y (22)

where the constants aT and aS are defined as:

aT =
1− Du

1− DuSr
and aS =

1− Sr

1− DuSr
(23)

where CT and CS are obtained by considering an arbitrary control volume as displayed
in Figure 1. The energy and solute balances, in this control volume, are performed to
find the constants CT and CS. The balances’ analysis yields a zero neat heat and solute
exchange across any vertical cross section of the porous layer; this is expressed by the
following integral:

1/2∫
−1/2

(
∂T
∂x

+ Du
∂S
∂x

)
dy +

1/2∫
−1/2

∂Ψ
∂y

Tdy = 0 (24)

1/2∫
−1/2

(
∂S
∂x

+ Sr
∂T
∂x

)
dy + Le

1/2∫
−1/2

∂Ψ
∂y

Sdy = 0 (25)

Substituting the temperature, concentration and velocity profiles into Equations (24)
and (25) and after performing the integration, it is readily found that the constant gradi-
ents of temperature and concentration along the x-direction, CT and CS, are respectively
expressed by:

CT =
8b2(aT − aSDuLe)Ψ0 + 4bLe2Ψ3

0

3
[
(2b + Ψ2

0)(2b + Le2Ψ2
0)− DuSr(2b− LeΨ2

0)
2
] (26)

CS =
8b2(aSLe− aTSr)Ψ0 + 4bLeΨ3

0

3
[
(2b + Ψ2

0)(2b + Le2Ψ2
0)− DuSr(2b− LeΨ2

0)
2
] (27)

Substituting the expressions of CT and CS, Equations (26) and (27), into the expression
of Ψ0, the following fourth-order polynomial equation is obtained:

Le2Ψ4
0 + 2b0aΨ2

0 + 4b2 −
4b2

0R0
Tc

1 + Ha2 = 0 (28)

where:
a = Le(Le + 2DuSr)− Le(Le + ϕ)RT/12 + 1
b = b0(1− DuSr) , b0 = 15/16 , R0

T = RT/12
c = DuSr(Le + ϕ)− (Le + 1)(Du ϕ + Sr) + ϕLe + 1

 (29)

The present analytical solution is assumed to be steady and nonlinear. Therefore,
it is possible to examine its existence within given governing parameters’ intervals. The only
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critical conditions that can be identified by the present analytical solution are the thresholds
of subcritical and supercritical convection, when they do exist. Supercritical convection
onset occurs at zero flow amplitude, Ψ0 = 0, thus the corresponding critical Rayleigh
number is obtained as:

Rsup
TC =

(1 + Ha2)(1− DuSr)Rsup

aT(1− ϕSr)− aSLe(Du − ϕ)
(30)

For an infinite horizontal layer, the constant Rsup is computed accurately and is given
by Rsup = 12. This result is independent of the type of thermal and solutal boundary
conditions imposed on the horizontal walls of the system.

Subcritical convection occurs usually at finite amplitude convection. The critical
Rayleigh number, Rsub

TC , marking the bifurcation point, is obtained by deriving Ψ0 in
Equation (29) with respect to RT and then performing the limit dΨ0/dRT → ∞ at the
saddle–node point. After some algebra, the critical Rayleigh number is obtained implicitly
as follows:

Rsub
TC =

(1 + Ha2)
[
Le2Ψ2

0C + b0Le(Le + 2DuSr) + b0

]
b0Le(Le + ϕ)

(31)

where Ψ0C is the critical stream function value located at the saddle-node point, which can
be computed from:

Ψ0C = ± 1
8Le2

[
−d1 +

√
d2

1 − 4Le2d2

]1/2
(32)

with:

d1 =
4b0Le

(Le + ϕ)
[1 + ϕLe− (Du + ϕSr)(Le + 1) + DuSr(Le + ϕ)]

d2 =
4b2

0
Le(Le + ϕ)

(1 + Le(Le + 2DuSr)[1 + ϕLe− (Du + ϕSr)(Le + 1)+

DuSr(Le + ϕ)
]
− 4b2

 (33)

The final two useful engineering parameters are the Nusselt and Sherwood numbers,
which express the heat and mass transfer rates through the system, and they are obtained
by substituting Equations (21) and (22) into (12) and (13) as follows:

Nu =
3

3− 2Ψ0CT
and Sh =

3
3− 2LeΨ0CS

(34)

The critical Rayleigh number expressions derived in Equations (30) and (31) are similar
to those reported by Attia et al. [41] expression for Ha = 0.

5. Stability Analysis

The stability of both motionless and convective states is now considered. The total
convective unsteady solution consists of a basic steady-state solution (Ψb, Tb, Sb) and an
infinitesimal dynamic perturbation (Ψp, Tp, Sp). The total solution is then expressed by the
following equations:

Ψ(x, y, t) = Ψb(x, y) + Ψp(x, y, t)
T(x, y, t) = Tb(x, y) + Tp(x, y, t)
S(x, y, t) = Sb(x, y) + Sp(x, y, t)

 (35)

In general, the basic solution, (Ψb, Tb, Sb), can represent the pure diffusive state
solution (Ψb= 0, Tb = −aTy, Sb = −aSy) or the steady-state convective solution
(Ψb(x, y) = Ψ(y), Tb(x, y) = CTx + θT(y) and Sb(x, y) = CSx + θS(y)) as predicted by
the parallel flow approximation. Thus, the stability of both basic solutions is studied to get
the whole picture of the convective system stability.
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In an infinite porous layer, the perturbation profiles (Ψp, Tp, Sp) in space and time can
be expressed as follows:

Ψp(x, y, t) = ψ0ept+ikxF(y)
Tp(x, y, t) = θ0ept+ikxG(y)
Sp(x, y, t) = φ0ept+ikx H(y)

 (36)

where p = pr + ipi is a complex number, where its real part, pr, expresses the growth
rate of the perturbation and the imaginary part, pi, expresses the circular frequency, k is
the wave number, and F(y), G(y) and H(y) are one-dimensional space eigenfunctions
describing the perturbation profiles Ψp, Tp, and Sp, where ψ0, θ0 and φ0 are unknown
infinitesimal amplitudes.

Substituting Equations (35) and (36) into Equations (6)–(8) and neglecting the second-
order nonlinear terms, the linearized stability equations are obtained as follows:

(1 + Ha2)D2 f − k2 f = −ikRT(g + h) (37)

pg + ikDΨbg− ikDTb f + CT D f = (D2 − k2)(g + Duh) (38)

εph + ikDΨbh− ikDSb f + CSD f = Le−1(D2 − k2)(h + Srg) (39)

where D = d/dy, f = ψ0F, g = θ0G and h = φ0H.
The boundary conditions for the perturbations are given by:

y = ±1
2

, f = 0, Dg = 0, Dh = 0 (40)

The above linear equations system, Equations (37)–(39), subject to boundary conditions
in Equation (40), is solved numerically using a finite element method based on the cubic
Hermite elements. The discretized linear equations are assembled into a global matrix
system, which is obtained as follows:

[
Kψ

]
−RT

[
Bψ

]
− RT ϕ

[
Bψ

]
[Bθ ] [Kθ ] Du[Lθ ][
Bφ

] Sr
Le
[
Lφ

] 1
Le
[
Kφ

]


f
g
h

 = p

 0 0 0
0 −[Mθ ] 0
0 0 −ε

[
Mφ

]


f
g
h

 (41)

where
[
Bψ

]
, [Bθ ],

[
Bφ

]
, [Mθ ],

[
Mφ

]
, [Kθ ],

[
Kφ

]
,
[
Kψ

]
, [Lθ ], and

[
Lφ

]
are square

matrixes of dimension m×m, where m = 2Ney + 1 (Ney is the number of elements in the
y-direction) is the number of degrees of freedom within the domain −1/2 ≤ y ≤ 1/2.
The vectors { f }, {g} and {h} are the stream function, temperature and solute eigenvectors
of dimension m. The associated elementary matrices are obtained as follows:

[
Kψ

]e
=

1∫
−1

(
(1 + Ha2)

2
∆y

∂Nj

∂η

∂Ni
∂η

+ k2 ∆y
2
NjNi

)
dη , [Mθ ]

e =
[
Mφ

]e
=

1∫
−1
NjNi

∆y
2

dη,

[
Bψ

]e
=

1∫
−1

kNjNi
∆y
2

dη , [Bθ ]
e =

1∫
−1

(
CT

∂Nj

∂η
− ik

(
−aT +

∂Tb
∂η

)
Nj

)
Nidη,

[
Bφ

]e
=

1∫
−1

(
CS

∂Nj

∂η
− ik

(
−aS +

∂Sb
∂η

)
Nj

)
Nidη,

[Kθ ]
e =

1∫
−1

(
∂Nj

∂η

∂Ni
∂η

2
∆y + k2 ∆y

2
NjNi + ik

∂Ψb
∂η
NjNi

)
dη,

[
Kφ

]e
=

1∫
−1

(
∂Nj

∂η

∂Ni
∂η

2
∆y

+ k2 ∆y
2
NjNi + ikLe

∂Ψb
∂η
NjNi

)
dη,

[Lθ ]
e =

[
Lφ

]e
=

1∫
−1

(
∂Nj

∂η

∂Ni
∂η

2
∆y + k2 ∆y

2
NjNi

)
dη



(42)
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where Ni is a function of η representing the cubic Hermite element test functions.
The EigPack double precision routines package for solving generalized eigenvalue prob-
lems of the form [A]{x} = λ[B]{x} are used to solve the above eigenvalue problem. A
similar numerical procedure, using the IMSL library, was used in the past by Mamou and
Vasseur [16].

5.1. Stability of the Rest State

The stability response to small perturbations imposed on the quiescent state, Ψb = 0,
Tb = −aTy and Sb = −aSy (Equations (6)–(8)) are now considered. The methodology for
obtaining the thresholds of various types of convective modes is described hereafter.
The eigenvalue problem, Equation (41), is valid for all governing parameter values.
To explicitly determine the thresholds of stationary and oscillatory convection, the Galerkin
method is the most suitable technique to use provided that the eigenvectors of a given
perturbation are determined accurately through the numerical analysis. The eigenvectors f ,
g, and h obtained from Equation (41) are used as the weighing functions. For the rest state
solution and using F, G and H as weight functions, the Galerkin integration of Equations
(37)–(39) leads to the following scalar linear equations:

ψ0(1 + Ha2)Kψ = RT(θ0 + φ0 ϕ)B (43)

pθ0Mθ + ψ0aTLθ = −(θ0 + φ0Du)Kθ (44)

pεφ0Mφ + ψ0aSLφ = −Le−1(φ0 + θ0Sr)Kφ (45)

where B,Mθ ,Mφ, Kθ , Kφ, Kψ, Lθ and Lφ are constants, which can be computed from the
following Galerkin integrals:

B =
1/2∫
−1/2

∂G
∂y Fdy, Kψ =

1/2∫
−1/2

(
∂F
∂y

)2
dy, Kθ =

1/2∫
−1/2

(
∂G
∂y

)2
dy, Kφ =

1/2∫
−1/2

(
∂H
∂y

)2
dy,

Lθ =
1/2∫
−1/2

∂F
∂x Gdy, Lφ =

1/2∫
−1/2

∂F
∂x Hdy,Mθ =

1/2∫
−1/2

G2dy,Mφ =
1/2∫
−1/2

H2dy

with: Kθ = Kφ = K, Lθ = Lφ = L andMθ =Mφ =M.
Substituting Equations (44) and (45) into Equation (43), we readily arrive at the

dispersion relationship, which is stated as follows:

(1 + Ha2)εLe p2 − γp1 p− γ2 p0 = 0 (46)

where
p1 = R0

TLe(aTε + aS ϕ)− (1 + Ha2)(εLe + 1)

p0 = R0
T [aT(1− ϕSr)− aS(Du − ϕ)]− (1 + Ha2)(1− DuSr)

R0
T =

RT
Rsup , Rsup =

KψK
BL , γ =

K
M

 (47)

Using the numerical analysis, the threshold of stationary convection is obtained when
the marginal stability occurs, and this corresponds to a zero growth rate (p = 0). The linear
global system, Equations (43)–(45), can be rearranged to yield the following eigenvalue
problem:

(E− λI)F = 0 (48)

where λ =
[
Kψ

]−1[Bψ

]
[K]−1[B] and λ =

1− DuSr

[aT(1− ϕSr)− aSLe(Du − ϕ)]

1
RT

.

In this way, Equation (48) yields m eigenvalues that are classified in ascending order as
λ1 ≤ λ2 . . . ≤ λm, where λm is the maximum eigenvalue, which represents the minimum
critical thermal Rayleigh number Rsup

TC = 1/λm for the onset of stationary convection, when
Rsup

TC is positive. The critical value Rsup
TC is referred to hereafter as the supercritical Rayleigh

number. The lowest eigenvalue, λ1, represents the highest critical thermal Rayleigh number,
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Rsup
TC = 1/λ1, when Rsup

TC is negative. Both numerical and Galerkin analyses yield a
threshold for the stationary convection, which can be expressed as:

Rsup
TC =

(1 + Ha2)(1− DuSr)Rsup

aT(1− ϕSr)− aSLe(Du − ϕ)
(49)

Furthermore, the threshold for the onset of oscillatory convection is obtained when the
real part of the eigenvalue, p = pr + ipi, becomes zero (pr = 0) but with a finite imaginary
part (pi 6= 0), i.e., p1 6= 0. Numerically, the overstable convection threshold can be obtained
for given values of the governing parameters. However, the Galerkin method can lead to
an explicit expression of the overstable critical Rayleigh number, Rover

TC , as a function of the
governing parameters as:

Rover
TC =

(1 + Ha2)(εLe + 1)Rsup

Le(aTε + aS ϕ)
(50)

The overstable regime is known to exist up to an upper limit of the Rayleigh num-
ber, Rosc

TC, where the oscillatory convective regime vanishes. The critical point where
the frequency vanishes is obtained from p2

1 + 4p0 = 0. The expression of Rosc
TC is then

developed as:

Rosc
TC

[
εLe(aSLe(Du − ϕ)− aT(1− ϕSr)) + 2Le(aTε + aS ϕ)(εLe + 1)±

√
Λ
]

Rsup

2Le(aTε + aS ϕ)2/(1 + Ha2)
(51)

where Λ = ε2Le2[aT(1− ϕSr)− aSLe(Du − ϕ)]2 − 4εLe2(aTε + aS ϕ)Λ0 and
Λ0 = (εLe + 1)[aT(1− ϕSr)− aSLe(Du − ϕ)] + Le(aTε + aS ϕ)(1− DuSr).

The above three thresholds are the essential parameters to determine the nature of the
linear stability convection, whether it is monotonic, oscillatory, or stationary.

5.2. Stability of the Convective State: Hopf Bifurcation

A stability analysis of the basic convective steady state predicted by the parallel flow
approximation is now investigated. At a higher Rayleigh number, the flow intensity be-
comes significant, and the transition to turbulent flows is a common occurrence. Before
reaching a fully turbulent flow, the transitional flows undergo a sequence of oscillatory
flow behavior starting from a well-organized oscillatory flow mode and then evolving
toward multi-frequencies’ oscillations, then to quasi-periodic flow and then to chaotic
flow. The first appearance of periodic oscillatory flows, known as Hopf bifurcation, occurs
at a threshold, RHop f

TC . The thresholds can be determined by running a stability analysis
of the steady state convective flow. Following the numerical stability analysis described
above, the Hopf bifurcation threshold, for a given wave number, is obtained when the real
part of the growth rate pr is nil, or there is a transition from negative to positive values.
The optimal value of the thresholds is obtained by optimization with respect to the pertur-
bation wave number, k.

Some results of the linear stability analysis for an infinite horizontal porous layer are
presented in Table 3. The table illustrates the influence of Soret and Dufour (Sr and Du)
effect and the Hartmann parameter, Ha, on the perturbation wavelength, AC = 2π/k, and
oscillation frequency, fr = pi/2π, at the onset of Hopf bifurcation, RHop f

TC . The results are
obtained for ε = 0.2. As shown in the table, the decrease of the Soret, Sr, and Dufour, Du,
parameters below, Sr = Du = 1, causes the onset of Hopf bifurcation, RHop f

TC , to decrease
significantly. It follows that the steady convective flow is destabilized earlier with the
decreasing of Sr and Du. The increase of the Ha parameter has a strong stabilizing effect
and induces a reduction in the wavelength and the oscillatory frequency at Du = Sr = 0.
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Table 3. Effects of the Soret, Sr, Dufour, Du, and the Hartmann, Ha, parameters on the threshold of
the Hopf bifurcation in an infinite horizontal layer for Le = 2, ϕ = −0.5 and ε = 0.2.

Ha=0, Du=0 Ha=0, Du=0 Du=0, Sr=0

Sr RHopf
TC

AC fr Du RHopf
TC

AC fr Ha RHopf
TC

AC fr

1.0 477.18 1.23 20.07 1.0 . . . . . . . . . 0.0 301.97 2.57 7.77
0.6 452.64 1.49 15.88 0.6 . . . . . . . . . 1.0 414.82 2.25 7.20
0.3 397.58 1.99 11.34 0.3 315.74 3.00 6.51 2.0 712.90 1.90 6.64
0.0 301.97 2.57 7.77 0.0 301.97 2.57 7.77 5.0 2615.07 1.53 5.97
−0.3 217.05 2.88 5.78 –0.3 282.38 2.16 9.12 10.0 9249.76 1.40 5.70
−0.6 153.32 3.08 4.32 –0.6 252.55 1.73 10.80 50.0 220,863.58 1.34 5.55
−1.0 . . . . . . . . . –1.0 208.85 1.40 12.48 100.0 882,124.38 1.35 5.55

6. Results and Discussion

In this paper, analytical and numerical studies have been investigated to examine the
combined Soret and Dufour effects, with the presence of a magnetic field, on the double
diffusive natural convection, the flow structure, and on the heat and mass transfer rates.
The numerical solutions are obtained for a buoyancy ratio ϕ = −0.5, an aspect ratio A = 10,
and Lewis number Le = 10. The other parameter ranges are: 8 ≤ RT ≤ 105, −1 ≤ Sr ≤ 1,
−1 ≤ Du ≤ 1 and 0 ≤ Ha ≤ 102.

Figure 3 displays a comparison between the numerical and the parallel flow solutions
for the stream function, Ψ, the horizontal velocity component, u, the temperature, T,
and concentration, S, profiles, respectively at the mid-width of the layer for RT = 500 and
different values of Hartmann number, Ha. The profiles show an anti-symmetric trend
with respect to the mid-horizontal plane of the enclosure. The parallel flow prediction
presented by solid lines, Equations (19)–(22), is seen to be in an excellent agreement with
the numerical solution of the full governing equations, which is depicted by empty circles,
thus demonstrating the validity of the parallel flow approximation. Figure 3a shows
that, when the Hartman number decreases, the flow intensity increases and therefore
strengthens the convective flow inside the cavity. A similar behavior is confirmed by the
vertical profile of the horizontal velocity component, u, as illustrated in Figure 3b. The
effect of the Hartmann number, Ha, on the temperature profile across the porous layer is
illustrated in Figure 3c. As anticipated, the temperature difference between the horizontal
walls decreases with decreasing Ha and causes a significant increase in the convective heat
transfer rate. The magnetic field effect on the concentration profile is depicted in Figure 3d,
and it looks similar to the effect of the magnetic field observed on the temperature profile.

For an infinite aspect ratio layer, Figures 4 and 5 show the dependence of the stream
function at the center, Ψ0, Nusselt number, Nu, and Sherwood number, Sh, on RT , Sr
and Du at Ha = 1. A good agreement is observed between the parallel flow approxi-
mation presented by solid lines and the numerical solution displayed by solid symbols.
The solid lines correspond to stable branches and the dot-dot-dashed lines to unstable ones,
which could not be sustained numerically. It is noticed that the transformation Ψ→ −Ψ
does not alter the governing equations and the boundary conditions. For this reason,
the results are presented only in the first and fourth quadrant, while those in the second and
third quadrant being symmetrical are omitted. The results show that, for Sr = 1(Du = −1)
and RT > 530(RT > 260), the strength of convection becomes quite large, giving rise
eventually to oscillating flow. From a physical point of view, the transition to oscillatory or
chaotic flows is unavoidable for large values of the Rayleigh number; thus, a further numer-
ical investigation is performed to examine the flow behavior at a high value of Rayleigh
number, and the thresholds for transition or Hopf bifurcation is determined. The results
clearly indicate that, for given values of the Soret, Sr, and the Dufour, Du, parameters,
there exist a supercritical or a subcritical Rayleigh numbers (Rsup

TC or Rsub
TC ) for the onset

of unicellular convection. In the case of Sr = 1(Du = −1), Figure 4a and Figure 5a show
that the onset of convection occurs at Rsup

TC = 16(Rsup
TC = 8), below the critical value, and

the solution is purely conductive (Ψ0 = 0, Nu = Sh = 1), regardless of the perturbation
amplitude magnitude. In the case of Sr < 0.6 (Du > −0.3), Figure 4a and Figure 5a
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show that any decrease of the Soret (Dufour) parameter induces a convection below the
threshold of stationary convection, Rsup

TC , which demonstrates the existence of subcritical
convection, which is triggered at a subcritical Rayleigh number, Rsub

TC , as a function of the
parameters Sr and Du. In the case where Sr = Du = 0, the bifurcation curve, predicted by
the parallel flow theory, indicates that the onset of motion occurs at a subcritical Rayleigh
number of Rsub

TC = 72 at which: Ψ0 = 0.976, Nu = 1.390, and Sh = 2.266. The strength of
convection, Ψ0, increases monotonously with the Rayleigh number, RT , and it becomes
more significant when the Soret and Dufour numbers take negative values. However,
for positives values, it experiences an inverse trend. From Figure 4b,c and Figure 5b,c, it is
clear that, for large values of RT , both Nu and Sh tend asymptotically toward a constant
value, Nu = Sh→ 6.0 , according to Equation (34) and this is independent of the Soret and
Dufour parameters. Usually, when Nu and Sh hit the asymptotic values, oscillatory flows
prevail and early transition to turbulence occurs.
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presented by solid lines, Equations (19)–(22), is seen to be in an excellent agreement with 
the numerical solution of the full governing equations, which is depicted by empty circles, 
thus demonstrating the validity of the parallel flow approximation. Figure 3a shows that, 
when the Hartman number decreases, the flow intensity increases and therefore strength-
ens the convective flow inside the cavity. A similar behavior is confirmed by the vertical 
profile of the horizontal velocity component, u , as illustrated in Figure 3b. The effect of 
the Hartmann number, Ha, on the temperature profile across the porous layer is illus-
trated in Figure 3c. As anticipated, the temperature difference between the horizontal 
walls decreases with decreasing Ha and causes a significant increase in the convective 
heat transfer rate. The magnetic field effect on the concentration profile is depicted in Fig-
ure 3d, and it looks similar to the effect of the magnetic field observed on the temperature 
profile. 
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and (d) concentration, S, profiles at the mid-width of the porous layer obtained for RT = 500, Sr = Du = −0.3 and various
values of Ha.
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Figure 4. (a) Stream function at the center of the cavity, Ψ0, (b) Nusselt number, Nu, and (c) Sherwood number, Sh,
with ϕ = −0.5, Du = 0, Ha = 1 and various values of Sr.

A more complete view of the effects of Ha, Sr, and Du on Ψ0, Nu, and Sh is presented
in Figures 6 and 7 for RT = 500. An excellent agreement between the parallel flow analysis
and numerical results is observed, within the range of the governing parameters considered
here. In the absence of the magnetic field Ha = 0 and for Du = Sr = 0, the resulting curves
are the same as those obtained by Bourich et al. [1] while investigating natural convection in
a shallow porous cavity under a magnetic field modeled according to the Brinkman–Darcy
model. The graphs clearly illustrate the effect of the Hartmann number, Ha, which is
having a pre-dominant effect on the strength of convection, Ψ0, and on the heat and mass
transfer rates (Nu and Sh). In general, it is seen from Figures 6 and 7 that, for a given Soret
(Dufour) number, an increase in the Hartmann number reduces considerably the strength
of the convective motion in the layer. Consequently, as can be observed from Figure 6b,c
and Figure 7b,c, both heat and mass transfer rates are considerably inhibited with the
increase of the Hartmann number. The plots also show the effect of Soret (Dufour) on the
existence of supercritical and subcritical convection, which are similar to those discussed
in Figures 4 and 5. As can be seen from Figure 6a and Figure 7a, in the absence of the Soret
and Dufour effects (Sr = Du = 0), the resulting bifurcation diagram indicates the existence
of a subcritical pitchfork bifurcation. The upper stable branch (solid line) is connected
to the lower unstable one (dashed line) at a turning point (saddle-node) occurring at
Ha = Hasub

c = 3.59. The case of supercritical convection is given in Figure 6a and Figure 7a,
as exemplified by the results obtained for Du = −1, for which Ha = Hasup

c = 7.84 (Figure
6a) and Ha = Hasup

c = 11.13 (Figure 7a). Above these values (Ha ≥ Hasup
c ), the rest state is
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eventually reached, for which heat and mass transfer rates are ruled purely by conduction,
Ψ0 → 0 and Nu(Sh)→ 1 .
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Figure 5. (a) Stream function at the center of the cavity, Ψ0, (b) Nusselt number, Nu, and (c) Sherwood number, Sh, with
ϕ = −0.5, Sr = 0, Ha = 1 and various values of Du.

Figure 8 shows the variation of the critical Hartmann numbers, Hasub
c and Hasup

c ,
as function of Sr and Du. It is found that, upon decreasing (increasing) the Soret (Du-
four) parameters ranging between Sr = −1 to 1 (Du = 1 to −1), the range of the crit-
ical Hartmann number decreases sharply. The graph indicates that, within the range
−1 ≤ Sr ≤ 0.46(−0.24 ≤ Du ≤ 1), the subcritical Hartmann number is the lowest critical
Hartmann number (Hasub

c ≤ Hasup
c ), such that the onset of motion is subcritical, as exem-

plified in Figure 6 for Sr = −0.3 and in Figure 7 for Du = 0.3. At Sr = 0.46(Du = −0.24),
it is found that Hasub

c = Hasup
c = 5.297(Hasub

c = Hasup
c = 5.385). Upon increasing the

value of the Soret and Dufour parameters, it is observed that, in the range 0.46 ≤ Sr ≤ 1,
the Hartmann threshold is the supercritical one, Hasup

c , as exemplified in Figure 6a at
Sr = 0.6 and in Figure 7a at Du = −0.3.
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Figure 6. Bifurcation diagram as a function of Ha and Sr for RT = 500 and Du = 0: (a) flow intensity Ψ0, (b) Nusselt
number, Nu, and (c) Sherwood number, Sh.

The influence of the Soret and Dufour parameters on the thresholds of subcritical,
Rsub

TC , and supercritical, Rsup
TC , convection is depicted in Figure 9a,b for various values of Ha.

The subcritical Rayleigh number is evaluated from the analytical solution, Equation (31),
by calculating numerically which value of RT leads to a zero inverse derivative of Ψ0
with respect to RT . The results, depicted by solid lines in the graphs, correspond to
the thresholds of a subcritical unicellular finite amplitude convective regime (Ψ0 6= 0).
The dashed lines are the prediction of the linear stability theory, Equation (49). It is
noted, from Figure 9a,b, that, upon increasing the value of the Hartmann number, Ha,
the thresholds Rsub

TC and Rsup
TC increase since the magnetic field effect becomes more and

more stabilizing. As shown in Figure 9a,b, for a given value of the Hartmann number,
upon decreasing the Soret (0.4 ≤ Sr ≤ −1) and Dufour (1 ≤ Du ≤ −0.2) numbers, it is
seen that the supercritical Rayleigh number, Rsub

TC , tends asymptotically towards Rsup
TC as

Sr → 0.4 (Du → −0.2) . This limit (Rsub
TC = Rsup

TC ) is independent of the Hartmann number,
Ha. The graph also indicates the existence of a supercritical bifurcation laying within the
range 0.4 ≤ Sr ≤ 1(−0.2 ≤ Du ≤ −1). On the other hand, upon decreasing the Soret
and Dufour parameters below Sr = 1 and Du = −1, the threshold, Rsup

TC , increases sharply
toward, Rsup

TC → ∞ .
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TC , and supercritical Rayleigh number, Rsup
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The stability diagram, as predicted by the linear stability analyses in terms of critical
Rayleigh numbers RHop f

TC , Rsub
TC , Rover

TC , Rosc
TC, and Rsup

TC (Equations (31), (49)–(51)), is depicted
in Figure 10. As already mentioned, for an increase of Soret parameter above
Sr = −1, it is seen that the subcritical Rayleigh number decreases monotonically to-
wards Rsub

TC → Rsup
TC = 40 at Sr = 0.4. Upon increasing the value of the Soret parameter

above Sr = 0.4, it is observed that the onset of steady motion is supercritical, Rsup
TC . Nu-

merically, it is found that, upon decreasing the value of the Rayleigh number, below these
critical Rayleigh numbers (Rsub

TC and Rsup
TC ), the convective flow remains at rest, which corre-

sponds to the stable diffusive regime in which all perturbation decays in time, region (I).
The graph also indicates that the critical Rayleigh number for the onset of supercritical,
Rsup

TC , convection decreases sharply toward a steady finite amplitude convective regime
( Rsup

TC → Rsub
TC = 86.02 ), as the Soret number is decreased below zero, (Sr < 0). On the other

hand, upon increasing the value of the Soret number above zero, (Sr > 0), the onset of su-
percritical convection decreases monotonously toward Rsup

TC → 0 . In general, it is observed
that Rsup

TC → ∞ when Sr → 0 . This results from the non-existence of a stationary convec-

tion solution. The critical Rayleigh number, RHop f
TC , at which a Hopf bifurcation occurs,

decreases considerably upon decreasing the Soret number toward Sr = −0.83, the value
at which the condition RHop f

TC → Rsub
TC = 128.64 is reached. In region (II), the linear theory

predicts a stable rest state while a finite amplitude convection is possible according to
the nonlinear theory. In region (III), the system is unstable, so any arbitrary dynamic
perturbation can initiate a convective flow. For a given value of the normalized porosity
equal to 0.35, the linear stability theory predicts the possibility of the existence of oscillating
flow, within the overstable regime (zone (IV)) which is delineated by the hatched area
(i.e., delineated by Rover

TC and Rosc
TC, Equations (48) and (49)). In the overstable region, when

initiated from the rest state, convection is amplified in an oscillatory way. At Sr = −0.18,
it is found that Rsub

TC = Rover
TC = Rosc

TC = Rsup
TC = 84.72, where a co-dimension-two point

occurs. In zone (V), where RT ≥ RHop f
TC , the convective flow is oscillatory.
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Figure 10. Stability diagram as a function of the Soret number, Sr, for Du = 0 and ε = 0.35.

The effect of the thermal Rayleigh number, RT , on the flow intensity and the heat
and mass transfer rates for Ha = 1, Du = Sr = 0.1 and ε = 0.28, is depicted in Figure 11.
The curves presented in the graphs show the present analytical and numerical nonlinear
solutions. The numerical solutions of the full governing equations, obtained for A = 20,
are shown by circles (solid circles for stable solution and empty circles with dashed lines
for unsteady solution). In the stable regime, a good agreement is observed between
the analytical and numerical solutions, and the flow structure consists of a unicellular
flow filling up the entire cavity (i.e., the flow in the core region of the layer is parallel)
as exemplified by the streamline patterns included in the Figure 11a. In this figure, Ψ0,
is the flow intensity at the center of the enclosure for both analytical and numerical stable
solutions, with Ψτ

0 being the numerical averaged flow intensity over a period of time of
the oscillation. In the Figure 11b, Nu and Sh are the Nusselt and Sherwood numbers
at the center of the enclosure and Nuτ and Shτ are the time-and space-averaged values,
respectively. For the values of the governing parameters considered here, the thresholds
of bifurcations, as predicted by Equations (31) and (49)–(51) and by the linear stability
theory discussed in Section 5, are given by Rsub

TC = 78.47, Rover
TC = 93.60, Rosc

TC = 142.96,

Rsup
TC = 174.24 and RHop f

TC = 475.3. The numerical results presented in Figure 11a,b indicate
that, below the subcritical Rayleigh number (RT ≤ Rsub

TC ), region (I), the rest state prevails
(Ψ0 → 0, Nu(Sh)→ 1) . In region (II), delineated by, Rsub

TC ≤ RT ≤ Rover
TC , the parallel flow

theory predicts the existence of two solutions (one stable and one unstable). In region (III),
delineated by Rover

TC ≤ RT ≤ Rosc
TC, the overstable regime where any perturbation grows

in an oscillatory manner. The overstable regime extends to an upper limit Rosc
TC, where

the oscillation frequency vanishes. Region (IV), where Rosc
TC ≤ RT ≤ Rsup

TC , represents

the stationary convection regime, while region (V), where RT ≥ RHop f
TC , corresponds to

the oscillatory finite amplitude convection that occurs right above the threshold of Hopf
bifurcation. A typical example of the oscillatory periodic flow, near the thresholds of Hopf
bifurcation, is presented by comparing the linear stability analysis results to the nonlinear
numerical prediction obtained right above the onset of Hopf bifurcation. The onset of
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oscillatory motion, predicted by the linear stability theory described in Section 5.2, occurs at
RHop f

TC = 475.3 with a corresponding perturbation wavelength of AC = 2.37 and frequency
fr = 7.01. This point is confirmed by the numerical results obtained from the full governing
equations developed in Section 3 for a cavity with an aspect ratio of A = 20. As expected,
right below the threshold RT < RHop f

TC = 475.3, at RT = 470, the numerical solution is

steady, and just above this value (RT > RHop f
TC = 475.3) for RT = 520, the solution is

found to be oscillatory in a periodic manner, indicating an existence of a single oscillation
convective mode, as predicted by the linear stability analysis. The results presented in the
graph, by empty circle and dashed lines, correspond to the time-averaged values, Ψτ

0 , Nuτ

and Shτ(see Figure 12d). It is noticed that the increase of the Rayleigh number well above
the threshold of the Hopf bifurcation leads to a periodic and then to chaotic oscillatory
convective flows. For RT = 520, the flow remains unicellular, but the parallel nature of
the streamlines is slightly broken, which indicates the existence of small vortices’ layers
traveling along the horizontal wall, as depicted in Figure 12d for RT = 520. A similar
trend has been reported by Bahloul et al. [42] for the case of both double-diffusive and
Soret induced convection. The time evolution of Ψ0, Nu, and Sh, obtained for RT = 520,
is illustrated in Figure 12a–c for τ = 1.0.
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(a) Steady and unsteady flow intensity, and (b) Steady and unsteady heat and mass transfer rates.

Snapshots of the perturbation profiles of the stream function, Ψp, temperature, Tp,
and solute, Sp, during a period of oscillation, points (1)–(7), are presented in Figure 13a–c.

At each given time step, the perturbation field is computed as FP = Fτ − 1/τ
t+τ∫
τ

Fdt,

where F stands for Ψ, T, and S. As illustrated in Figure 13, the convective perturbation
patterns are exemplified by two layers consisting of a series of small counter-rotating
vortices traveling along the horizontal wall from left to right near the bottom wall and
from right to left near the top wall. The two vortex layers are seen to travel in oppo-
site directions, leading to a temporal and partial merging and separation of the vortices.
The vortices are seen to become weak as they approach the end walls of the enclosure,
and restore progressively their strength later on as they quit the end walls. The patterns
of the vortices are quite similar to those predicted by the stability analysis. At the onset
of Hopf bifurcation, there exist two symmetrical solutions at the same circular frequency
pi (imaginary part of p) but with opposite signs, see Figure 14. The numerical solution
indicates that the critical wavelength and the oscillation frequency are given by AC = 1.25
and fr = 7.31, respectively, which are very close to the values AC = 2.37 and fr = 7.01
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predicted by the linear stability theory. The dynamics of the incipient perturbation flow
patterns are illustrated in Figure 14, and once superposed, they appear to be similar to
those obtained numerically in Figure 13.
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Figure 12. Time evolution of (a) flow intensity, (b) Nusselt number, (c) Sherwood number for RT = 520, Ha = 1,
Du = Sr = 0.1, ε = 0.28 and τ = 1.0, and (d) snapshot of the streamlines, Ψ, and the time-period averaged streamlines
solution, Ψτ .

Figure 15 shows the influence of the Hartmann number on the critical Rayleigh
numbers for Du = Sr = 0.1 and 0.28. In Figure 15a, the different regions are outlined by
the thresholds of subcritical, Rsub

TC , overstable, Rover
TC , oscillatory, Rosc

TC, stationary convection,

Rsup
TC , and Hopf bifurcation, RHop f

TC , in which different flow behaviors may occur. Zones (I)
to (V) are equivalent to those defined in Figure 11. As expected, the graph indicates that
the onset of Hopf bifurcation, RHop f

TC , increases sharply upon decreasing the value of the
Hartmann number. It follows that the steady parallel flow is more and more stabilized as
Ha increases. A similar trend is observed for the evolution of Rsub

TC , Rover
TC , Rosc

TC, and Rsup
TC

with the Hartmann number variation. On the other hand, for small values of Ha (Ha→ 0) ,
the thresholds of bifurcations tend toward constant values. The influence of the Hartmann
number, Ha, on the perturbation wavelength, AC, and oscillation frequency, fr, at the
onset of Hopf bifurcation, RHop f

TC , is illustrated in Figure 15b. As can be seen, the magnetic
field has a strong effect on the wavelength and oscillatory frequency. It is found that the
wavelength and frequency decrease monotonously towards asymptotic values as Ha→ ∞ .
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Figure 13. (a–c) Snapshots of the perturbation of the stream lines, Ψp, temperature, Tp, and concen-
tration, Sp, corresponding to some selected points, for RT = 520, Ha = 1, Du = Sr = 0.1 and ε = 0.28.
Animations of the stream function, temperature, and solute concentration perturbations can be seen
in the Supplementary Movie Files.
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Figure 14. Perturbation profiles, Ψp, Tp and Sp at the threshold of Hopf bifurcation, RHop f
TC ,

for Ha = 1, Du = Sr = 0.1 and ε = 0.28:RHop f
TC = 475.3 and AC = 2.375, (a) pi = 44.079,

and (b) pi = −44.079.
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7. Conclusions

In this paper, we studied the combined influence of magnetic field, Dufour and Soret
effects on the onset of double diffusive convection and on the Hopf bifurcation within
an electrically conducting binary mixture, confined inside a horizontal porous cavity.
The horizontal walls were subjected to uniform fluxes of heat and mass, whereas the
vertical walls were assumed to be adiabatic and impermeable.

An asymptotic analytical solution was developed on the basis of the parallel flow
approximation, and a numerical solution was obtained by solving the full governing
equations. For shallow enclosure, an excellent agreement was obtained between the
analytical and numerical results with the range of the governing parameters considered in
the present study.

It was found that the convective flow intensity and the heat and mass transfer
rates decreased as the value of the Hartmann number increased, and, for Ha→ ∞ ,
the rest state was eventually reached and the heat and mass transfer rates were essen-
tially driven by conduction, Ψ0 → 0 and Nu(Sh)→ 1 . Thus, when the Rayleigh num-
ber was very large (RT → ∞) , both heat and mass transfer rates tended asymptotically
toward a constant value Nu(Sh)→ 6.0 , independently of the values of Soret, Dufour,
and Hartmann parameters.

The Soret, Dufour, and Hartmann numbers had a strong influence on the critical
Rayleigh numbers, Rsup

TC , Rover
TC and Rosc

TC, for the onset of supercritical and oscillatory con-
vection as predicted by the linear stability theory, namely.

The thresholds for subcritical, oscillatory, and stationary convection were obtained
explicitly as functions of the governing parameters.

The analysis showed that the Soret, Dufour and Hartmann parameters had a signifi-
cant influence on heat and mass transfer rates, streamlines, isotherms, isoconcentrations
lines and on the critical Rayleigh number, RHop f

TC , of Hopf bifurcation.
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