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Abstract: The aim of this work is to present an overview about the combination of the Reduced Basis
Method (RBM) with two different approaches for Fluid–Structure Interaction (FSI) problems, namely
a monolithic and a partitioned approach. We provide the details of implementation of two reduction
procedures, and we then apply them to the same test case of interest. We first implement a reduction
technique that is based on a monolithic procedure where we solve the fluid and the solid problems
all at once. We then present another reduction technique that is based on a partitioned (or segregated)
procedure: the fluid and the solid problems are solved separately and then coupled using a fixed
point strategy. The toy problem that we consider is based on the Turek–Hron benchmark test case,
with a fluid Reynolds number Re = 100.

Keywords: fluid–structure interaction; reduced basis method; proper orthogonal decomposition;
monolithic approach; partitioned approach; Navier–Stokes; linear elasticity

1. Introduction

The bridging between approximation techniques and high-performance computing
finds numerous fields of applications in the industry as well as in academia: it is sufficient
to think about heat transfer problems, electromagnetic problems, structural mechanics
problems (linear/nonlinear elasticity), fluid problems, and acoustic problems. In all of
these examples, the models are described using a system of partial differential equations
(PDE) that usually depends on a given number of parameters that describe the geometrical
configuration of the physical domain over which the problem is formulated or that describe
some physical quantities (e.g., the Reynolds number for a fluid or the Lamè constants
for a solid) or some boundary conditions. For all of these models, we usually focus on
a particular quantity of interest, also called an output of interest, such as the maximum
temperature of a system, a pressure drop, or a channel flowrate. Unfortunately, computing
such an output for each new value of the parameter is a difficult task that is expensive
both in terms of time computation and in terms of computer memory, even on modern
HPC systems. With these premises in mind, it is clear why the Reduced Basis Method
[1–7] (RBM) comes into play and shows a wide range of advantages: the idea at the core of
the method is to simulate the behavior of the solution of our system of interest for some
chosen values of the parameters in the PDE. This is usually performed using some well-
established discretization technique, such as the Finite Element Method (FEM); another
discretization method used, for example, in the compressible framework in computational
fluid dynamics is the Finite Volume Method (FVM), and another possibility is the Cut Finite
Element Method (CutFEM) (see for example [8–10]). Once we compute these solutions, in
an expensive offline phase, we can use them to build some other basis functions: with these
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new basis functions, in the inexpensive online phase, we can approximate the solution of
the system for a new value of the parameter.

Among the numerous applications of the RBM, Fluid–Structure Interaction (FSI)
problems definitely represent a great challenge as well as an extremely interesting topic
(see for example [4,11–17], just to cite a few). Indeed, despite their instrinsic complicated
nature (see [18,19]), FSI problems are frequently used in everyday life: in naval engineering,
they are used to study interactions between the water and the hull of a ship [20]; in
biomedical applications, FSI problems are used to model the interaction between the blood
flow and the deformable walls of a vessel [21–27]. Finally, in aeronautical engineering, FSI
describes the way the air interacts with a plane or with (parts of) a shuttle; see [15,28–30].

The goal of this work is to present an extensive overview on the formulation of two
model order reduction procedures that are applied to sets of snapshots obtained using
two different approaches: a monolithic approach and a partitioned (segregated) approach.
We present the entire formulation of the reduction procedures as well as some numerical
results that were obtained using the two reduced order model techniques. The same test
case is considered: the problem was inspired by the Turek–Hron benchmark test case
FSI2, for which well-established results and analyses have already been presented in the
literature; see for example [31,32]. The main difference in our work is that, for the structure,
we consider a linear problem (linearized strain tensor), different from what that considered
by Turek and Hron.

The rest of the work is structured as follows: in Section 2, we define the mathe-
matical formalism behind coupled systems, and in particular, we introduce the Arbi-
trary Lagrangian Eulerian (ALE) formulation, which is used throughout the rest of the
manuscript. In Section 3, we briefly introduce the two main approaches that can be
adopted when dealing with FSI, namely monolithic and partitioned approaches. In
Section 4, we present a monolithic reduced order model: in Section 4.1, we define the
time discretization; in Section 4.2, we introduce the space discretization of the problem;
and in Section 4.2, we discuss the imposition of coupling conditions through Lagrangian
multipliers. In Section 4.3, we introduce the supremizer enrichment technique, and in
Section 4.4, we present more in detail the implementation of the Proper Orthogonal De-
composition. In Section 4.5, we formulate the online reduced order coupled system, and
finally in Section 5, we present some numerical results. Section 6 is devoted to a partitioned
algorithm: in Sections 6.1 and 6.2, we introduce the time discretization and the space dis-
cretization, respectively. In Section 6.3, we present the Proper Orthogonal Decomposition
technique used in this case, and finally, in Sections 6.4 and 7, we present the online reduced
order problem and some numerical results. Finally, Section 8 is devoted to a discussion on
the two algorithms.

2. Fluid–Structure Interaction Problems

In the following, we introduce the mathematical formalism for FSI problems: we
assume a two dimensional setting. Therefore, let Ω(t) ⊂ R2 be the physical domain
of interest, at time t ∈ [0, T]. The physical domain can be naturally divided into two
subdomains: Ω(t) = Ω f (t) ∪Ωs(t), where Ω f (t) is the fluid domain, and Ωs(t), which
is the solid domain; we further assume that Ω f (t) ∩Ωs(t) = ∅ and that Ω̄ f (t) ∩ Ω̄s(t) =
ΓFSI(t) is the fluid–structure interface: the left side of Figure 1 shows the fluid domain in
blue and the solid domain in red.
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Figure 1. Fluid–structure interaction domains. Time-dependent configuration (left): fluid domain
Ω f (t) (blue) and solid deformed domain Ωs(t) (red). Reference configuration (right): the inlet
boundary Γ̂in (magenta), the wall boundaries for the fluid Γ̂walls (light blue), and the Neumann
(outlet) boundary Γ̂ f

N (orange). The fluid arbitrary reference configuration Ω̂ f is depicted in blue,
the solid reference configuration Ω̂s is depicted in red, and Γ̂s

D is the solid Dirichlet boundary. The
fluid–structure interface in the reference configuration Γ̂FSI is highlighted in green.

The fluid is assumed to be Newtonian and incompressible, and therefore, its behavior
can be modelled using incompressible Navier–Stokes equation: for every t ∈ [0, T], find
u f (t) : Ω f (t) 7→ R2 and p f (t) : Ω f (t) 7→ R such that{

ρ f (∂tu f + (u f · ∇)u f )− divσf (u f , p f ) = b f in Ω f (t)× (0, T],
divu f = 0 in Ω f (t)× (0, T],

(1)

where b f is the fluid volume external force and σf (u f , p f ) is the Cauchy stress tensor that,
given the fluid is Newtonian, can be expressed in the following way:

σf (u f , p f ) = ρ f ν f (∇u f +∇Tu f )− p f I.

where I is the 2× 2 identity matrix, ρ f is the fluid density, and ν f is the kinematic viscosity. We
remark that, in this case, the differential operator∇ is intended to be the differentiation with
respect to the time-dependent spatial coordiantes and that the same is valid for the divergence
operator div, which also is considered with respect to the time-dependent coordinates.

Throughout this manuscript, for the sake of simplicity of the exposition, the solid
behavior is described using a linear elasticity equation; nevertheless, we remark that
everything we say can also be applied to nonlinear models for the solid. The structure
problem reads as follows: for every t ∈ [0, T], find the solid displacement d̂s(t) : Ω̂s 7→ R2

such that
∂ttd̂s − ˆdivP̂(d̂s) = b̂s in Ω̂s × (0, T], (2)

where b̂s is the external force acting on the solid. We assume small deformations here: this
means that the solid Piola–Kirchhoff stress tensor P̂(d̂s) can be expressed as

P̂(d̂s) = 2µs ε̂(d̂s) + λstrε̂(d̂s)I,

with µs and λs being the Lamé constants of the material and with ε̂(d̂s) being the linearized
strain operator, which is defined as follows:

ε̂(d̂s) :=
1
2
(∇̂d̂s + ∇̂T d̂s).

In the previous equations, ∇̂ is the gradient with respect to the coordinates in the refer-
ence configuration and ˆdiv is the divergence operator, always in the reference configuration.

The first thing we notice from Equations (1) and (2) is that the two problems are
formulated over two “different kind” of domains: indeed, the Navier–Stokes equation is
formulated over a time-dependent domain Ω f (t), whereas the linear elasticity equation
is formulated over a time-independent domain Ω̂s. In this section, in order to clearly
introduce the Arbitrary Lagrangian Eulerian formulation, we make use of the following
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notation: all fields that are defined on the reference, the time-independent configuration, are
denoted with a hat ;̂ on the contrary, all of the fields that are defined on a time-dependent
configuration are denoted without the hat. This distinction between the time-dependent
configuration and the time-independent configuration is a rather natural peculiarity of
FSI problems that arises from the different natures of the two problems involved: we refer
the reader to Figure 1 for a graphical representation of both configurations. Solving a FSI
problem in a time-dependent domain can be extremely costly from a computational point of
view, as it requires remeshing at every time-step in order to update the entire configuration.
One possible alternative to avoid remeshing is to try instead to solve the problems in a
reference configuration. For the solid problem, the definition of the reference configuration
is quite easy and natural: indeed, we can say that the solid reference configuration Ω̂s is
exactly the solid domain, undeformed: Ω̂s = Ωs(t = 0). For the fluid problem, defining a
reference configuration is instead rather complicated. To this aim, we introduce the ALE
map

A f (t) : Ω̂ f 7→ Ω f (t)

x̂ 7→ x = x̂ + d̂ f (t), (3)

which maps an arbitrary time-independent fluid domain to the fluid current configuration.
In Equation (3), the mesh displacement d̂ f (t) at time t is defined as an extension to the
whole domain Ω̂ f of the solid deformation d̂s(t). This extension can be carried out in
different ways. Here, we adopt an harmonic extension:{

− ˆdiv( 1
J ∇̂d̂ f ) = 0, in Ω̂ f × [0, T]

d̂ f = d̂s, on Γ̂FSI × [0, T].

where J is defined as J(t) := detF(t), where F(t) is the gradient of the ALE map A f (t).
From now on, for ease of notation, we drop the time dependence of J and F. We complete
the previous system with homogeneous Dirichlet boundary conditions on the whole ∂Ω̂ f .
In the previous system, we used the scaling factor 1

J : the reason for doing this is that the
mesh displacement obtained is sligthly more regular than the one we would obtain without
the scaling factor, meaning that the deformation of the triangles of the mesh is more regular.
We refer the reader to Chapter 5 of [33] for some interesting comparison results regarding
the quality of deformation of the triangles of the mesh as well as for some alternative ways
to define the mesh displacement (linear elasticity and biharmonic extension).

Thanks to the introduction of the ALE map, we can decide to take the domain at time
t = 0 as the arbitrary time-independent fluid domain; hence, Ω̂ f := Ω f (t = 0). After some
computations (see for example [33]), we can reformulate the Navier–Stokes problem in the
reference configuration: for every t ∈ [0, T], find the fluid velocity û f (t) : Ω̂ f 7→ R2, the
fluid pressure p̂ f (t) : Ω̂ f 7→ R, and the fluid displacement d̂ f (t) : Ω̂ f 7→ R2 such that

ρ f J(∂tû f + ∇̂û f F−1(û f − ∂td̂ f ))− ˆdiv(Jσ̂f (û f , p̂ f )F−T) = Jb̂ f in Ω̂ f × (0, T],
ˆdiv(JF−1û f ) = 0 in Ω̂ f × (0, T],
− ˆdiv( 1

J ∇̂d̂ f ) = 0 in Ω̂ f × (0, T],
(4)

where b̂ f is now the external force acting on the fluid, expressed with respect to the
coordinates in the reference configuration, and σ̂f (û f , p̂ f ) is the fluid Cauchy stress tensor
in the arbitrary reference configuration Ω̂ f :

σ̂f (û f , p̂ f ) := ρ f ν f (∇̂û f F−1 + F−T∇̂T û f ).
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Together, Equations (2) and (4) form the coupled FSI problem, expressed in a time-
independent configuration. In order to have a coupled system, we still need some coupling
conditions that describe the interaction between the two physics:

d̂ f = d̂s on Γ̂FSI × (0, T],
û f = ∂td̂s on Γ̂FSI × (0, T],
Jσ̂f F−T n̂ f = P̂sn̂s on Γ̂FSI × (0, T],

(5)

where n̂ f is the normal to the fluid–structure interface (reference configuration) from the
fluid domain and n̂s is the normal to the fluid–structure interface from the solid domain.

The entire coupled system is then completed by some initial conditions and by some
boundary conditions. In the following, we work with these boundary conditions:

û f = u(t) on Γ̂ f
D × (0, T],

d̂s = 0 on Γ̂s
D × (0, T],

Jσ̂f (û f , p̂ f )F−T n̂ = 0 on Γ̂ f
N × (0, T].

where Γ̂ f
D := Γ̂in ∪ Γ̂walls is the Dirichlet boundary and is made by the inlet boundary and

by Γ̂walls, which is the union of the top boundary, the bottom boundary, and the boundary of
the cylinder immersed in the fluid. Γ̂ f

N is the fluid Neumann boundary (outflow boundary),

and n̂ is the normal to Γ̂ f
N from the fluid domain; in addition u(t) is the Dirichlet data, and

we have

u(t) =

{
uin(t) on Γ̂in × (0, T],
0 on Γ̂walls × (0, T].

(6)

An example of the reference configuration together with an illustration of Γ̂FSI , Γ̂ f
D,

Γ̂s
D, Γ̂ f

N , Γ̂in, and Γ̂walls is represented in Figure 1.

3. Approaches to Fluid–Structure Interaction Problems

As we previously mentioned, FSI problems are characterized by the presence of two
different physics interacting with one another: we have the fluid problem, represented by
the Stokes or Navier–Stokes equation, and we have the structure problem, represented
by a string equation, by linear elasticity, or by nonlinear elasticity. It is therefore almost
natural to conclude that there are two main different routes one can take to address such
problems. Indeed, we can decide to solve the fluid and the solid problems separately and
then take care of the coupling between the two physics: this gives rise to the so-called
partitioned (segregated) approach. On the other hand, we can decide to solve the two
problems together, and this gives rise to a monolithic procedure instead.

3.1. Monolithic Approach

In a monolithic algorithm, the fluid and the solid problems are solved simultaneously.
These kind of algorithms are more stable, and they usually allow for the use of bigger
time-steps during the discretization of the problem in time. The main drawback is that one
really relies on available ad hoc softwares that are capable of handling a computational
fluid dynamics problem as well as a solid mechanics problem at the same time. In addition
to this, in order to pursue a Galerkin discretization of the original problem, one needs to
introduce Lagrange multipliers to impose the coupling conditions at the fluid–structure
interface, thus increasing the number of unknowns in the coupled problem. For the reader
interested in looking into more detail about monolithic algorithms, we refer to [11,17,33–37],
even though this list is by no means complete.
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3.2. Segregated Approach

The rationale behind a partitioned approach is to deal with the two physics separately:
this indeed allows us to better exploit existing simulation tools for fluid dynamics and for
structural dynamics, which are well developed nowadays and are used on a daily basis in
industrial applications. A partitioned approach has many advantages: indeed, we have the
possibility to combine different discretization tools for the two physics (e.g., finite volumes
for the fluid and finite elements for the structure), we have the possibility to refine them
for one of the two physics in time, as required by the situation. Unfortunately, in this case,
there are also some drawbacks, as it turns out that, under some physical and geometrical
conditions, partitioned algorithms are unstable; this situation may occur when the physical
domain has a slender shape or when the fluid density ρ f is close to the solid density ρs
(this is almost always the case in hemodynamics applications, where the density of the
blood is quite close to the density of the walls of the vessel). This instability occurs because
of the well-known added mass effect : the fluid acts similar to an added mass to the solid,
thus changing its natural behavior. The reader interested in the analysis behind the added
mass effect and in its derivation is referred to [38]. With a partitioned procedure, we can
give rise to a variety of different algorithms according to the strategy used to impose the
coupling conditions at the fluid–structure interface:

• Explicit algorithms : after time discretization, the coupling conditions are treated
explicitly at every time-step. These algorithms, also known as weakly or loosely coupled
algorithms [39], are successfully applied in aerodynamics applications (see [40,41]),
but some studies (see [38,42,43]) showed that they are unstable under some physical
and geometrical conditions due to the added mass effect, as we previously mentioned.

• Implicit algorithms: in these algorithms, also known as strongly coupled algorithms,
the coupling conditions are treated implicitly at every time-step; see for example
[44,45]. This implicit coupling represents a way to circumvent the instability problems
due to the added mass effect; nevertheless, an implicit treatment of the coupling
conditions leads to algorithms that are more expensive in terms of computational
time.

• Semi-implicit algorithms: in these algorithms (see [46–48]), the continuity of the
displacement is treated explicitly whereas the other coupling conditions are treated
implicitly. This alternative represents a tradeoff between the computational cost of the
algorithm and its stability in relation to the physical and geometrical properties of the
problem. In Section 6.4, we present a reduced order method that is based on this kind
of partitioned approach.

4. Monolithic Approach

In the following, we propose a monolithic approach for coupled problems. As already
mentioned in the Introduction, a monolithic approach means that we solve the fluid and
the solid problem all together; as we see in Section 4.2, this leads to a more subtle treatment
of the coupling conditions at the fluid–structure interface; at the same time, adopting a
monolithic procedure allows us to have better control of the global behavior of the coupled
system. Before going any further, we now remark that, from now on, unless otherwise
stated, we assume that everything is formulated over the reference configuration. Therefore,
for ease of notation, we drop the hat symbol over the variables.

4.1. Time Discretization

We discretize the time interval [0, T] with equispaced time sample points, thus obtain-
ing {0 = t0, . . . , tNT = T}, where ti = i∆T and where ∆T is the time-step chosen. In the
following, we make use of the notation f i := f (ti) for any given function f .

We discretize the time derivatives in the fluid problem with a second-order backward
difference formula (BDF2) (see [37]):

Dtui+1
f =

3
2∆T

ui+1
f − 4

2∆T
ui

f +
1

2∆T
ui−1

f .
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Using a Newmark scheme for the solid problem as suggested in [49], we can define
the structure first- and second-order time derivatives:

Dttdi+1
s =

1
β∆T

(di+1
s − di

s)−
1

β∆T
Dtdi

s −
( 1

2β
− 1
)

Dttdi
s,

Dtdi+1
s =

γ

β∆T
(di+1

s − di
s)−

(γ

β
− 1
)

Dtdi
s − ∆T

( γ

2β
− 1
)

Dttdi
s,

where the constants γ and β are chosen in order to ensure unconditional stability of the
Newmark scheme, as suggested in [49].

4.2. Space Discretization

We now introduce the discrete version of the original problems (2)–(4) from a mono-
lithic point of view. Let us define the following function spaces:

V f := {u f ∈ [H1(Ω f )]
2 s.t. u f = u on Γ f

D × (0, T]},

V f
0 := {v f ∈ [H1(Ω f )]

2 s.t. v f = 0 on Γ f
D × (0, T])},

Q := {q ∈ L2(Ω f )},

E f := {d f ∈ [H1(Ω f )]
2 s.t. d f = 0 on ∂Ω f × (0, T])},

Es := {ds ∈ [H1(Ωs)]
2 s.t. ds = 0 on Γs

D × (0, T]}.

We consider the spaces V f , V f
0 , and E f to be endowed with the H1 seminorm (∇(·),∇(·))Ω f ;

Q to be endowed with the L2 norm; and the space Es to be endowed with the H1 seminorm
(∇(·),∇(·))Ωs .

We discretize the FSI problem in space, using the inf–sup stable Taylor–Hood pair
(V f

h , Qh) = (P2,P1) for the fluid velocity and the fluid pressure and, similarly, for the

space V f
0 . We use second-order Lagrange finite elements obtaining the discrete space

E f
h ⊂ E f for the mesh displacement and, similarly, for the solid displacement, resulting in

the discretized space Es
h ⊂ Es. The weak formulation of problems (2) and (4) now reads:

find (u f ,h, p f ,h, d f ,h, ds,h) ∈ V f
h × Qh × E f

h × Es
h such that, for every (v f ,h, q f ,h, e f ,h, es,h) ∈

V0
h ×Qh × E f

h × Es
h,

(∂ttds,h, es,h)Ωs + (P(ds,h),∇es,h)Ωs − (P(ds,h)ns, es,h)ΓFSI = (bs, es,h)Ωs ,
ρ f J(∂tu f ,h, v f ,h)Ω f + ρ f J(∇u f ,hF−1u f ,h, v f ,h)Ω f − ρ f J(∇u f ,hF−1∂td f ,h, v f ,h)Ω f +

+(Jσf (u f ,h, p f ,h)F−T ,∇v f ,h)Ω f − (Jσf (u f ,h, p f ,h)F−Tn f , v f ,h)ΓFSI = (Jb f , v f ,h)Ω f

−(div(JF−1u f ,h), q f ,h)Ω f = 0

( 1
J∇d f ,h,∇e f ,h)Ω f = ( 1

J∇d f ,hn f , e f ,h)ΓFSI .

(7)

In the previous system, n f and ns are the normals to the fluid–structure interface, from
the fluid domain and the solid domain, respectively.

Coupling Conditions through Lagrange Multipliers

Let us analyze the boundary integrals appearing in system (7) a little bit more in detail.
From condition (5), it is clear that we have to satisfy the following:

(P(ds,h)ns, es,h)ΓFSI = −(Jσf (u f ,h, p f ,h)F−Tn f , v f ,h)ΓFSI .

Now, let us have a look at condition (5). It is easy to see that, in the time-continuous
regime, thanks to (5), the following are equivalent:

d f ,h = ds,h on ΓFSI , ∂tds,h = u f ,h on ΓFSI , ∂tds,h = ∂td f ,h on ΓFSI .
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This equivalence does not hold anymore in general after time discretization, as one
may choose different time integration schemes for the fluid and for the solid. In this work,
we chose to weakly enforce the two following conditions:

d f ,h = ds,h on ΓFSI , ∂tds,h = u f ,h on ΓFSI . (8)

In order to do so, let us introduce the space L := [H−
1
2 (ΓFSI)]

2 first and let us consider
a finite dimensional subspace Lh ⊂ L (we use first-order Lagrange finite elements). Let us
take a discretized Lagrangian multiplier field λu,h ∈ Lh and its corresponding test function
µu,h ∈ Lh. We can then write

(µu,h, u f ,h − ∂tds,h)ΓFSI = 0,

and, by identifying the Lagrange multiplier with the unknown surface traction, we can
finally rewrite the surface integrals in (7) as follows:

−(P(ds,h)ns, es,h)ΓFSI = −(λu,h, es,h)ΓFSI ,

−(Jσf (u f ,h, p f ,h)F−Tn f , v f ,h)ΓFSI = +(λu,h, es,h)ΓFSI .

We treat the continuity of the displacements at the interface similarly: we take another
Lagrangian multiplier field λd,h ∈ Lh and its corresponding test function µd,h ∈ Lh. We can
then write

(µd,h, d f ,h − ds,h)ΓFSI = 0,

and now we identify the Lagrange multiplier with the surface traction caused by the mesh
displacement; thus, we can rewrite the surface integral in (7)4 as follows:

(
1
J
∇d f ,hn f , e f ,h)ΓFSI = (λd,h, e f ,h)ΓFSI .

Finally, after the space and the time discretization, our monolithic coupled system
reads as follows: for every ti, i = 0, . . . , NT , find ui+1

f ,h ∈ V f
h , pi+1

f ,h ∈ Qh, di+1
f ,h ∈ E f

h ,

di+1
s,h ∈ Es

h, λi+1
u,h ∈ Lh, and λi+1

d,h ∈ Lh such that, for every v f ,h ∈ V0
h , q f ,h ∈ Qh, e f ,h ∈ E f

h ,
es,h ∈ Es

h, µu,h ∈ Lh, and µd,h ∈ Lh,

(Dttdi+1
s,h , es,h)Ωs + (P(di+1

s,h ,∇es,h)Ωs + (λi+1
u,h , es,h)ΓFSI = (bs, es,h)Ωs ,

ρ f J(Dtui+1
f ,h , v f ,h)Ω f + ρ f J(∇ui+1

f ,h F−1ui+1
f ,h , v f ,h)Ω f − ρ f J(∇u f ,hF−1Dtdi+1

f ,h , v f ,h)Ω f +

+(Jσf (u
i+1
f ,h , pi+1

f ,h )F−T ,∇v f ,h)Ω f − (λi+1
u,h , v f ,h)ΓFSI = (Jb f , v f ,h)Ω f

−(div(JF−1ui+1
f ,h ), q f ,h)Ω f = 0

( 1
J∇di+1

f ,h ,∇e f ,h)Ω f = (λi+1
d,h , e f ,h)ΓFSI ,

(ui+1
f ,h − Dtdi+1

s,h , µu,h)ΓFSI = 0,

(di+1
f ,h − di+1

s,h , µd,h)ΓFSI = 0.
(9)

4.3. Lifting Function and Supremizer Enrichment

We now present the technique used to perform a compression on the set of snapshots
obtained with the monolithic FE discretization in order to create a set of reduced basis
functions. The first detail that we explain is the introduction of a lifting function for the fluid
velocity u f ,h. The use of a lifting function is quite common in the RBM approach; see for
example [1,50]: the advantage of this technique is represented by the fact that, sometimes,
in the problem of interest, we have to deal with non-homogeneous Dirichlet boundary
conditions, as in our case, where we remind the reader that we ask for u f ,h(t) = uin(t)
at the inlet boundary for every t ∈ (0, T]. From the implementation point of view, this
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condition does not present any problems during the offline phase, where we solve the
FE discretization of the original problem. However, this non-homogeneous condition
represents a problem during the solution of the online system. Indeed, if we perform a
POD on a set of snapshots that satisfy the same inlet condition, we obtain a set of reduced
basis functions for the fluid velocity that has a given value at the inlet boundary. Now, let
us assume that we have solved the online system and, hence, have found the coefficients
that allow us to represent the reduced velocity approximation as a linear combination of
the velocity reduced basis functions. It is easy to imagine that a linear combination of these
basis functions does not automatically satisfy the original inlet condition in general. A
solution to this problem is represented by the introduction of a lifting function `h(t) ∈ V f

h

during the offline phase such that `h(t) = uin(t) on Γ f
D for every t ∈ (0, T]. By subtracting

the lifting function to the fluid velocity snapshots u f ,h before performing a POD, we obtain

a new variable u0,h := u f ,h − `h ∈ V f
0 that satisfies a homogeneous Dirichlet boundary

condition also at the fluid inlet boundary Γin: these are the snapshots on which we perform
a POD, thus obtaining basis functions that are all zero at the inlet boundary. We point
out that the definition of the lifting function is not unique; for our problem, the lifting
function `h is defined by solving a steady Stokes problem over Ω f at every time-step, with
a prescribed inlet velocity uin and with homogeneous Dirichlet boundary conditions on
Γwalls ∪ ΓFSI , but other choices are possible as well.

Another important technique that has been used in this manuscript is the supremizer
enrichment technique, which is necessary in order to obtain a stable approximation of the
fluid pressure also at the reduced order level. The main reason for the introduction of the
supremizer enrichment is that, even if the FE spaces (V f

h , Qh) satisfy the inf–sup condition
(which guarantees that the Navier–Stokes problem is uniquely solvable with respect to
the pressure; see for example [51,52]), this may not hold true anymore once we move to
the reduced spaces generated by the reduced basis functions. With the introduction of the
supremizer enrichment, therefore, we aim to construct a pair of reduced function spaces
for the fluid velocity and the fluid pressure, that also satisfies the inf–sup condition. The
supremizer variable sh ∈ V0

h , is defined by solving the following problem: find sh ∈ V0
h

such that
−(divv f ,h, p f ,h)Ω f = (∇sh,∇v f ,h)Ω f ∀v f ,h ∈ V0

h .

In the previous equation, p f ,h is the FE pressure solution of the Navier–Stokes problem
whereas the right-hand side is the scalar product that defines the H1 seminorm, which we
consider for the velocity function space V0

h . For the reader interested in the details about
this technique as well as the computations that lead to the formulation of the previous
problem, we refer to [50,53].

4.4. Reduced Basis Generation

Once we obtain the FE supremizer snapshots si
h, i = 0, . . . , NT , and once we homoge-

nize the fluid velocity snapshots thanks to the lifting function, we are ready to generate a
set of reduced basis by performing a compression by Proper Orthogonal Decomposition.
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In order to perform a POD, we need two main ingredients: the matrices of the inner
products and the snapshots matrices. First, we need to introduce the basis functions for the
FE spaces that we consider. We define the following:

{ϕu
1, . . . ,ϕu

N u
h
} the FE basis of the discretized space V0

h ,

{ϕ
p
1 , . . . , ϕ

p
N p

h
} the FE basis of the discretized space Qh,

{ϕd f
1 , . . . ,ϕ

d f

N
d f
h

} the FE basis of the discretized space E f
h ,

{ϕds
1 , . . . ,ϕds

N ds
h
} the FE basis of the discretized space Es

h,

{ϕλ
1 , . . . ,ϕλ

N λ
h
} the FE basis of the discretized space Lh,

where N u
h is the dimension of the FE space V0

h , N p
h is the dimension of the FE space Qh,

N d f
h is the dimension of the FE space E f

h , N ds
h is the dimension of the FE space Es

h, and N λ
h

is the dimension of the FE space Lh (which we remember we used to approximate both
the Lagrange multiplier λu and the Lagrange multiplier λd). We begin by constructing the
snapshots matrices Su ∈ RNh×M, Ss ∈ RNh×M,Sp ∈ RNh×M, Sd f

∈ RNh×M, Sds ∈ RNh×M,

Sλu ∈ RNh×M, and Sλd ∈ RNh×M defined as follows:

Su = [u1
0,h, . . . , uNT

0,h , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0 . . . , 0, 0, . . . , 0],

Ss = [s1
h, . . . , sNT

h , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0 . . . , 0, 0, . . . , 0],

Sp = [0, . . . , 0, p1
f ,h, . . . , pNT

f ,h , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0 . . . , 0],

Sd f
= [0, . . . , 0, 0, . . . , 0, d1

f ,h, . . . , dNT
f ,h , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0],

Sds = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, d1
s,h, . . . , dNT

s,h , 0, . . . , 0, 0, . . . , 0],

Sλu = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, λ1
u,h, . . . , λNT

u,h , 0, . . . , 0],

Sλd = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0λ1
d,h, . . . , λNT

d,h ].

In the previous definition, we have that Nh = N u
h +N p

h +N d f
h +N ds

h + 2N λ
h is the

sum of the dimensions of all FE spaces that we used for the FE approximation of each
component of the solution of the FSI system and that M = 6NT .

Next, we need to define the inner product matrices Xu, Xp, Xds , Xd f
, Xλu , and Xλd , all be-

longing to RNh×Nh . These matrices are block diagonal matrices and have the following form:

Xu = diag(xu, 0p, 0d f
, 0ds , 0λu , 0λd)

Xp = diag(0u, xp, 0d f
, 0ds , 0λu , 0λd)

Xd f
= diag(0u, 0p, xd f

, 0ds , 0λu , 0λd)

Xds = diag(0u, 0p, 0d f
, xds , 0λu , 0λd)

Xλu = diag(0u, 0p, 0d f
, 0ds , xλu , 0λd)

Xλd = diag(0u, 0p, 0d f
, 0ds , 0λu , xλd).
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In the previous definition, for simplicity, we used the following notation: 0∗ ∈ RN ∗h ×N ∗h
is a zero block of dimension N ∗h ×N

∗
h , where ∗ ∈ {u f , p, d f , ds, λu, λd}. In addition to this,

we have the following nonzero blocks:

(xu)i,j = (∇ϕu
i ,∇ϕu

j )Ω f for i, j = 1, . . . ,N u
h ,

(xp)i,j = (ϕ
p
i , ϕ

p
j )Ω f for i, j = 1, . . . ,N p

h ,

(xd f
)i,j = (∇ϕ

d f
i ,∇ϕ

d f
j )Ω f for i, j = 1, . . . ,N d f

h ,

(xds)i,j = (∇ϕds
i ,∇ϕds

j )Ωs for i, j = 1, . . . ,N ds
h ,

(xλu)i,j = (ϕλ
i ,ϕλ

j )ΓFSI for i, j = 1, . . . ,N λ
h ,

(xλd)i,j = (ϕλ
i ,ϕλ

j )ΓFSI for i, j = 1, . . . ,N λ
h .

As the reader may notice, the inner product matrices are very big, given the fact that
N u

h , . . . ,N λ
h � 1: this is because the structure of the Proper Orthogonal Decomposition

itself reflects the fact that we use a monolithic approach to solve the FSI problem.
We are now able to define the correlation matrices Cu, Cs, Cp, Cd f

, Cds , Cλu , and Cλd , all

belonging to the space RM×M:

Cu := ST
u XuSu

Cs := ST
s XuSs

Cp := ST
p XpSp

Cd f
:= ST

d f
Xd f
Sd f

Cds := ST
ds

XdsSds

Cλu := ST
λu

XλuSλu

Cλd := ST
λd

XλdSλd

Remark: in the correlation matrices, all of the snapshots are defined on a common mesh.
Indeed, as we mentioned at the beginning of the section, we dropped the hat notation ,̂ with
the understanding that all of the quantities are defined on the common reference configuration.
This aspect is extremely important, as mapping everything back onto a reference configuration
greatly simplifies the implementation of the Proper Orthogonal Decomposition.

Once we built the correlation matrices, we carried out a POD compression on the
set of snapshots, following for example [54]. We did this by solving the following (seven)
eigenvalue problems:

C∗Q∗ = Q∗Λ∗, (10)

where ∗ ∈ {u f , s, p, d f , ds, λu, λd}, Q∗ is the eigenvectors matrix, and Λ∗ is the diagonal
eigenvalues matrix. The kth reduced basis function related to problem (10) is obtained by
applying the snapshots matrix S∗ to the kth column of the matrix Q∗; we therefore end up
with the following basis functions (assume for simplicity ∗ = u f ):

Φu
k :=

1√
λu

k
Suvu

k ,

where λu
k is the eigenvalue corresponding to the eigenvector vu

k . Similar definitions hold
true for the other components of the solution, namely p f , ds, d f , λu, and λd, as well as for
the supremizer s. We refer the reader interested in more details about the POD to [1,50].
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We therefore end up with the following set of reduced basis: {Φs,u
1 , . . . , Φs,u

Nu
, . . . , Φ

λd
1 , . . . ,

Φ
λd
Nλd
}, where each basis function is a block function of six components (one for each vari-

able in the FSI problem):

Φs,u
k =



Φs,u
k
0
0
0
0
0

, . . . , Φ
λd
k =



0
0
0
0
0

Φλd
k


.

where we have used the following notation: let {Φu
1 , . . . , Φu

N1} be the basis functions
obtained by a compression by POD on the fluid velocity snapshots and let {Φs

1, . . . , Φs
N2}

be the basis functions obtained by running a POD on the supremizer snapshots. In order to
carry on the supremizer enrichment technique, we consider the union of the two sets of
basis functions {Φu

1 , . . . , Φu
N1, Φs

1, . . . , Φs
N2} and then denote by Φs,u

k a generic element of
the last set. We indicated Φs,u

k in order to remark that the reduced basis functions for the
fluid velocity consist of the reduced basis generated by the fluid velocity snapshots and of
the reduced basis generated by the supremizer snapshots.

Finally, we introduce the reduced order finite dimensional space VN = span{Φs,u
1 , . . . ,

Φs,u
Nu

, . . . , Φ
λd
1 , . . . , Φ

λd
Nλd
}, with Nu = N1 + N2 and N = Nu + · · ·+ Nλd .

4.5. Online Phase

Once we have the reduced basis functions, we can define the reduced solution ui+1
N :=

(ui+1
0,Nu

, pi+1
Np

, di+1
Nd f

, di+1
Nds

, λi+1
Nλu

, λi+1
Nλd

) of our FSI problem:

ui+1
0,Nu

:=
Nu

∑
k=0

ui+1
0,k Φs,u

k , (11)

pi+1
Np

:=
Np

∑
k=0

pi+1
k

Φp
k , (12)

di+1
Nd f

:=

Nd f

∑
k=0

di+1
f ,k Φ

d f
k , (13)

di+1
Nds

:=
Nds

∑
k=0

di+1
s,k Φds

k , (14)

λi+1
Nλu

:=
Nλu

∑
k=0

λi+1
u,k Φλu

k , (15)

λi+1
Nλd

:=
Nλd

∑
k=0

λi+1
d,k Φλd

k . (16)

In the previous equations, the underline bar indicates the vector of coefficients of
the reduced solution; therefore, it indicates an element of R (for scalar components of the
reduced solution) or R2 for vectorial components of the reduced solution (such as the fluid
velocity for example). The online monolithic reduced order system reads as follows: for
every ti+1, i = 0, . . . , NT − 1, find ui+1

N ∈ VN , ui+1
N = (ui+1

0,Nu
, pi+1

Np
, di+1

Nd f
, di+1

Nds
, λi+1

Nλu
, λi+1

Nλd
)

such that, for all vN ∈ VN , vN = (vNu , qNp , eNd f
, eNds

, µNλu
, µNλd

), the following holds
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

(Dttdi+1
Nds

, eNds
)Ωs + (P(di+1

Nds
),∇eNds

)Ωs + (λi+1
Nλu

, eNds
)ΓFSI = (bs, eNds

)Ωs ,

ρ f J(Dt(ui+1
0,Nu

+ `i+1
Nu

), vNu)Ω f + ρ f J(∇(ui+1
0,N + `i+1

Nu
)F−1(ui+1

0,N + `i+1
Nu
− Dtdi+1

Nd f
), vNu)Ω f +

+(Jσf (u
i+1
0,N + `i+1

Nu
, pi+1

Np
)F−T ,∇vNu)Ω f − (λi+1

Nλu
, vNu)ΓFSI = (Jb f , vNu)Ω f ,

−(div(JF−1ui+1
0,N + `i+1

Nu
), qNp)Ω f = 0

( 1
J∇di+1

Nd f
,∇eNd f

)Ω f = (λi+1
Nλd

, eNd f
)ΓFSI ,

(ui+1
0,N + `i+1

Nu
, µNλu

)ΓFSI − (Dtdi+1
Nds

, µNλu
)ΓFSI = 0,

(di+1
Nd f
− di+1

Nds
, µNλd

)ΓFSI = 0.

(17)

In the previous system, `i+1
Nu

is the projection of the finite element lifting function `i+1
h

on the finite dimensional space generated by the velocity reduced basis functions. Once
we solve the online system, we can restore the reduced fluid velocity ui+1

Nu
that satisfies the

inlet condition ui+1
Nu

= uin(ti+1) on Γin by using the relation ui+1
Nu

= ui+1
0,Nu

+ `i+1
Nu

.

5. Results

We now present some numerical results that were obtained by adopting a monolithic
approach for the toy problem inspired by the Turek–Hron benchmark test case [31,32]; in
particular, we refer to the test case FSI2 therein, which corresponds to a fluid with Reynolds
number Re = 100. We remark again before going any further that, while in the original
benchmark problem the Green strain tensor was used for the solid, here, we used the
linearized strain tensor, with the reason being that we are not interested in modelling large
deformations; however, the values of the parameters are taken from the benchmark FSI2
presented in [31,32].

All of the numerical simulations for the offline phase were obtained with the use of
multiphenics [55], whereas the online simulations were implemented with RBniCS [56].

Figure 2 represents the physical domain of the problem of interest. The channel has a
length L f = 2.5 cm and a height of h f = 0.41 cm. The cylinder, which is assumed to be at
rest and therefore is not considered as part of the solid domain, has center C = (0.2, 0.2)
and a radius of r = 0.05 cm. The deformable bar is 0.35 cm long and 0.02 cm thick.

ΓoutΓs
DΓin

A f (t)
y

Figure 2. Reference configuration of the benchmark test case. The solid is depicted in red, while the
fluid domain is in blue.

In Table 1, we summarized the values of the physical parameters identifying the fluid
and the solid behavior: as we can see, the test case corresponds to a fluid with Reynolds
number Re = 100, where Re = U2r

ν f
, and r is the radius of the immersed cylinder. We

impose homogeneous Dirichlet boundary conditions around the cylinder and on the top
and bottom walls of the cavity Γwalls for the fluid velocity and impose no conditions on Γ f

N .
We impose a velocity profile at the inlet boundary:

uin(t, y) :=

{
u(0, y) 1−cos( π

2 t)
2 if t < 2s

u(0, y) otherwise,

where
u(0, y) = 1.5U × 4

0.1681
y(0.41− y),
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and the value of U is reported in Table 1. We also require the bar to be attached to the
cylinder; therefore, ds = 0 on Γs

D.

Table 1. Values of the physical constants of the fluid and of the solid.

Parameter Value Parameter Value

Fluid density ρ f [103 kg
m3 ] 1 Solid density ρs[103 kg

m3 ] 1
Fluid kinematic viscosity ν f [10−3 m2

s ] 1 2nd Lamé constant (solid shear modulus) µs[106 kg
ms2 ] 0.5

Mean inflow velocity Ū [m
s ] 1 1st Lamé constant λs 0.4

Fluid external force b f (0, 0) Solid external force bs (0, 0)

We use a time-step ∆t = 10−2 for the discretization in time, and the two constants
γ and β used for the discretization of the structure time derivatives have the following
values: γ = 0.25 and β = 0.5. The total number of iterations of the simulation is NT = 103:
all of these values are summarized in Table 2.

Table 2. Values of the parameters in the time discretization and in the spatial discretization.

Time Discretization Parameters Value

Timestep ∆T 0.01s
Total number of iterations NT 103

γ 0.25
β 0.5

Space Discretization Parameters Value

FE velocity order 2
FE pressure order 2

FE displacement order (d f and ds) 2
FE multiplier order (λu and λd) 1

mesh resolution using mshr mesh generator 128

Since we are mostly interested in investigating the performance and the ability of
the monolithic approach to reproducing the behavior of the coupled system, we adopted
a mixed approach: we use a standard FE method, until the elastic bar starts to oscillate
because of the action of the fluid; then, we run the reduced method. The oscillating
behavior of the system takes approximatively i = 800 iterations to occur: we therefore run
the monolithic reduced order method for the remaining 200 iterations.

Figure 3a represents the behavior of the first 100 eigenvalues obtained with the POD
on the snapshots of the monolithic system. The eigenvalues of the solid displacement have
a faster decay with respect to the others, and this can be justified by the fact that the solid
displacement behavior is periodic (the bar oscillates up and down) and that therefore the
reduced order model is able to capture this periodic behavior with few modes. On the
other hand the fluid velocity eigenvalues present a slower decay with respect to the other
components: we expect this to be caused by the fact that, due to the periodic oscillation
of the solid, we have the formation of some small vortices in the fluid that propagate into
the domain, and this is a more complex phenomenon to reproduce with just a few modes.
In Figure 3b, we can see the behavior of the energy EN retained by the first N modes for
different components of the solution. Here, we give the definition of the retained energy
for the fluid velocity component u f , with the understanding that the energy retained for
the modes of the other components of the FSI solution is defined in the exact same way:

Eu
N =

∑N
k=1|λu

k |
∑Nu

k=1|λ
u
k |

.
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(a) Eigenvalues decay for u f , s, p f , d f , and ds. (b) Energy retained by the first 100 modes for u f , p f , d f , and ds.

Figure 3. The outcomes of the monolithic POD: eigenvalue decay (a) and retained energy (b) for the first 100 modes.

As we can see from the definition, the energy retained gives us some idea on the
amount of information about the physical phenomenon that the first modes carry within:
as it has to be expected by looking at the behavior of the eigenvalues, the first modes for the
solid retain almost all information about the solid behavior, whereas for the fluid velocity,
the energy retained slowly increases to 1.

Figures 4–7 are intended to help the reader visualize a few outputs of the Proper
Orthogonal Decomposition on the snapshots obtained with a monolithic approach. Figure 4
represents the first three modes for the fluid velocity and the first three modes for the
supremizer enrichment: we observe how the fluid velocity modes are all zero at the inlet
boundary thanks to the lifting function. Figure 5 represents the first three modes for
the fluid pressure: as we can see, the modes present a highly oscillating behavior, thus
suggesting that the supremizer may be needed in the online phase in order to get rid of any
instability in the pressure approximation. Figures 6 and 7 represent the modes for the mesh
displacement and the solid displacement: we remark that, by looking at the two figures, we
can see how the continuity of the displacement along the FSI interface and hence the need
for the Lagrange multiplier also in the online phase of the algorithm are not automatically
satisfied (as in the partitioned approach on the other hand) by the two sets of modes.

Figure 4. The first POD modes for the fluid velocity u f and for the supremizer s (magnitude) .
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Figure 5. The first three POD modes for the fluid pressure p f .

Figure 6. The first three POD modes for the fluid displacement d f (magnitude).

Figure 7. The first three POD modes for the solid displacement ds (magnitude).

Figure 8 represents the deformation of the elastic bar at time t = 0.9 s. The online
solution was obtained using Nds = 21 basis functions for the component ds of the solution
of the FSI system. As we can see, with this number of reduced bases, the method is
able to reconstruct the behavior of the solid component of the coupled system with good
accuracy: indeed, the absolute value of the approximation error over the solid domain has
a magnitude of 10−3, which, considered the magnitude of the solid deformation, represents
a percentage error of 0.07%. In Figures 9 we can see the behavior of the fluid pressure
again at time t = 0.9 s. The online approximation of the fluid pressure was obtained
by employing the supremizer enrichment technique, which requires the introduction of
further basis functions in the fluid velocity reduced space: without this technique, the
approximation of the fluid pressure becomes unstable and the whole algorithm diverges
after a few time–steps, as we can see in Figure 10. For the fluid pressure, as we can see
from Figure 9 bottom, the approximation error is good, and it represents a percentage error
of 0.17%. Figure 11 represents the fluid velocity: as we can see, with a Reynolds number of
100, after some time, we have the developement of some Karman vortices that propagate
into the fluid domain: the solid bar starts to oscillate and the whole system aquires a
periodical behavior. The monolithic algorithm is capable of capturing and reproducing
these complex phenomena, such as the Karman vortices in the fluid. Figure 11 shows the
behavior of the approximation error: we observe that the error is mostly localized in the
region of the domain that is close to the two main vortices that are detached from the solid
bar, as it has to be expected, since this represents, from the fluid point of view, the most
difficult physical aspect to reproduce.
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Figure 8. The deformation of the bar at time t = 0.9 s: the FE solution (top left) and the reduced order
solution (top right). Bottom: approximation error |ds,h − ds,N |, represented over the solid reference
configuration (undeformed state). Nds = 21 basis functions were used for the solid displacement.
The deformation was magnified by a factor 5 for visualization purposes.

Figure 9. Fluid pressure at time t = 0.9 s: the FE solution (top left) and the reduced order solution (top right). Bottom:
approximation error |p f ,h − p f ,N |. Np = 21 basis functions were used for the fluid pressure, with the supremizer enrichment
technique.

Figure 10. Fluid pressure approximation without the implementation of the supremizer enrichment: solution before the
code diverges.

Figure 11. Fluid velocity at time t = 0.9 s: the FE solution (top left) and the reduced order solution (top right). Bottom:
approximation error |u f ,h − u f ,N |. Nu = 42 basis functions were used for the fluid velocity.

Finally, Figure 12 represents the behavior of the average relative error of approximation
for the different components of interest of the FSI problem: the average is taken over the
number of time-steps. The relative error of approximation is computed in the norm
considered in this manuscript for each component of the solution; hence, the H1 seminorm
over Ω f for u f and d f , the L2 norm over Ω f for p f , and the H1 seminorm over Ωs for ds.
We would like to remark that, for this error analysis, we kept the number of reduced basis
functions for the Lagrange multipliers fixed, in this specific case, to Nλu = Nλd = 5. Indeed,
we observed an increased presence of stability issues of the online algorithm as we increased
the number of modes for the approximation of the Lagrange multipliers. One possible
explanation to this is the following: in the online system (see Equation (17)), the reduced
Lagrange multiplier λNλu

represents the surface traction created by the homogenized fluid
velocity u0,N and not by the fluid velocity uN . For this reason, the FE Lagrange multiplier
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and the reduced order Lagrange multiplier have a different physical interpretation. We
suspect this may be the source of instabilities arising by increasing the number of modes
for the multipliers: further investigations on this subject will be carried out as future steps.

Figure 12. Average relative error as a function of the number of basis functions used in the online system.

It is interesting to see that the average error of approximation decreases up to a certain
number of basis function: in this specific case, it decreases up until, more or less, 20 reduced
bases are used. After this threshold, the average relative approximation error increases and
reaches a plateau, which indicates the fact that we have no gain in adding more reduced
basis functions in the simulation. The increase in the average approximation error indicates
that we reached a number of modes after which, if we add more basis functions, we just add
noise to the online system. The same behavior is observed in Figure 13, which represents
the average approximation error of the solid stress at the fluid–structure interface, where
the average is taken over the number of time–steps, and the error is computed in the L2

norm: again, the approximation error increases if we use a number of reduced basis that is
greater than 20, confirming the fact that we are just adding noise to the system.

Figure 13. Average approximation error for the solid stress at the FSI interface.

6. Partitioned Approach

In this section, we propose an alternative approach that is instead based on a seg-
regated procedure: the idea is now to solve the fluid and the solid problems separately
and to couple the two physics through some iterative procedure. As we will see, this
idea leads to some advantages from the reduction point of view, and it allows us to work
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without the employment of additional Lagrange multipliers for the coupling conditions at
the fluid–structure interface. The procedure that we propose is based on a Chorin–Temam
projection scheme for the incompressible Navier–Stokes equations [57,58]; in addition, we
employ a semi-implicit treatment of the coupling conditions [12,47,59].

6.1. Time Discretization

We first present the partitioned scheme after time discretization. ∆T is the time-step:
we also employ an equispaced discretization of the time interval [0, T] in this case. For
discretization of the time derivative of a function f , we now use first backward differ-
ence BDF1:

Dt f i+1 =
f i+1 − f i

∆T
, Dtt f i+1 = Dt(Dt f i+1).

The partitioned algorithm reads as follows for i = 0, . . . , NT :

• Extrapolation of the mesh displacement: find di+1
f : Ω f 7→ R2 such that

{
−∆di+1

f = 0 in Ω f ,

di+1
f = di

s on ΓFSI .
(18)

• Fluid explicit step: find ui+1
f : Ω f 7→ R2 such that


Jρ f

( ui+1
f −ui

f
∆T +∇ui+1

f F−1(ui+1
f − Dtdi+1

f )
)
−

−ρ f ν f div(Jε(ui+1
f )F−T) + JF−T∇pi

f = Jb f in Ω f ,

ui+1
f = Dtdi+1

f on ΓFSI ,

(19)

subject to the Dirichlet boundary condition ui+1
f = u(ti+1) on Γ f

D, where u(t) is

defined as in Equation (6). In the above system, ε(ui+1
f ) is defined as follows:

ε(ui+1
f ) := ∇ui+1

f F−1 + F−T∇Tui+1
f .

• Implicit step:

1. Fluid projection substep (pressure Poisson formulation): find pi+1
f : Ω f 7→ R2

such that {
−div(JF−1F−T∇pi+1

f ) = − ρ f
∆t div(JF−1ui+1

f ) in Ω f ,

−F−T∇pi+1
f · JF−Tn f = ρ f Dttdi+1

s · JF−Tn f on ΓFSI ,
(20)

subject to the boundary conditions:

pi+1
f = p on Γin, (21)

where p is a prescribed pressure that we computed: a more detailed discussion
about this aspect is presented after the structure problem substep.

2. Structure projection substep: find di+1
s : Ωs 7→ R2 such that{

ρsDttdi+1
s − divP(di+1

s ) = bs in Ωs,
−P(di+1

s )ns = Jσf (u
i+1
f , pi+1

f )F−Tn f on ΓFSI ,
(22)

subject to the boundary condition di+1
s = 0 on Γs

D.
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Before going any further, we briefly summarize some important remarks of this
formulation of the original FSI problem:

1. The original Navier–Stokes problem was divided into two subproblems, namely the
fluid explicit step and the fluid projection step. In the explicit step, we take care of
the momentum balance of the fluid problem, whereas in the projection step, we take
care of the divergence free condition: this subdivision is a peculiarity of the Chorin–
Temam projection scheme; we refer the interested reader to [57,58]. The advantage of
adopting such a numerical scheme for the fluid problem is given by the fact that, in
this case, we can also use pairs of discrete spaces (Vh and Qh) for the fluid velocity
and pressure that do not necessarily satisfy the inf–sup condition; this represents a
great advantage for the forthcoming online phase of the method, since we are able
to obtain a stable approximation of the fluid pressure also without employing the
supremizer enrichment technique, unlike in the monolithic approach.

2. The treatment of the boundary conditions (in our specific case, the inlet boundary
condition) is a delicate aspect of partitioned schemes. If the original problem of
interest is provided with a boundary condition for the fluid Cauchy stress tensor
σ f (u f , p f )nin = gin, where nin is the normal outgoing the inlet boundary, then during
the Chorin–Temam projection scheme, this condition can be splitted into two: a natural
condition for the fluid velocity explicit step ε(u f )nin = 0 and a Dirichlet condition
for the pressure p f nin = gin (see for example [58]). However, in our particular toy
problem, we have a Dirichlet inlet condition for the velocity: we therefore need a
Dirichlet boundary condition also for the pressure in order to obtain uniqueness of
solution of the pressure Poisson problem. In this case, we have no specific indication
of what value for the pressure to choose at the inlet boundary: for our test case, we
decided to compute the inlet pressure value by computing the quantity σ f (u f , p f )nin
on the inlet boundary and use the fact that, there, we have u f = uin.

3. In the projection step (20), we chose a pressure Poisson formulation; it is possible to
use a Darcy formulation instead: find pi+1

f and ũi+1
f such thatρ f J

ũi+1
f −ui+1

f
∆T + JF−T∇pi+1

f = 0 in Ω f ,

div(JF−1ũi+1
f ) = 0 in Ω f .

However, in view of an efficient model order reduction, we chose to employ a Poisson
formulation, since the Darcy formulation requires the introduction of an additional
unknown ũ f , which translates in a larger system, comprised of both velocity and
pressure, at the implicit step.

In order to enhance the stability of the projection scheme, we employ Robin–Neumann
coupling, as proposed in [12,60]; for other references on this kind of coupling, we refer to
[61,62]. We thus replace condition (20) with the following:

αROB pi+1 + F−T∇pi+1 · JF−Tn f = αROB pi+1,? − ρ f Dttdi+1,?
s · JF−Tn f . (23)

In Equation (23), pi+1,? and di+1,?
s are suitable extrapolations of the fluid pressure

and the solid displacement, respectively; we show in the next paragraph which kind of
extrapolation we use. The constant αROB is defined as αROB =

ρ f
zp∆T , where zp is called the

solid impedance:

zp = ρscp,

cp =

√
λs + 2µs

ρs
.
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6.2. Space Discretization

We now aim to provide the final formulation of the partitioned problem; in order to
do so, we need to discretize in space the original problem. We consider hereafter the same
function spaces V f , V f

0 , E f , and Es that have been defined in Section 4.2. As far as the
fluid pressure is concerned, with the Chorin–Temam projection scheme, the solution of the
Poisson problem is now in H1, and therefore, we introduce the following pressure function
spaces:

Q := {q ∈ H1(Ω f ) st. q = p on Γin},
Q0 := {q ∈ H1(Ω f ) st. q = 0 on Γin}.

Additionally, in this case, we discretize the FSI problem in space using second-order
Lagrange finite elements for the fluid velocity, the fluid displacement, and the solid dis-
placement, resulting in the discrete spaces V f

h ⊂ V f , V0
h ⊂ V f

0 , E f
h ⊂ E f , and Es

h ⊂ Es,
while the fluid pressure is discretized with first-order Lagrange finite elements, resulting in
the discrete spaces Qh ⊂ Q, Q0

h ⊂ Q0 . We are now ready to present the weak formulation
of the original problem for every i = 0, . . . , NT :

• Extrapolation of the mesh displacement: find di+1
f ,h ∈ E f

h such that ∀e f ,h ∈ E f
h :

{
(∇di+1

f ,h ,∇e f ,h)Ω f = 0

di+1
f ,h = di

s,h on ΓFSI .
(24)

• Fluid explicit step: find ui+1
f ,h ∈ V f

h such that ∀v f ,h ∈ V0
h :

ρ f (J
(ui+1

f ,h − ui
f ,h

∆T

)
, v f ,h)Ω f + ρ f (J(∇ui+1

f ,h F−1(ui+1
f ,h − Dtdi+1

f ,h )), v f ,h)Ω f

+ ρ f ν f (Jε(ui+1
f ,h )F−T ,∇v f ,h)Ω f + (JF−T∇pi

f ,h, v f ,h)Ω f = (Jb f , v f ,h)

ui+1
f ,h = Dtdi+1

f ,h on ΓFSI ,

(25)

• Implicit step: for any j = 0, . . . until convergence:

1. Fluid projection substep (pressure Poisson formulation): find pi+1,j+1
f ,h ∈ Qh such

that ∀q f ,h ∈ Q0
h:

−
ρ f

∆T
(div(JF−1ui+1

f ,h ), q f ,h)Ω f − ρ f ((Dttd
i+1,j
s,h ), JF−Tn f q f ,h)ΓFSI+

+ αROB(pi+1,j
f ,h , q f ,h)ΓFSI = αROB(pi+1,j+1

f ,h , q f ,h)ΓFSI + (JF−T∇pi+1,j+1
f ,h , F−T∇q f ,h)Ω f .

(26)

2. Structure projection substep: find di+1,j+1
s,h ∈ Es

h such that ∀es,h ∈ Es
h:

ρs(Dttd
i+1,j+1
s,h , es,h)Ω f + (P(di+1,j+1

s,h ),∇es,h)Ωs = −(Jσf (u
i+1
f ,h , pi+1,j+1

f ,h )F−Tn f , es,h)ΓFSI + (bs, es,h)Ωs (27)

subject to the boundary condition di+1,j+1
s,h = 0 on Γs

D.

We iterate between the two implicit substeps using a fixed point strategy:

max
( ||pi+1,j+1

f ,h − pi+1,j
f ,h ||Qh

||pi+1,j+1
f ,h ||Qh

;
||di+1,j+1

s,h − di+1,j
s,h ||Es

h

||di+1,j+1
s,h ||Es

h

)
< ε, (28)

where ε is a fixed tolerance.
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In the pressure Poisson formulation, to impose the Robin coupling condition, we
chose the pressure at the previous implicit iteration, namely pi+1,j

f , as an extrapolation for
the fluid pressure, and the same goes for the extrapolation of the structure displacement.

6.3. Reduced Basis Generation

For generation of the reduced basis for the fluid velocity u f ,h and the fluid displace-
ment d f ,h we pursue the idea that was first proposed in [12]. For the solid displacement
ds,h, we employ a standard POD; for fluid pressure p f ,h, we first introduce a lifting function
`p(t) and obtain the homogenized pressure p0,h(t) = p f ,h(t)− `p(t) such that p0,h(t) = 0
on Γin × (0, T] and then we perform a standard POD. We therefore define the reduced
pressure space Q0

N := span{Φp
1 , . . . , Φp

Np
}.

6.3.1. Change of Variable for the Fluid Velocity

The main idea here is to introduce a change of variable for u f ,h in the fluid problem in
order to transform condition (25) into a homogeneous boundary condition. The reason for
this is similar to the reason why we introduced the lifting function in the first place: it is
more convinient for the sake of the online system to work with homogeneous boundary
conditions. Indeed, even if the reduced basis functions satisfy condition (25) , it is not guar-
anteed, in general, that an element of the linear space generated by these reduced basis will
also satisfy condition (25) . For this reason, we need to introduce a Lagrange multiplier in
order to make sure that Equation (25) is satisfied also at the reduced order level. Therefore,
in order to avoid this and in order to design a more efficient reduced method, we chose
to transform the non-homogeneous coupling condition into a homogeneous one. First,
we transform the non–homogeneous inlet boundary condition ui+1

f = uin(ti+1) on Γin, by
introducing a lifting function `u, similar to that performed for the monolithic approach in
Section 4.3: we therefore obtain a homogenized fluid velocity ui+1

0,h such that ui+1
0,h = 0 on

Γin. Afterwards, we define a new variable zi+1
f ,h :

zi+1
f ,h := ui+1

0,h − Dtdi+1
f ,h = ui+1

f ,h − `i+1
u − Dtdi+1

f ,h

With this change in variable, Equation (25) is equivalent to the homogeneous boundary
condition for the new variable:

zi+1
f ,h = 0 on ΓFSI ,

for which no imposition by means of Lagrange multiplier is needed. Therefore, during the
offline phase of the scheme, at every iteration i + 1, after we compute the homogenized
velocity ui+1

0,h , we compute the change of variable zi+1
f ,h . We then consider the following

snapshots matrix:
Sz = [z1

f ,h, . . . , zNT
f ,h ] ∈ RN u

h ×NT ,

where N u
h = dimVh. We then apply a POD to the snapshots matrix Sz, and we retain the

first Nz POD modes Φz
1, . . . , Φz

Nz
. We therefore have the reduced space:

VN := span{Φz
k}

Nz
k=1,

and now it is clear that, since every Φz
k satisfies the condition Φz

k = 0 on ΓFSI , then also
every element of VN satisfies the same condition.

6.3.2. Harmonic Extension of the Fluid Displacement

In order to generate a reduced basis for the fluid displacement d f , we pursue the idea
presented in [12]. Therefore, we start by generating the snapshots matrix related to the
solid displacement:

Sds = [d1
s,h, . . . , dNT

s,h ] ∈ RN
ds
h ×NT ,
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whereN ds
h = dimEs

h, and again, the underline notation denotes the vector of the FE degrees
of freedom corresponding to each solution of the solid displacement. We then apply a POD
to the snapshots matrix and retain the first Nds POD modes Φds

1 , . . . , Φds
Nds

, thus defining
the reduced space for the solid problem:

Es
N := span{Φds

k }
Nds
k=1.

We then employ a harmonic extension of each one of the reduced basis Φds
k to the fluid

domain, thus obtaining the functions Φ
d f
k such that−∆Φ
d f
k = 0 in Ω f ,

Φ
d f
k = Φds

k on ΓFSI .

We can then define the reduced space for the fluid displacement:

E f
N := span{Φd f

k }
Nds
k=1.

The reason for defining the basis functions for d f in such a way instead of employing
a standard POD on the set of snapshots for the fluid displacement computed in the offline
phase lies in the fact that we want to avoid the introduction of another Lagrange multiplier
to impose the non-homogeneous boundary condition (24) With our method, we avoid
solving the reduced system related to Equation (24): indeed, instead of solving an harmonic
extension problem at every time-step in the online phase, we solve once and for all Nds

harmonic extension problems in the expensive offline phase. Then, during the online phase,

the reduced fluid displacement is computed just as a linear combination of the basis Φ
d f
k ,

with coefficients that are the coefficients of the reduced solid displacement at the previous
time-step. We see the final formulation of the online phase of the algorithm in the next
section.

6.4. Online Computational Phase

We are now ready to present the online formulation of the partitioned procedure. For
every i = 0, . . . , NT , we introduce the reduced functions zi+1

f ,N , p0,i+1
f ,N , di+1

s,N of the following
form:

zi+1
f ,N =

Nz f

∑
k=1

zi+1
k Φ

z f
k , (29)

p0,i+1
f ,N =

Np

∑
k=1

p0,i+1
k

Φp
k , (30)

di+1
s,N =

Nds

∑
k=1

di+1
k Φds

k . (31)

Then, the online phase of the partitioned procedure reads as follows:

Mesh displacement :

let di+1
f ,N be defined by the reduced solid displacement at the previous time-step:

di+1
f ,N =

Nds

∑
k=1

di
kΦ

d f
k ; (32)
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Fluid explicit step (with change of variable):

find zi+1
f ,N ∈ VN such that ∀v f ,N ∈ VN :

ρ f ∆T−1(J(zi+1
f ,N − ui

f ,N), v f ,N)Ω f + ρ f (J(∇(zi+1
f ,N + Dtdi+1

f ,N + `i+1
u,N)F−1zi+1

f ,N), v f ,N)Ω f

+ ρ f ν f (Jε(zi+1
f ,N)F−T ,∇v f ,N)Ω f + (JF−T∇pi

f ,N , v f ,N)Ω f + ρ f (J(∇zi+1
f ,N F−1`i+1

f ,N), v f ,N)Ω f =

− ρ f ∆T−1(J(Dtdi+1
f ,N), v f ,N)Ω f − ρ f ∆T−1(J`i+1

u,N , v f ,N)Ω f − ρ f ν f (Jε(Dtdi+1
f ,N)F−T ,∇v f ,N)Ω f

− ρ f ν f (Jε(`i+1
f ,N)F−T ,∇v f ,N)Ω f − ρ f (J(∇(Dtdi+1

f ,N + `i+1
u,N)F−1`i+1

f ,N), v f ,N)Ω f + (Jb f
N , v f ,N)Ω f ,

(33)

where again b f
N is the projection of the fluid volume external force on the space VN . We

then restore the reduced fluid velocity: ui+1
f ,N = zi+1

f ,N + Dtdi+1
f ,N + `i+1

u,N . Here `i+1
u,N is the

projection of the FE lifting function `i+1
u,h over the reduced basis space VN .

Implicit step:

for any j = 0, . . . until convergence:

1. Fluid projection substep: find p0,i+1,j+1
f ,N ∈ Q0

N such that ∀q f ,N ∈ Q0
N :

−
ρ f

∆T
(div(JF−1ui+1

f ,N), q f ,N)Ω f − ρ f ((Dttd
i+1,j
s,N ), JF−Tn f q f ,N)ΓFSI

+ αROB(pi+1,j
f ,N , q f ,N)ΓFSI − αROB(`

i+1
p , q f ,N)ΓFSI

− JF−T(∇`i+1
p , F−T∇q f ,N)Ω f = αROB(pi+1,j+1

f ,N , q f ,N)ΓFSI

+ (JF−T∇pi+1,j+1
f ,N , F−T∇q f ,N)Ω f ;

we then recover the reduced fluid pressure pi+1,j+1
f ,N = p0,i+1,j+1

f ,N + `i+1
p .

2. Structure projection substep: find di+1,j+1
s,N ∈ Es

N such that ∀es,N ∈ Es
N :

ρs(Dttd
i+1,j+1
s,N , es,N)Ωs + (P(di+1,j+1

s,N ),∇es,N)Ωs = −(Jσf (u
i+1
f ,N , pi+1,j+1

f ,N )F−Tn f , es,N)ΓFSI + (bs
N , es,N)Ωs , (34)

where bs
N is the projection of the solid volume external force on the space Es

N .

Additionally, at the reduced order level, the implicit steps are iterated between one
another until the stopping criteria Equation (28) is satisfied.

7. Results

We now present some results obtained by implementing the partitioned algorithm
previously described for the same FSI test case, namely the toy problem inspired by the
Turek–Hron benchmark test case: we remark here also that there is a difference with respect
to the original test case presented by Turek and Hron, since in [31,32], the authors consider
the Green strain tensor for the solid, whereas we restored a linear elasticity problem for the
structure. The physical constants describing the fluid and the solid properties are the same,
and we therefore refer to the values of Table 1.

The time-step used for the segregated approach is ∆t = 10−3, for a total of NT = 104

iterations. Additionally, in this case, we adopt a standard FE approach for the first 8000
iterations and we employ the partitioned reduced order model for the remaining 2000
iterations. All of the values are reported in Table 3.
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Table 3. Values of the parameters in the time discretization and in the spatial discretization.

Time Discretization Parameters Value

∆T 0.0001 s
total number of iterations NT 104

Space Discretization Parameters Value

FE velocity order 2
FE pressure order 1

FE displacement order 2
mesh resolution using mshr generator 128
tolerance ε for the implicit iterations 10−5

Figure 14a show the rate of decay of the eigenvalues for the fluid pressure p f , the
solid displacement ds, and the fluid velocity change of variable z f . As we can see, in this
case, the eigenvalues for the fluid variable z f and for the pressure p f show almost the same
rate of decay, whereas the eigenvalues for the solid displacement decay much faster. In
Figure 14b, we can see the energy retained by the first one hundred modes for z f , p f and
ds. As we can see, the first modes for the fluid pressure are the most energetic ones: they
retain almost 10% more energy with respect to the first modes of the solid displacement;
additionally, the first modes of the change of variable retain a larger amount of energy with
respect to the energy retained by the first modes of the solid displacement.

(a) Decay of the eigenvalues for z f , p f , and ds. (b) Energy retained for z f , p f , and ds

Figure 14. The outcomes of the partitioned POD: eigenvalue decay (a) and energy retained (b) for the first 100 modes.

Figure 15 represents the first three modes for the fluid change of variable z f , and it
is interesting to notice how the modes are zero not only on the inlet boundary but also
along the FSI interface thanks to the implementation of the change of variable. Figure 16
shows the first three modes for the fluid pressure: as we can see, in this case, the reduced
basis also show a highly oscillatory behavior; nevertheless, thanks to the choice of the
Chorin–Temam projection scheme, we are now able to obtain stable approximations of the
fluid pressure even without the supremizer enrichment. Finally, Figure 17 shows the first
three modes for ds (left column); on the right column, we have portraied the corresponding
first three basis functions for d f , obtained with the harmonic extensions (and not with a
POD on the mesh displacement snapshots!).
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Figure 15. The first three POD modes for the fluid velocity change in variable z f (magnitude): notice how, for the partitioned
approach, the magnitude of the modes is zero not only on the inlet boundary (thanks to the lifting function) but also on the
fluid–structure interface (thanks to the implementation of the change of variable).

Figure 16. The first three POD modes for the Poisson recovery of the fluid pressure p f .

Figure 17. The first three POD modes for the solid displacement ds (left column) and the corresponding mesh displacement
modes (right column) obtained with an harmonic extension of the basis functions on the left column.

In Figure 18, we can see the deformation of the elastic beam at the last time-step of the
simulation: in this case, we used 13 basis functions for the reduced order approach. We
can see that there is some difference between the FE solution and the reduced solution,
as the pointwise relative error tells us, with the highest approximation error again at the
point where the bar bends downwards: we suspect that this is because, in order to speed
up the computations in the online phase, we relaxed the tolerance for the implicit iterations
from 10−8 (FE discretization) to 10−5. Future investigations will be performed on how to
improve the approximation of the solid behavior. Figure 19 shows the fluid pressure that
was obtained in the partitioned scheme by solving a Poisson problem: this clearly leads to
numerical results that are slightly different from the ones in the monolithic approach, but
this has to be expected, since we introduced a “fictious” Dirichlet boundary condition for
the fluid pressure in order to guarantee uniqueness of the solution of the Poisson problem.
As we can see, the reduced order fluid pressure accurately represents the FE snapshot
even without the use of the supremizer enrichment technique. Finally, in Figure 20, we can
see the behavior of the fluid velocity: additionally, in this case, we recognize the Karman
vortices that develop after a while, and in this case, we can see that most of the error is
localized in the regions where these vortices detach from the bar and start to propagate
into the fluid domain.
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Figure 18. Deformation of the structure: FE solution (top left), reduced order solution (top right),
and local approximation error (bottom). The approximation was obtained with Nds = 13 basis
functions. The deformation was magnified by a factor 10 for visualization purposes.

Figure 19. Pressure Poisson recovery: FE solution (top left), reduced order solution (top right), and local approximation
error (bottom). The approximation was obtained with Np f = 13 basis functions.

Figure 20. Fluid velocity: FE solution (top left), reduced order solution (top right), and local approximation error (bottom).
The approximation was obtained with Nu f = 13 basis functions.

In Figure 21, we depicted the behavior of the average relative approximation error
(average with respect to time) of the various components of the problem, namely u f , p f ,
d f and ds. As we can see, the fluid velocity has the best approximation error compared
to the other components, and adding reduced basis functions does not seem to provide
a significant improvement in the approximation quality; on the contrary, adding basis
functions for p f does seem to affect the quality of the approximation. As we can see, from
N = 19, it looks like we just add noise to the online system. Finally, we can see that,
as expected also from the previous representation of the pointwise approximation error
(Figure 18, the solid displacement is the one for which we have the higher approximation
error: again, this could depend on the relaxation of the convergence tolerance of the implicit
steps in the online system, but future investigations will be carried out on how to improve
the approximation of the solid behavior. Figure 22 represents the average approximation
error of the solid stress at the interface: as we can see, we have a good approximation for
the first 19 basis functions, and then again from N = 19, we get the worst approximation
error: again, we suspect this is because we add noise to the system and because, from
N = 19, the average approximation error of all of the components becomes worse.
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Figure 21. Average relative approximation error as a function of the number N of modes used in the
online phase.

Figure 22. Average approximation error for the solid stress at the interface.

As a final result, we present in Figure 23 the average number of implicit iterations for
the partitioned online phase, plotted against the number of modes used. It is interesting
to note that we experience an increase in the average number of iterations in the implicit
step (and thus an increase in the computational cost of the online phase) as we increase
the number of basis functions; we remember that these results were obtained for a chosen
tolerance of ε = 10−5 for the fixed point iterations (recall Equation (28)).

Figure 23. Average number of iterations needed in the implicit step in order to reach convergence, as
a function of the number N of reduced basis for u f , p f , ds.
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8. Discussion

The aim of the work was to provide the reader with an extensive overview about the
combination of the RBM with the two main different approaches that are used to address a
Fluid–Structure Interaction problem, namely the monolithic and the partitioned approach.
We provided insights on the two different kind of algorithms that differ from one another
in various aspects: starting from the way the finite element discretization of the original
problem is carried out, we then have a significant difference also in the Proper Orthogonal
Decomposition. Indeed, even if the underlying idea is to perform a compression of the
set of snapshots by means of a POD, we observe that, in the monolithic POD, we work
with huge snapshots matrices and with huge inner product matrices because we keep
the monolithic structure of the whole approach; in the partitioned approach instead, the
snapshots matrices are much smaller. This difference reflects the time that the two PODs
take to perform, with the monolithic one being slower than the partitioned one (because we
have bigger correlation matrices for which we solve the eigenvalue problem). In addition,
the difference between the two approaches also reflects the formulation of the online
system: we have a big block system for the monolithic RBM and a series of much smaller
systems for the partitioned approach.

We applied the two different model order reduction approaches to a benchmark test
case of interest, namely a test case inspired by the Turek–Hron FSI test case FSI2 in order to
provide the reader with some additional numerical results that provide a better insight on
the two procedures.

Figure 24 represents a comparison between the amount of energy retained by the
first one hundred modes for the fluid velocity u f (modes obtained with the monolithic
approach) and the first one hundred modes for the change of variable z f (modes obtained
with a partitioned approach). It is interesting to see that the first mode for z f retains
almost 10% more energy with respect to the first mode for u f , and the general trend is
that the first modes for z f retain more energy, thus leading us to believe, at a first glance,
that we need fewer reduced basis functions for the fluid momentum equation in the
partitioned approach.

Figure 24. A comparison between the energy retained by the first modes for z f and for u f .

In Table 4, we summarize some important aspects of both the reduction procedures in
order to highlight the differences of the two approaches. As we can see, the Newton method
hwa used in the monolithic approach to solve the huge system and, in the partitioned
approach, to solve the fluid explicit step; we used a tolerance for the max. norm of the
residual between two consecutive iterations of the solver equal to 6 · 10−6. We remark
that it is further possible, if necessary, to speed up the time required for solving the big
online system in the monolithic RBM by using some preconditioners: plenty of results on
the improvement of the performance of the RBM with preconditioners exist, we refer for
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example to [16]. For the implicit steps of the partitioned online system (pressure Poisson
recovery and linear elasticity), we solve the two linear systems with the numpy.linalg solver
for linear systems, which is based on a LAPACK routine that performs the LU factorization
of the matrix on the left hand side. All of the numerical simulations were performed
on a computer with 3.50 GHz per CPU, and the mesh used in the two approaches is
the same, as we can see from the mesh resolution reported in Tables 2 and 3. For the
numerical simulation of the offline phase of both approaches, we relied on multiphenics
[55], which is a Python-based library that helps with the implementation of simulations on
conformal meshes of multiphysic problemsM; for the numerical simulation of the online
phase, we relied on rbnics [56], which is a Python implementation of several reduced order
modelling techniques.

Table 4. A comparison between the two approaches.

Monolithic Approach Value

∆T 0.01 s
number of time iterations i of the RB solver 200

solver for the system Newton method
average iterations of Newton method 4

absolute tolerance for Newton method || · ||∞ < 6 · 10−6

computational time to solve the online system for one time iteration 224.9 s

Partitioned Approach Value

∆T 0.001 s
number of time iterations i of the RB solver 2000

solver for explicit fluid step Newton method
average number of iterations of Newton method 2

absolute tolerance for Newton method || · ||∞ < 6 · 10−6

computational time to solve the online systems (explicit + implicit) for one time iteration 162.68 s

The monolithic algorithm, as we have seen, brings along an increase in the number
of unknowns to be used in the coupled system: this is because, in order to impose the
coupling conditions, we used two Lagrange multipliers, and this leads to an increase in the
dimension of the algebraic system to be solved during the online phase. In addition to this,
in order to obtain a stable approximation of the reduced order fluid pressure, we adopted a
supremizer enrichment of the reduced fluid velocity space: this also leads to an increase
of the number of basis functions to be used in the online phase, with a further increase
of the dimension of the algebraic system. On the other hand, a monolithic approach is
more stable and, therefore, allows for bigger time-steps in the numerical simulations: this
turns out to be extremely useful, especially in the case of physical phenomena that take
some time to develop, such as the Karman vortices in the Turek–Hron benchmark that
we considered. We also make the following remark: for the monolithic approach, one
could have used globally continuous spaces for the velocity and the displacement. This
approach at the FE level is the one originally adopted by Turek and Hron (see [31]), and
within the RBM, there are results present in the literature (see [11]). At the finite element
level, globally continuous spaces for velocity and displacement result in many advantages;
however, from the RBM point of view, there are some aspects that we feel are much more
easily handled with the approach that we have proposed. First, having globally defined
reduced basis functions does not automatically guarantee the balance of the stresses at
the interface: this coupling condition would in any case require a weak imposition by
means of Lagrange multipliers. A second important aspect is the implementation of
the supremizer enrichment technique: if we were to use globally continuous spaces, the
supremizer problem would be solved not only in the fluid domain (which is exactly where
the supremizer is needed, for stabilization purposes) but also in the entire domain and,
hence, in the solid subdomain, adding unnecessary DOFs to the supremizer enrichment
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problem. Finally, as it is remarked in [11], in the online system, it would not be possible to
highlight the contributions corresponding to fluid and solid DOFs, as the unknowns of the
online system would be coefficients of a modal expansion (global in both fluid and solid
subdomains) and thus not related to a spatial location in the domain. Due to all of these
details, we restored to a block formulation from the FE stage: the implementation of the
code with this block structure is also much easier thanks to the use of multiphenics.

The partitioned algorithm is very useful, and it gives a lot of control on the systems
to be solved during the online phase of the reduction method. In this work we chose a
semi-implicit treatment of the coupling conditions: this is, in our opinion, the best choice
for the test case considered. Indeed, an implicit treatment of the coupling conditions
would be too expensive and would drastically increase the number of sub-iterations at
each time-step, both in the offline phase and in the online phase. We also tried to adopt
an explicit treatment of the coupling conditions, as suggested for example in [40]: this
approach is unstable for the benchmark considered here, because, due to the slender shape
of the domain, the added mass effect plays an important role and leads to an algorithm that
diverges after a few time-steps. Therefore, the implicit coupling is the best tradeoff between
stability and computational cost. The Chorin–Temam projection scheme has allowed us to
work without the need of a supremizer enrichment technique: this gives good control in the
number of basis functions to be used in the online phase of the method. In addition to this,
the choice of a pressure Poisson formulation allows us to discard the so-called end of step
velocity and to work just with the intermediate velocity, leading again to a decrease in the
dimension of the online system. Finally, the harmonic extension of the fluid displacement
basis functions gives the possibility to efficiently compute the mesh displacement in the
online phase of the method without the need to solve an additional system. The drawback
of a partitioned reduced order model, as we have seen in the Numerical Results section, is
that the time-step required in order to have a stable algorithm is, in general, much smaller
with respect to the time-step that can be used in a monolithic approach, thus resulting
in a larger number of snapshots to be processed in the offline phase. In addition to this,
the treatment of the boundary conditions is rather delicate with partitioned approaches
and needs to be tailored to the problem at hand, whereas with a monolithic approach,
the imposition of these conditions is simpler, either by incorporating them in the weak
formulation or by using Lagrange multipliers.

In this work, we presented numerical results concerning the behavior of the FSI system
up to a time of 0.9 s; however, inspired by the many results present in the literature for
the Turek–Hron benchmark test case FSI2, we expect that, given the periodic oscillatory
behavior of the structure, for a longer period of observation, vortex shedding phenomena
may occur also in our test case. For the Reynolds number considered here, we expect, for
both the monolithic and the partitioned approaches, that a much larger number of fluid
(pressure and velocity) reduced basis are needed in order to obtain a good approximation
of the fluid behavior. If we were to consider a higher Reynolds number for the fluid, at
the reduced order level, the supremizer enirchment technique may not be sufficient to
obtain a stable approximation and other stabilization techniques may be required, such as
SUPG (see for example [53,63,64]). If the Reynolds number increases significantly and the
behavior of the fluid becomes turbulent, then a finite volume based approximation may be
the right choice, and in this case, we see an advantage in the partitioned RBM with respect
to the monolithic RBM: the partitioned approach indeed potentially allows us to use two
different spatial discretization techniques for the fluid and for the solid problem; we refer
the interested reader to [6,65–67] for some results on the implementation of finite volume
discretization within the RBM.

In this work, we also considered a linearized strain tensor for the solid domain
because we were interested in developing a procedure for the small deformations range;
nonetheless, everything we said can be applied to a nonlinear solid problem as well. If
the structure in the system undergoes large deformations, then an ALE formulation may
not be the right formalism within which to study the behavior of the coupled system:
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indeed, it is known that, for large deformation, the ALE formalism may lead to some
complications. In this case, we expect a Cut Finite Element approach to be more suited; see
for example [68]: the investigation of the performance of a Cut Finite Element based RBM
for FSI within a monolithic approach is currently under investigation (we refer to [8,69] for
some preliminary results on computational fluid dynamics problems); to the best of our
knowledge, there are no results in the literature concerning the application of Cut Finite
Element discretization to the RBM within a partitioned approach instead.

We conclude the discussion with some reflections and perspectives for future works
and investigations. For the monolithic reduced order model, even though we introduce
a few new variables in the problem formulation (the Lagrange multipliers), we can still
make the entire approach computationally feasible: for example, a suggestion could be to
perform a rather sparse Proper Orthogonal Decomposition on the first snapshots (when the
important physical phenomenon, such as the Karman vortices in our test case, is not yet
developed) and then to refine the sampling. We are aware that this requires some sort of “a
priori” knowledge of the physical phenomenon that we are simulating: for the benchmark
test case considered, plenty of numerical results already exist that can provide an insight on
when to refine the sampling procedure. For other applications, this opens up the possibility
of bridging a monolithic reduction procedure with some machine learning algorithm that
can be used to investigate, in an efficient way, the overall behavior of the solution to be
approximated.

As long as the partitioned approach is concerned, its application is very well indicated
for those problems that do not require long time simulations and for industrial applications
since the idea of a segregated algorithm is to combine already existing state-of-the-art soft-
wares for computational fluid dynamics and computational solid mechanics. Nonetheless,
until alternative stopping criteria and/or alternative treatments of the coupling conditions
are further investigated, their application in long time simulations results in an increase in
the computational time during the online phase.

9. Conclusions

In this work, we presented an overview on two possible reduced order models for
FSI problems that are based on two different approaches: a monolithic or a partitioned
approach. We provided the details of the implementation of the two reduction procedures,
both at the FE level and at the reduced order level, analysing the different aspects of the two
algorithms, such as the change in variable for the fluid velocity in the partitioned procedure,
the creation of mesh displacement basis functions thanks to an harmonic problem, the block
structure of the matrices in the monolithic POD, and the different treatment of the coupling
conditions at the fluid–structure interface. Finally, we implemented the aforementioned
algorithms for a toy problem of interest, which was inspired by the Turek–Hron benchmark
test case FSI2. We provided numerical results for the monolithic and for the partitioned
RBM, showing, among other things, the behavior of the average approximation error as a
function of the number of modes used and the average error between the solid stress at the
FSI interface with the FE discretization and with the reduced order discretization. We have
seen how the RBM can be modified and adapted in order to be tailored to a monolithic
or to a partitioned approach, and the work presented represents an interesting overview,
expecially for what concerns segregated reduced order procedures, for which not many
results in the literature exist, to the best of our knowledge.
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48. Basting, S.; Quaini, A.; Čanić, S.; Glowinski, R. Extended ALE Method for Fluid–Structure Interaction problems with large
structural displacements. J. Comput. Phys. 2017, 331, 312–336. [CrossRef]

49. Chabannes, V.; Pena, G.; Christophe, P. High-order fluid-structure interaction in 2D and 3D application to blood flow in artheries.
J. Comput. Appl. Math. 2013, 246, 1–9. [CrossRef]

50. Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G. Supremizer stabilization of POD–Galerkin approximation of parametrized
steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 2015, 102, 1136–1161. [CrossRef]

51. Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013.
52. Brezzi, F.; Bathe, K.J. A discourse on the stability conditions for mixed finite element formulations. Comput. Methods Appl. Mech.

Eng. 1990, 82, 27–57. [CrossRef]
53. Ali, S.; Ballarin, F.; Rozza, G. Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations.

Comput. Math. Appl. 2020, 80, 2399–2416. [CrossRef]
54. Kunisch, K.; Volkwein, S. Galerkin Proper Orthogonal Decomposition methods for a general equation in fluid dynamics. SIAM J.

Numer. Anal. 2002, 40, 492–515. [CrossRef]
55. Multiphenics—Easy Prototyping of Multiphysics Problems in FEniCS. 2016. Available online: http://mathlab.sissa.it/

multiphenics (accessed on 26 February 2021).
56. RBniCS—Reduced Order Modelling in FEniCS. 2015. Available online: http://mathlab.sissa.it/rbnics (accessed on 26 February

2021).
57. Guermond, J.L.; Quartapelle, L. On the approximation of the unsteady Navier–Stokes equations by finite element projection

methods. Numer. Math. 1998, 80, 207–238. [CrossRef]
58. Guermond, J.L.; Quartapelle, L. Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM. J.

Comput. Phys. 1997, 132, 12–33. [CrossRef]
59. Fernández, M.A.; Gerbeau, J.F.; Grandmont, C. A projection semi-implicit scheme for the coupling of an elastic structure with an

incompressible fluid. Int. J. Numer. Methods Eng. 2007, 69, 794–821. [CrossRef]
60. Astorino, M.; Chouly, F.; Fernández, M.A. Robin Based Semi-Implicit Coupling in Fluid–Structure Interaction: Stability Analysis

and Numerics. SIAM J. Sci. Comput. 2010, 31, 4041–4065. [CrossRef]
61. Badia, S.; Nobile, F.; Vergara, C. Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys.

2008, 227, 7027–7051. [CrossRef]
62. Fernández, M.A.; Mullaert, J.; Vidrascu, M. Explicit Robin–Neumann schemes for the coupling of incompressible fluids with

thin-walled structures. Comput. Methods Appl. Mech. Eng. 2013, 267, 566–593. [CrossRef]
63. Hijazi, S.; Ali, S.; Stabile, G.; Ballarin, F.; Rozza, G. The Effort of Increasing Reynolds Number in Projection—Based Reduced Order

Methods: From Laminar to Turbulent Flows. In Numerical Methods for Flows: FEF 2017 Selected Contributions; van Brummelen, H.,
Corsini, A., Perotto, S., Rozza, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 245–264.

64. Ali, S.; Ballarin, F.; Rozza, G. A Reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations. arXiv 2021,
arXiv:2103.03553.

65. Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G. POD-Galerkin reduced order methods for CFD using Finite Volume
Discretisation: Vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 2017, 8, 210–236. [CrossRef]

66. Girfoglio, M.; Quaini, A.; Rozza, G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering
stabilization. Comput. Fluids 2019, 187, 27–45. [CrossRef]

67. Stabile, G.; Rozza, G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible
Navier-Stokes equations. Comput. Fluids 2018, 173, 273–284. [CrossRef]
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