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Abstract: The steep slope of the bathymetry and topography that surrounds Palu Bay is a unique
morphology of the area that affects the currents. A simulation was carried out in three regions with
seven scenarios to understand the effect of wind, tide, and discharge on currents. The results showed
that the average current pattern in Palu Bay is more dominantly influenced by tides at the open
boundary and in the middle of the bay, steered by wind directions. The velocity decreases when
it reaches the end of the bay and eventually reverses back to the mouth of the bay through both
sides of the bay. The current in the Palu River estuary with a discharge of 36 m3/s moves out of the
river mouth. On the other hand, results with a discharge of 2 m3/s revealed that the tidal current in
the middle layer to the lower layer moves in the opposite direction to the current generated by the
discharge in the layer above. It means that the tidal current velocity is lower than that generated by
the river discharge. The computation revealed a good agreement with observed current velocity at
the selected observation points.

Keywords: numerical modeling; current; steep slopes; bathymetry; topography; Palu

1. Introduction

Palu Bay is located on the west coast of Sulawesi Island, which is in the province of
Central Sulawesi, Indonesia (see Figure 1). The bay is a shipping lane, where there are
several ports that play a role in reviving and developing the regional economic sector. The
capital of Central Sulawesi Province is Palu City [1]. The southern part of the bay is an estu-
ary [2], and the surrounding area is a popular tourist attraction and commercial (e.g., malls
and restaurants) [3] spot.

Palu Bay is surrounded by a series of high mountains [4] in the shape of a bowl with
an altitude of more than 500 m above the sea level (masl). The elevation of the hill in
Mantantimali reaches up to 1500 masl. The location, altitude, temperature, and wind
conditions are very conducive for paragliding. This hill is one of the best paragliding
locations in the Southeast Asia and even in the world [5]. In addition, Palu Bay border with
the Makassar Strait. These factors strengthen the wind gusts in the bay.

Recently, hydrodynamic numerical models have become the center of attention by
researchers for the investigation of the Palu, Sigi, and Donggala (Pasigala) disaster on 28
September 2018 at 18:02:44 local time (10:02:44 UTC). It was triggered by an earthquake with
the epicenter at 0.18◦ S and 119.85◦ E, Central Sulawesi, Indonesia [6]. This disaster was
the deadliest natural disasters throughout 2018. This resulted in thousands of deaths [7]
and infrastructure damage such as houses, public facilities and transportation routes [8].
Field observations at the four ports in Palu Bay, namely the ports of Wani, Pantoloan, Taipa,
and Donggala, revealed that several ships were stranded on land, whereas one of them
weighing 500 tons was dragged about 80 m ashore [9].

Many studies related to tsunami numerical modeling to investigate the causes and
impacts of the disaster have been published [10–12], etc. One of the uniqueness of this
disaster is that the cause is not directly related to the strike slip earthquake, since this
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mechanism rarely generates a tsunami [13]. Seabed sediment landslides due to earthquakes
are the direct cause of tsunamis [14,15]. One of the causes of the instability of the seabed
sediments during the earthquake is the steep slopes of bathymetry. It is proven that the
water depth that rapidly changes near the coastline and it gets steeper into the middle of
the bay based on the Global Bathymetric Data of the General Bathymetric Chart of the
Ocean (GEBCO) [16].
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The steepness of the topography and bathymetry in this área are two important factors
that influence the current movement pattern and the velocity. Numerical models are
needed to represent events in the past (e.g., disaster investigation), the present (e.g., early
warning systems), and the future (e.g., future development planning). Therefore, the
results of this study are expected as an insight for stakeholders to develop the Palu Bay
and vicinity with an environmental perspective that is responsive to disasters.

2. Methods

This model was built to analyze the water current movement in Palu Bay which is
influenced by wind, tide, and river discharge. The three components are used as input data
for the model separately to understand the effect of each component on the dynamics of
current movement. The simulation is also carried out by combining several components to
understand which component is more dominant.

Estuary Coastal Ocean Model and Sediment Transport (ECOMSED) developed by
Hydroqual [17] is used for hydrodynamic modeling. This model was developed based
on the Princeton Ocean Model (POM) [18]. it uses finite difference methods by applying
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a sigma coordinate system to vertical cross sections. The system depends on the bottom
of the water based on transformation [19] to analyze the physical processes that occur
in the vertical layer. Wind data was used at the surface boundary. This data is obtained
from the Meteorological, Climatological, and Geophysical Agency (BMKG), where the
wind vector on land is transformed into a wind data vector with a height of 10 m above
sea level (U10) [20]. Coastline and riverbank coordinates obtained from google earth
imagery was imposed at closed boundary (areas bordering land). Tidal data was imposed
at the open boundary at the mouth of the bay. Meanwhile river depth obtained from
the Public Works office of Palu City and bathymetry obtained from the Hydrographic
and Oceanographic Center, Indonesian Navy (PUSHIDROSAL) were used at the bottom
boundary by interpolating the contours on the sea map and the sketch of a cross section of
the river.

The boundaries of the research area in geographic coordinates are as follows: 119◦43′42′′

western most longitude, 119◦52′58′′ eastern most longitude, 0◦35′3′′ northern most lati-
tude, and 0◦53′12′′ southern-most latitude. The simulation area consists of three models
covering the entire Palu bay (model I), a small part of the Palu river estuary (model II), and
the mouth of the Palu river (model III). Each model consists of several simulations with
certain scenarios.

Model I consists of three simulations, where the first and second simulations were
carried out separately using wind and tides as generating forces. The third simulation was
conducted by combining the effects of wind and tides for one month simultaneously. The
output is the monthly average current direction and its velocity.

The stability test for model I was carried out by assuming that the bay conditions are
considered uniform. In this condition, the depth, tidal conditions, and wind that blow over
the water surface are considered constant for each grid. Furthermore, the stable simulation
results in the previous stage are used as the initial conditions in the next stage simulation.
At this stage, the current generating forces are no longer considered uniform. Wind and
tidal data with 1 h intervals were used during simulation. This computation was run with
horizontal finite difference meshes are 126 × 63 grids.

Model II uses tides and discharge of 2 m3/s and 36 m3/s as generating forces to
analyze the influence of small and large discharge on current movements in the estuary.
This simulation was run on a horizontal section with horizontal finite difference meshes
are 125 × 125 grids and vertically discretized with 11 ¦Ò-levels. Meanwhile, model III is a
nested model to model II. The initial conditions of this model use the output of model II
as input data. It was built to increase the resolution in the delta and vicinity at the mouth
of the river with the same scenario as model II. Initial conditions for both models were
obtained from observation data of temperature, salinity, river discharge, and tide. The
initial and boundary conditions for salinity and temperature are assumed to be constants 0
ppt and 28 ◦C at the river upstream and 30 ppt and 29 ◦C at the sea respectively.

A Floater Current Meter connected to a GPS was used to measure the velocity and
direction of the current for model verification. Data were taken at two locations, namely,
Pantoloan Port and at the mouth of the Palu River. This measurement was conducted at
low slack, low slack, high slack, and highest water conditions in both locations.

3. Results and Discussion
3.1. Large Model

The effect of wind, tide, and the combination of these two components on the current
circulation is discussed in this section. The river discharge has not been included in this
model because the width of the Palu river which empties into the Palu Bay is very small
compared to the size of the Palu Bay. A high spatial horizontal resolution is required so
that the Courant–Friedrich–Levy (CFL) criteria are met. The effect of river discharge will
be discussed in the small model through a separate simulation.
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3.1.1. Wind Patterns Palu Bay

The wind that enters Palu Bay originates from the north of the Philippines and then
enters the Makassar strait. It divides into two and one branch enters Palu Bay which is
narrower than the Makassar strait. The maximum value of wind velocity in the Makassar
strait in the east monsoon is more than 4.5 m/s [21]. The topography around Palu Bay
causes mountain winds to blow from the west and east sides of the bay. The wind that
blows on the surface of Palu Bay waters is focused and blows faster than the surrounding
area (areas affected by global climate). Figure 2 shows the wind class frequency distribution
for wind velocity and its direction in September measured at BMKG station in Palu City.
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Figure 2. Wind class frequency distribution.

It can be seen in Figure 2 that the most dominant wind velocity other than calm
condition occurs at a velocity above 11.10 m/s with a percentage of 12.9%. This means
that the average wind velocity blowing in Palu Bay is stronger than the wind that blows
in the Makassar strait with the highest velocity intervals of 5.14 m/s to 7.71 m/s in
September [22]. The prevailing wind occurs in the north with a percentage of 7.3% based
on the wind rose (Figure 3).
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3.1.2. Model of the Average Sea Surface Current Generated by Wind

It has been understood based on previous research [23] that there are complex non-
linear interactions and energy transfers between ocean wind-waves and the mean flow.
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Surface winds can affect surface currents [24]. The Coriolis force causes the current to
turn perpendicular to the direction of the wind [25]. However, the deflection caused by
the Coriolis effect is so small in Palu Bay because the location of the bay is close to the
Equator and narrow. It reveals that surface currents are more dominantly influenced by
the local wind system that blows over the water surface. This is consistent with previous
research [26], where the Coriolis effect of the Earth disappears so that the current moves in
the direction of the wind [27].

Prevailing wind reveals that the dominant wind direction blows from the north based
on wind rose (Figure 3). This is in line with the simulation result (Figure 4a) which show
that the average current pattern in one month moves from the open boundary (northern
part) into the middle of the bay with a maximum velocity of 0.73 m/s. The velocity
decreases when it reaches the end of the bay and eventually reverses towards the mouth
of the bay through both sides. The reversal is caused by wind deflection due to the steep
slopes of topography around the bay. Meanwhile, the decrease in velocity is caused by
the narrowing of the bay due to the steep slopes of bathymetry. The simulation result
(Figure 4a) reveals that the velocity in the middle of the bay is faster than the shallow
waters along the coast. This result is supported by previous studies that reported that Palu
Bay bathymetry has a parabolic cross-sectional shape [28,29].
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3.1.3. Model of the Average Surface Currents Generated by the Tides

Current movements in the bay, in general, are more dominantly influenced by tides [30–32].
The simulation result (Figure 4b) show that tidal currents at a relatively high velocity occur
only in the open area with a maximum velocity of 1.37 m/s. In this area some of the
currents originating from the north enter the bay while others turn westward. From the
western part in the open area the currents enter the bay at a velocity of less than 0.5 m/s,
where there are no reversed currents in the area bordering the land (closed boundary area).
This model does not include the influence of wind as input data, so there is no current
deflection along the coast.

3.1.4. The Average Sea Surface Current Generated by Tides and Winds

The simulation results (Figure 4c) show that the current pattern in Palu Bay is more
dominantly influenced by tides at the open boundary with a maximum velocity of 1.5 m/s.
It can be seen that the current with high velocity occurs at the mouth of the bay in an area
with open boundary with the dominant current coming from the north. This is caused by
pressure from the Indonesian throughflow (ITF) system [33–35]. The flow is a transportation
route that connects the northern equator of the Pacific Ocean directly with the Indian Ocean.
The currents from Mindanao flows into the Sulawesi sea towards the Kalimantan coast,
and then join other currents coming from the south China sea [36,37]. Meanwhile, in the
middle of the bay the current pattern follows the current pattern generated by the wind. It
reveals that as a whole the current movement in the bay is dominated by the influence of
the wind.

3.2. Small Model

There are many small rivers that empty into Palu Bay. However, the Palu River is the
largest one among them. Therefore, this model only focuses on the Palu River estuary. Due
to the lack of river depth data, the domain model II only covers a small part of the estuary,
namely a small part of the bay and a small part of the river.

A high horizontal grid resolution is required to make the model domain cover the
entire bay and estuary. But this is difficult to do, since the comparison between the
horizontal grid size and the maximum depth in the model domain will be large, and the
CFL criterion cannot be satisfied which will cause a run time error [38]. The high resolution
covering Palu Bay and Palu River is also not sufficient to describe the real situation. The
position of the delta in the middle of the river mouth causes the river flow to be divided in
two directions, namely to the east and west. Therefore, the increase in resolution in the
delta area is carried out in model III.

3.2.1. Surface Current with Discharge as Generating Force

The direction of current movement at high slack wáter and low slack wáter conditions
are opposite each other [39,40]. The maximum tidal flow velocity is reached under these
conditions. From the simulation results (Figure 5), the direction of movement of surface
currents when the maximum tidal current velocity moves out of the river mouth. This
reveals that the influence of river discharge of 36 m3/s is more dominant than the effect of
tidal currents. The maximum velocity of the current at high slack water is 0.47 m/s smaller
than at low slack wáter with a maximum speed of 0.53 m/s. At high slack wáter, the
tidal currents move into the river so that the direction of the river flow from the upstream
is opposite to the direction of the tidal currents. This condition weakens the flow from
upstream. Meanwhile, at low slack wáter condition, the direction of tidal currents moves
in the same direction as the river flow from the upstream so that the resulting currents
amplify each other.
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The location of the delta in the middle of the river mouth causes the current to spread
west and east after the current passes through the delta. The simulation results (Figure 6)
show that the currents generated by the tides and the discharge move at a higher velocity
to the west, then weaken towards the north due to changes in depth. The current velocity
is greater in the deeper area compared to the surrounding area. Depth degradation causes
the flow to form eddies by slowing current velocity due to friction at the bottom of the
water and increasing current velocity by silting waters [41,42].
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3.2.2. Current Circulation on Vertical Cross Section

The simulation results for a discharge of 36 m3/s (Figure 7) show that the current
moves out of the river at all layers. The current velocity decreases from surface to bottom.
This is caused by the current velocity being decelerated by friction with the bottom of the
water. This result is in line with the results of previous studies which state that the decrease
in velocity is proportional to the increase in bottom friction [43].
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The simulation results with a discharge of 2 m3/s (Figure 8) show that the current
velocity in layer 6 (σ6) to layer 11 (σ11) moves in the opposite direction to the current in
the layer above. This shows that the current velocity at σ6 to σ11 which is indicated by the
sign (-) is influenced by the tidal currents entering the river. The simulation results reveal
that river discharge dominates the direction of current movement from the upstream to
the downstream.
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Figure 8. Current pattern on the vertical cross section for discharge of 2 m3/s (a) low slack water condition and (b) high
slack water condition.

Current is a manifestation of the movement of wáter masses. The output of the
current simulation can be used as input into the model on the water quality module in the
ECOMSED program. One of the polluted rivers that empties into Palu Bay is the Poboya
River. Massive use of Mercury in the illegal gold mine in the Poboya area has polluted the
water of the Poboya river. Further research is expected to be able to model the dispersión
of pollutants that accumulate in Palu Bay based on this model.
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3.2.3. Verification

Figure 9a,b show a velocity-time graph for the simulation results and observations
at the port of Pantoloan and at the mouth of the Palu River with a discharge of 2 m3/s. It
shows a similar pattern with the good root mean square error (RMSE) values of 0.01 m/s
and 0.56 m/s, respectively. The RMSE value at the Pantoloan port was better than the
RMSE value at the mouth of the Palu river. This is because the input of river depth
data at the verification location obtained from the Public Works Office of Palu City is the
result of interpolation from the sketch of a cross section of the river. The results of depth
interpolation should not be used as input data in the model for verification purposes in
the river mouth that experience high sedimentation dynamics. In order to obtain better
simulation results at the verification location, the water depth observation data at the
verification points must be used as input data for the initial conditions of the simulation.
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4. Conclusions

The simulation results revealed that the average current movement pattern in Palu bay
is more dominantly influenced by tides at the open boundary with a maximum velocity of
1.7 m/s, whereas in the middle of the bay the current pattern follows the pattern generated
by the wind. The velocity decreases when it reaches the end of the bay and it turns back
towards the mouth of the bay through the two sides of the bay due to the steep slopes of
the bathymetry and topography around the bay.

The movement of surface currents in the estuary of the Palu River with a river dis-
charge of 36 m3/s moves out of the river mouth. Meanwhile, the simulation results with
a discharge of 2 m3/s revealed that the tidal currents in the middle layer to the lower
layer move in the opposite direction to the current generated by the discharge in the layer
above, tidal current velocity is smaller than the current generated by discharge. It can
be concluded that river discharge is more dominant in the estuary of the Palu river. The
simulation result seems to be corresponding to observed current velocity with RMSE value
of 0.01 m/s at the Pantoloan port and 0.56 m/s at the river mouth.

The bathymetry used in this study still uses data prior to the tsunami disaster
caused by underwater landslides. It has been known from many previous studies that
bathymetry in Palu Bay has undergone many changes since the incident. Therefore, up-
dated bathymetry data is needed to rebuild the current model.
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