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Abstract: In magnetohydrodynamics (MHD), there is a transfer of energy from the velocity field to
the magnetic field in the inertial range itself. As a result, the inertial-range energy fluxes of velocity
and magnetic fields exhibit significant variations. Still, these variable energy fluxes satisfy several
exact relations due to conservation of energy. In this paper, using numerical simulations, we quantify
the variable energy fluxes of MHD turbulence, as well as verify several exact relations. We also study
the energy fluxes of Elsässer variables that are constant in the inertial range.

Keywords: MHD turbulence; energy flux; variable energy flux; direct numerical simulation; exact
relations; energy spectrum

1. Introduction

Magnetohydrodynamics (MHD) provides a framework to study the dynamics of flows
in interstellar medium, galaxies, accretion disks, stars and planet interiors, solar wind,
Tokamak, etc. [1]. In these systems, typically, the kinetic and magnetic Reynolds numbers
are significantly large; hence, they exhibit turbulent behavior. The three-dimensional (3D)
MHD turbulence and the 3D hydrodynamics turbulence have several common features.
For example, both these systems exhibit nonlinear interactions among multiple scales. In
addition, the energy injected at large scales cascades to intermediate and then to small
scales. The dissipative terms destroy the fluid energy at small scales [2]. This cascade is
quantified by energy flux.

Since inertial range of hydrodynamic turbulence does not have any forcing (except
very weak viscous force), the energy flux in the inertial range remains constant [2–4].
However, MHD turbulence has a magnetic field in addition to the velocity field, and
there are energy exchanges among the two fields via nonlinear interactions. Consequently,
there are many energy fluxes, e.g., velocity to velocity, magnetic to magnetic and velocity
to magnetic. Dar et al. [5] and Verma [6] showed that MHD turbulence has six energy
fluxes related to the velocity and magnetic fields. Due to the energy exchange between the
velocity and magnetic fields, the energy flux for the velocity field is no longer constant.
Verma et al. [7] showed that in a typical turbulent magnetofluid, the inertial-range kinetic
energy flux is depleted due to the energy transfer from the velocity to the magnetic field.
The magnetic energy flux also exhibits variability due to these transfers.

MHD turbulence is also described in terms of Elsässer variables, which are z± = u± b.
The fluxes associated with the Elsässer variables are constant in the inertial range [8,9].
This is because there is no energy exchange between the z+ and z− variables. The mean
magnetic field also affects the energy fluxes. In this paper, we study the energy fluxes in
the presence of nonzero cross helicity, but no magnetic helicity and mean magnetic field.

There are several models for MHD turbulence that describe the associated energy
spectra and fluxes. Kraichnam [10], Iroshnikov [11] and Dobrowolny et al. [12] assumed
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the turbulence to be homogeneous and isotropic and argued that the kinetic and magnetic
energy spectra scale as E(k) ≈ (εB0)

1/3k−3/2, where B0 is the magnitude of the mean
magnetic field or of the large-scale magnetic field. Marsch [13] argued that in the absence
of a mean magnetic field, the energy spectra of Elsässer variables exhibit a k−5/3 spectra.
Using renormalization group theory, Verma [6,14] argued that the effective mean magnetic
field scales as k−1/3, and hence the energy spectra of kinetic and magnetic fields scale as
E(k) ≈ k−5/3. Goldreich and Sridhar [15] argued that in the presence of a strong external
magnetic field, the flow becomes anisotropic and that E(k⊥) ≈ k−5/3

⊥ , where k⊥ is the
wavenumber perpendicular to the mean magnetic field. In this paper, we do not discuss
the energy spectrum of MHD turbulence in detail, but focus on the energy fluxes.

Some of the important past works related to energy fluxes of MHD turbulence are
as follows. Dar et al. [5] formulated the energy fluxes for MHD turbulence in terms of
mode-to-mode energy transfers and computed the fluxes for two-dimensional (2D) MHD
turbulence. Debliquy et al. [16], Alexakis et al. [17] and Carati et al. [18] computed these
fluxes, as well as shell-to-shell energy transfers, for 3D MHD turbulence. Note that the
simulations of Debliquy et al. [16] are for decaying turbulence. Using numerical simula-
tions, Verma et al. [19] computed the energy fluxes of z± and showed consistency with the
predictions of Marsch [13]. In the presence of mean magnetic field, Teaca et al. [20] and
Sundar et al. [21] computed the corresponding energy fluxes. Verma [6,22,23,24] computed
the energy fluxes using field-theoretic formalism. In addition, Verma [9] also described
several exact relations among these fluxes using the analytical formalism of variable en-
ergy flux.

Solar wind provides an important platform to test the theories of MHD turbulence.
Matthaeus and Goldstein [25] and Tu and Marsch [26] analyzed the solar wind data and
observed a near k−5/3 energy spectra for u, b, z± fields. Parashar et al. [27] studied the
variations of spectral indices as a function of cross helicity. Verma et al. [28] estimated the
energy flux in the solar wind using the energy spectrum and assuming Kolmogorov-like
turbulence phenomenology for the MHD turbulence [13]. A more commonly-used strategy
for the estimation of energy flux in the solar wind is to employ structure functions and the
four-third rule [29]; Sorriso-Valvo et al. [30] employed this method. Following a similar
procedure, Bandyopadhyay et al. [31] computed the energy flux near the Sun and argued
that energy flux is enhanced here.

The effects of the magnetic field on the dynamics of peristaltic and nanofluid flows
have been extensively studied in literature [32–37]. Eldesoky et al. [34] investigated the
combined effects of the magnetic field and heat transport in peristaltic flow, and showed
that the magnetic field enhances the thermal energy of the fluid. It has been argued that
the magnetic field also affects the dynamics of biological nanofluids, which could have
practical implications. Abdlesalam and Sohail [36] showed that the velocity distribution of
the bioconvective flow of viscous fluid reduces with an enhancement of the magnetic field.
An analytical investigation of Abdelsalam, Velasco-Hernández and Zaher [37] showed
that the propulsive velocity of swimming sperms increases with the Hartmann number,
a measure of the strength of the magnetic field. Apart from the effect of the magnetic
field, the dynamics of peristaltic flows and nanofluid flow are also affected by the particle
concentration in the flow, viscosity of the flow and temperature [38–40].

In MHD turbulent flow, the flow properties are usually studied using the Newtonian
model, where the relation between stress and strain rate is linear [17,18,41]. However,
there are flows in nature, where the relation of stress and strain rate are nonlinear. Such
flows are studied using non-Newtonian models like Williamson flow, Casson Carreau and
Jeffrey flow, etc. The dynamics of non-Newtonian flows and the flows through the porous
medium like Darcy–Forchheimer flow are also affected by the magnetic field and have
been broadly investigated in the literature [42–48]. A numerical investigation of MHD
Williamson nanofluid by Rasool et al. showed that the drag force exerted by the medium
on the flow increases with the magnetic parameter, a measure of the strength of magnetic
field [43]. Rasool et al. [48] investigated the dynamics of convective MHD nanofluid flow
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bounded by non-linear stretching surface and reported a decrease in flow velocity with
an increase in magnetic parameter. Ali et al. [45] reported a decrease of Nusselt number
with an increase in magnetic parameter for Darcy–Forchheimer rotating flow of a Casson
Carreau nanofluid.

In this paper, we compute the various energy fluxes of forced MHD turbulence and
validate several exact relations with numerical results. We perform a direct numerical
simulation of forced MHD turbulence on a 5123 grid with kinetic hyperviscosity and
magnetic hyperdiffusivity. We set random initial conditions for both the velocity and
magnetic fields, and inject kinetic energy at wavenumber shell (2, 3). We observe that the
numerical results satisfy several exact relations of the fluxes in MHD turbulence. We also
find that the fluxes of the Elsässer variables are constant in the inertial range.

The outline of this paper is as follows. In Section 2, we present various energy fluxes of
MHD turbulence and the exact relations relating them. In Sections 3 and 4, we present the
details of our numerical simulation and verification of exact results. Finally, we conclude
in Section 5.

2. Energy Fluxes and Exact Relations

The equations for incompressible MHD turbulence in the absence of a mean magnetic
field are [49]

∂u
∂t

+ (u ·∇)u = −∇p + Fu(b, b) + ν0∇2u + Fext, (1)

∂b
∂t

+ (u ·∇)b = Fb(b, u) + η0∇2b, (2)

∇ · u = 0, (3)

∇ · b = 0, (4)

where u and b are respectively the velocity and magnetic fields, p is the total pressure
(a sum of kinetic and magnetic pressures); ν0 and η0 are respectively the viscosity and
diffusivity. The random large-scale force term is Fext, and

Fu = (b · ∇)b, (5)

Fb = (b · ∇)u (6)

represent respectively the Lorentz force and the stretching of the magnetic field by the
velocity field. Note that the magnetic field b is normalized using b = bcgs/

√
4πρ to

convert it in the units of velocity; here, bcgs is the magnetic field in cgs units, and ρ is the
fluid density.

The scale-dependent properties of a system are customarily studied using Fourier
transforms. In Fourier space, the evolution equations for the kinetic and magnetic modal
energies are [8]

∂Eu(k, t)
∂t

= Tuu(k, t) +Fub(k, t)− Du(k, t) +Fext(k, t), (7)

∂Eb(k, t)
∂t

= Tbb(k, t) +Fbu(k, t)− Db(k, t), (8)

where u(k) and b(k) are respectively the Fourier transforms of the velocity and magnetic
fields, Eu(k) = |u(k)2|/2 and Eb(k) = |b(k)2|/2 are respectively the modal kinetic and
magnetic energies, Tuu(k, t) and Tbb(k, t) are nonlinear energy transfers arising due to
(u · ∇)u and (u · ∇)b, respectively, Du(k) and Db(k) are respectively the kinetic and
magnetic energy dissipation rates, Fext(k, t) is the energy injection rate due the external
force and Fub(k) and Fbu(k) are the cross energy transfers, i.e., from magnetic to kinetic
and vice versa. The formulas for the above transfers are as follows [8]:
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Fub(k) = −∑
p
={[k · b(q)][b(p) · u∗(k)]}, (9)

Fbu(k) = −∑
p
={[k · b(q)][u(p) · b∗(k)]}, (10)

Tuu(k) = ∑
p
={[k · u(q)][u(p) · u∗(k)]}, (11)

Tbb(k) = ∑
p
={[k · u(q)][b(p) · b∗(k)]}, (12)

Fext = <[Fext(k) · u∗(k)]. (13)

where =, < and ∗ represent the imaginary and real parts, and the conjugate of a complex
number, respectively. In addition, q = k− p.

The kinetic and magnetic energy spectra are computed using

Eu(k) =
1
2 ∑

k≤|k′ |<k+1
|u(k′)|2, (14)

Eb(k) =
1
2 ∑

k≤|k′ |<k+1
|b(k′)|2. (15)

Apart from the kinetic and magnetic energy spectra, we also have energy spectra
related to the Elsässer variables:

Ez± =
1
2 ∑

k≤|k′ |<k+1
|z±(k′)|2, (16)

where z±(k) = u(k)± b(k) are the Elsässer fields.
In MHD turbulence, there are four nonlinear terms in the governing equations.

These terms yield six energy fluxes which are illustrated in Figure 1b and are defined
as follows [5,6,8]:

Πu<
u>(k0) = ∑

k>k0

∑
p≤k0

={[k · u(q)][u(p) · u∗(k)]}, (17)

Πu<
b>

(k0) = − ∑
k>k0

∑
p≤k0

={[k · b(q)][u(p) · b∗(k)]}, (18)

Πu>
b<

(k0) = − ∑
k≤k0

∑
p>k0

={[k · b(q)][u(p) · b∗(k)]}, (19)

Πb<
b>
(k0) = ∑

k>k0

∑
p≤k0

={[k · u(q)][b(p) · b∗(k)]}, (20)

Πu<
b<

(k0) = ∑
k≤k0

∑
p≤k0

={[k · b(q)][u(p) · b∗(k)]}, (21)

Πu>
b>

(k0) = ∑
k>k0

∑
p>k0

={[k · b(q)][u(p) · b∗(k)]}, (22)

where the superscript and subscript of Π represent respectively the giver and receiver
modes, and < and > denote respectively the modes inside and outside the sphere of radius
k0. For example, ΠX<

Y>
(k0) denotes the rate of energy transfer from the wavenumbers inside

the sphere of radius k0 of field X to the wavenumbers outside the sphere of field Y. It is
easy to show that ΠX

Y (k0) = −ΠY
X(k0) [5].



Fluids 2021, 6, 225 5 of 14

(a) (b)

Figure 1. Schematic diagram of (a) a periodic simulation box where u and b respectively represent
random fluctuations in velocity and magnetic field, and (b) various energy fluxes in MHD turbulence.
These energy fluxes are destroyed in the dissipation range with viscous dissipation rate εu and
magnetic dissipation rate εb.

Note that there are energy exchanges among the velocity field and the magnetic field.
However, there is no such cross transfer between z+ and z−. For these variables, the
corresponding energy fluxes are

Πz+<
z+>
(k0) = ∑

k>k0

∑
p≤k0

={
[
k · z−(q)

][
z+(p) · z+∗(k)

]
}, (23)

Πz−<
z−>
(k0) = ∑

k>k0

∑
p≤k0

={
[
k · z+(q)

][
z−(p) · z−∗(k)

]
}. (24)

The total energy flux in MHD turbulence, which is a sum of energy transfers from the
velocity and magnetic modes inside the sphere to the modes outside the sphere, is

Πtotal(k0) = Πu<
u>(k0) + Πu<

b>
(k0) + Πb<

u>(k0) + Πb<
b>
(k0). (25)

It can be easily shown that 2Πtotal(k0) = Πz+<
z+>
(k0) + Πz−<

z−>
(k0).

In 3D hydrodynamic turbulence, the kinetic energy flux Πu<
u> remains constant in

inertial range and it is equal to the kinetic energy dissipation rate. This flux, however, is
not constant in MHD turbulence [7]. However, the total energy transferred to the inertial
range of the velocity field is dissipated by the viscous force. This leads to

Πu<
u> + Πb<

u> + Πb>
u> = εu, (26)

where εu is the kinetic energy dissipation rate. Refer to Figure 1b for an illustration. In the
above expression, Πb<

u> + Πb>
u> is the total energy transferred from the magnetic field to the

velocity field of the inertial range. Note that each of the above fluxes, Πu<
u> , Πb<

u> and Πb>
u> ,

vary with k, but the sum is an approximate constant, hence, we call them variable energy
fluxes [8,9].

In a similar vein, we derive the following relation for the energy flowing into the
magnetic-field channel:

Πb<
b>

+ Πu<
b>

+ Πu>
b>

= εb, (27)
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where εb is the magnetic energy dissipation rate. In addition, the energy injected into the
large-scale velocity field is transferred to the inertial-range velocity and magnetic fields.
These fluxes are dissipated at small scales. Consequently,

Πu<
u> + Πb<

u< + Πu<
b>

= εu + εb = ε, (28)

where ε is the total dissipation rate, which is equal to the total-energy injection rate. Similar
balance of energy transfers in the magnetic channel leads to

Πu<
b<

+ Πu>
b<

= Πb<
b>

. (29)

Schematic diagram of Figure 1b helps us understand the above relations.
The above four equations represent exact relations. The equality holds statistically in

spite of the fact that each of the fluxes exhibits significant variations with k. In the next
section, we validate the above relations using numerical simulations.

3. Governing Equations and Simulation Method

We employ a pseudo-spectral code named TARANG [50,51] to solve the following
equations in a 3D cubic periodic box of size (2π)3 (as shown in Figure 1a):

∂u
∂t

+ (u ·∇)u = −∇p + Fu(b, b) + ν∇4u + Fext, (30)

∂b
∂t

+ (u ·∇)b = Fb(b, u) + η∇4b, (31)

∇ · u = 0, (32)

∇ · b = 0. (33)

In the above equations, we employ the hyperviscous and hyperdiffusive terms to
increase the inertial range and to suppress the dissipation range. In addition, the velocity,
length and time are non-dimensionalized using characteristic velocity (U0), box size (2π),
and the eddy turn over time (2π/U0). We use a fourth-order Runge–Kutta scheme for time
marching and the Courant–Friedrich–Lewis (CFL) condition for optimizing the time step
∆t. We employ 2/3 rule for idealizing.

We performed a numerical simulation on a 5123 grid with the hyperviscous and
hyperdiffusion parameters ν = η = 3× 10−7. We use the Craya–Herring basis [52,53] to
generate the random initial conditions for both velocity and magnetic field. In a Craya–
Herring basis, the three basis vectors are,

ê3(k) = k̂; ê1(k) = (k̂× n̂)/|k̂× n̂|; ê2(k) = k̂× ê1(k), (34)

where n̂ is chosen as any arbitrary direction, and k̂ is the unit vector for wavenumber k.
The velocity field for 3D incompressbile flow in the Craya–Herring basis is written as

u(k) = u1(k)ê1(k) + u2(k)ê2(k). (35)

We start our simulation with the following initial condition:

u1(k) =
√
(Eu/2N3) i(exp(iφ1(k))− exp(iφ2(k))), (36)

u2(k) =
√
(Eu/2N3) (exp(iφ1(k)) + exp(iφ2(k))), (37)

where N3 is the total number of modes, Eu = 0.5 is the total kinetic energy and the phases
φ1(k) and φ2(k) are chosen randomly in the band [0, 2π]. Then we transform the velocity
field from Craya–Herring basis to Cartesian basis. We use a similar approach to generate
the random initial condition for magnetic field with total initial magnetic energy set as 0.25.
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Note that the mean magnetic field in our simulation is zero, i.e., B0 = 0. We define
Reynolds number Re = urmsL3/ν, and magnetic Reynolds number Rm = urmsL3/η, where
L = 2π is the box size [54]. The L3 factor arises due to the ∇4 factor of the hyperdiffusion
term. For the steady state, both these numbers are 8.2× 108. However, we caution that
they are not reliable estimates of Reynolds number and magnetic Reynolds number, and
they should not to be compared with earlier simulations.

We apply random force to all the velocity modes in a wavenumber shell (2, 3), which
is denoted by k f = 2. We follow the procedure outlined in Alvelius [55] and Maffioli [56].
Note that we force only the velocity modes. The kinetic energy injection rate is 0.4. The
simulation parameters are tabulated in Table 1. In addition, the simulation workload is
summarized in Table S1 and Figure S1 of the Supplementary Material.

Table 1. Simulation parameters: Grid resolution (N), energy injection rate (ε), kinematic hypervis-
cosity (ν), magnetic hyperdiffusivity (η), Magnetic Prandtl number (Pm), kinetic Reynolds number
Re = urmsL3/ν and magnetic Reynolds number Rm = urmsL3/η, where L = 2π is the box size.

N ε ν η Pm Re Rm

5123 0.4 3× 10−7 3× 10−7 1 8.2× 108 8.2× 108

In Figure 2a, we exhibit the time series of the total kinetic energy (solid red curve), the
total magnetic energy (solid green curve) and the total energy (solid blue curve). Figure 2b
exhibits the corresponding dissipation rates. Clearly, the system reaches a steady state in 2
to 3 eddy turnover time. During the steady state, the magnetic energy dissipation rate is
larger than the kinetic energy dissipation rate and the total dissipation rate matches with
the energy injection rate (Figure 2b). Interestingly, the kinetic energy and the magnetic
energy are equipartitioned during the steady state.

In the next section we will describe the numerical results related to the energy fluxes.

t

0.1

0.4

0.7

1.1

E

(a)

Eu

Eb

Eu + Eb

0 5 10 15
t

0.0

0.2

0.4

0.6

ε

(b) εu
εb
εu + εb

Figure 2. The evolution of (a) kinetic energy (solid red curve), magnetic energy (solid green curve)
and total energy (solid blue curve), and (b) kinetic, magnetic and total dissipation rates with the
same color scheme. Note that the solid black curve shows the total-energy injection rate εinj = 0.4.
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4. Numerical Results on the Energy Fluxes

Before embarking on energy flux studies, we compute the spectra of the velocity
and magnetic fields. We observe that the spectra show significant fluctuations; hence, to
obtain smooth curves in the inertial range, we compute the cumulative spectra, which is
∑∞

k EX(k′), where X = u, b, z±. Note that if the inertial-range energy spectrum scales as kα,
then the cumulative spectrum would scale as kα+1. In Figure 3, we exhibit the cumulative
spectra of the velocity, magnetic and z± variables averaged over time interval 9 to 12 (in
non-dimensional time units).

10−6

10−3

101

∑
∞ k
E
X

(k
′ )

(a)

k−0.73±0.01

k−0.68±0.01

X = u
X = b

100 101 102

k

10−6

10−3

101

∑
∞ k
E
X

(k
′ )

(b)k−0.71±0.03

k−0.66±0.01

X = z+

X = z−

Figure 3. Time-averaged cumulative spectra of (a) the kinetic energy (solid red curve) and magnetic
energy (solid blue curve), and (b) z+ (solid red curve) and z− (solid blue curve). These spectra are
close to k−2/3 indicating consistency with the Kolmogorov-like spectra for MHD turbulence.

As shown in Figure 3, in the wavenumber range of (3,20), the cumulative spectra
follow power laws to a reasonable accuracy. The exponents of the power law for u, b, z+, z−

variables are −0.73± 0.01, −0.68± 0.01, −0.71± 0.03 and −0.66± 0.01 respectively, which
are close to −2/3. Hence, we conclude that energy spectra for these fields are reasonably
close to Kolmogorov’s k−5/3 power law. The deviations of the exponents from −5/3 may
be related to the variable energy flux and intermittency [2,8]. Note that the kinetic energy
spectrum, ∼k−0.73, is steeper than the magnetic energy spectrum, ∼k−0.68. This differential
can be attributed to the energy transfer from the velocity field to the magnetic field [7]. We
have compared our results with those from the past, e.g., observational works on solar
wind [25,26] and numerical works [57–60]. We observed general consistency between these
results. Note, however, that several authors report k−3/2 energy spectra, but a detailed
discussion on this topic will take us beyond the scope of the paper. We also remark that
higher-resolution simulations, which are planned in future, would provide a better handle
on the spectral exponents.

Following the main objectives of the paper, we compute various energy fluxes of
MHD turbulence for 80 concentric spheres. The radii of the first 16 spheres are linearly
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binned as [1, 2, 3,. . . , 16], and those of the last two spheres are 128 and 256. The radii of the
intermediate spheres are binned as follows:

ri = r162s(i−16), (38)

where r16 = 16, s = log2(rmax/32)/(n − 5), with rmax being the radius of the largest
wavenumber sphere, and n as the total number of spheres.

In Figure 4, we exhibit the plots of various energy fluxes, which are averaged over
a time interval of t = 9 to 12. The black solid curve represents the total-energy injection
rate. These plots reveal the following interesting properties of the energy fluxes of MHD
turbulence:

1. The energy fluxes corresponding to the total energy and z± are nearly constant in the
wavenumber band (3, 20), consistent with the power-law regime of the energy spectra
discussed earlier. Note that the inertial-range energy flux of the total energy matches
with [Πz+ + Πz− ]/2; in addition, these fluxes are equal to the energy supply rate and
the total-energy dissipation rate, consistent with the conservation of energy.

2. As shown in Figure 4a, in the wavenumber band k = (3, 6), the kinetic energy flux
dips sharply, while the magnetic energy fluxes, Πu<

b>
and Πu<

b<, grow rapidly. This

observation indicates energy transfer from u to b. Note that Πb<
b>

picks up significantly
after this band (k = (3, 6)).

3. The energy fluxes Πu>
b<

and Πu>
b>

are negative and become significant beyond wavenum-
ber band (3, 6). These fluxes indicate energy transfers from the magnetic field to the
intermediate-scale velocity field. Consequently, Πu<

u> grows and becomes significant
beyond k = 10.

4. The energy fluxes corresponding to the velocity and magnetic fields exhibit significant
variability due to cross energy transfers. However, the fluxes of z± are nearly constant
in the inertial range due to lack of such transfers. We also compute the flux of cross
helicity, which is ΠHc(k) = (Πz+(k)−Πz−(k))/4, and exhibit this flux in Figure 4b.
We need to further explore the evolution of cross helicity flux in MHD turbulence.

−0.2

0.0

0.2

0.4

Π
(k

)

(a) Πu<
u>

Πu<
b>

Πu<
b<

Πb<
b>

Πu>
b<

Πu>
b>

Πtot

0 20 40 60 80 100
k

0.0

0.2

0.4

0.6

Π
(k

)

(b) Πz+

Πz−

ΠHc
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We compare the results of energy fluxes of MHD turbulence with the earlier works
reported in literature [17,18,41]. Our results for the transfer of energy between magnetic
field, and the transfer of energy from the velocity field to the magnetic field are consistent
with those of Alexakis, Mininni and Pouquet [17], Carati et al. [18] and Alexakis, Mininni
and Pouquet [41].

Finally, we come to the exact relations for the energy fluxes of MHD turbulence. The
four subfigures of Figure 5 provide numerical verification of Equations (26)–(29) as follows:

1. Figure 5a demonstrates that in the inertial range, the sum Πu<
u> + Πb<

u> + Πb>
u> matches

with the kinetic energy dissipation rate εu. Note that the sum represents the to-
tal energy transfer to the inertial-range velocity modes that gets dissipated in the
dissipation range; this is the reason for the equality of Equation (26).

2. Figure 5b illustrates a similar balance between the energy transfer to the inertial-range
magnetic modes and the magnetic-energy dissipation rate εb (see Equation (27)).

3. The energy supplied to the large-scale velocity modes get transferred to the inertial-
range velocity and magnetic modes. It leads to the exact relation of Equation (28).
This relation is verified in Figure 5c.

4. The magnetic field is not forced externally. Instead, the large-scale magnetic modes
(b<) receive energy from the velocity modes as Πu<

b<
+ Πu>

b<
. The energy received by

the large-scale magnetic modes cascades to the inertial range of the magnetic field as
Πb<

b>
. Hence, Πu<

b<
+ Πu>

b<
= Πb<

b>
. This relation is verified for the wavenumber range

k = (3, 18). See Figure 5d for an illustration.
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Figure 5. Plots of exact relations observed in the inertial range: (a) Πu<
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b>
+ Πu>

b>
(solid green curve) and εb, (c) Πu<

u>
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+

Πu<

b>
(solid green curve) and ε = εu + εb (solid blue curve) and (d) Πu<

b<
+ Πu>

b<
(solid green curve)

and Πb<
b>

(solid red curve). The results are averaged over time frame t = 9–12.

Thus, we verify several important exact relations regarding the energy fluxes of MHD
turbulence.
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5. Conclusions

In MHD turbulence, there are complex energy transfers among the velocity and
magnetic fields. The energy fluxes of MHD turbulence provide a measure for these transfers.
In the past, these fluxes have been computed using numerical simulations [5,16–18]. In this
paper, we describe the subtle variations of these fluxes in the framework of variable energy
flux. The energy fluxes related to the velocity and magnetic fields vary with wavenumber.
However, several combinations of these fluxes are constant; these are the exact relations
related to the energy fluxes.

In this paper, we describe variable energy fluxes and exact relations of MHD turbu-
lence using numerical simulations. We summarize our results as follows:

1. Our work is focused on the energy fluxes of forced MHD turbulence, in contrast to
those of decaying MHD turbulence, studied earlier by Debliquy et al. [16]. A close
comparison between the two sets of energy fluxes shows that the decaying and the
forced MHD turbulence have several critical differences. For example, we observe
positive Πu<

b<
, while Debliquy et al. [16] reported negative Πu<

b<
.

2. We employed hyperviscous and hyperdiffusive terms in our simulation to increase
the extent of the inertial range. For our simulation, the flux for the total energy is
nearly constant in the inertial range, which is k = (3, 20). The extent of our inertial
range is larger than that of Debliquy et al. [16], who do not employ hyperdiffusion.

3. For our numerical simulations, the spectral indices for u, b and z± are close to −5/3,
rather than −3/2 [10]. A word of caution, however, is that the inertial range is
quite narrow due to the moderate resolution (5123) of our simulation. For a better
understanding of the spectral indices and the energy fluxes, we need a broader inertial
range that is possible with high-resolution simulations; we plan for such simulations
in the near future.

4. It has been recently reported that the energy fluxes of MHD turbulence satisfy several
exact relations [8,9]. These relations are based on energy conservation principles. In
this paper, we validate four such exact relations, which are Equations (26)–(29).

In summary, we employ numerical simulations to understand the variations of inertial-
range energy fluxes of MHD turbulence. We also demonstrate several exact relations
related to energy fluxes. This study provides valuable insights into the dynamics of MHD
turbulence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/fluids6060225/s1. Table S1: Workload of the simulation: the grid-resolution N, the total
number of processor p , data division along x direction pcol, data division along y direction prow, total
RAM used in GB MRAM, simulation time t (eddy turnover time) and simulation ran time in hours T.
Figure S1: Schematic diagram for the pencil decomposition of a 3D array. From Chatterjee et al. [51].
Reprinted with permission from Elsevier.
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Abbreviations
The following abbreviations are used in this manuscript:

MHD Magnetohydrodynamics
3D Three dimensions
2D Two dimensions

Nomenclature

k, p, q Fourier wavenumbers
u Velocity field
b Magnetic field
z± Elsässer variables
t Time
p Pressure
Fext Random large-scale force
Fu Lorentz force
Fb Stretching of magnetic field by velocity field
Eu(k) Modal kinetic energy
Eb(k) Modal magnetic energy
Eu(k) Kinetic energy spectrum
Eb(k) Magnetic energy spectrum
Ez±(k) Elsässer energy spectra
Tuu(k), Tbb(k) Nonlinear modal energy transfers
Du(k) Modal kinetic energy dissipation rate
Db(k) Modal magnetic energy dissipation rate
Fext(k) External modal energy injection rate
Fub(k),Fbu(k) Cross energy transfers among velocity and magnetic modes
εu Kinetic energy dissipation rate
εb Magnetic energy dissipation rate
ε Total dissipation rate
εinj Kinetic energy injection rate
ΠX<

Y>
Energy flux from the wavenumbers inside the sphere of radius k0 of
field X to outside the sphere of field of field Y, e.g., X = Y = u, b, z±

(ê1, ê2, ê3) Unit vectors in Craya–Herring basis
U0 Characteristic velocity
(u1, u2) Velocity components in Craya–Herring basis
B0 Mean magnetic field
Πtotal Total energy flux
L Periodic box size used in simulation
N Grid size
(ν, η) Kinematic hyperviscosity, magnetic hyperdiffusivity
(ν0, η0) Kinematic viscosity, magnetic diffusivity
Re Kinetic Reynolds number
Rm Magnetic Reynolds number
Pm Magnetic Prandtl number
∑∞

k EX(k′) Cumulative spectra, where X = u, b, z±

ri Radius of ith intermediate sphere
n Total no. of spheres
rmax Radius of target wavenumber sphere
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