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Abstract: Experimental wave generation in channels is usually achieved through wavemakers
(moving paddles) acting on the surface of the water. Although practical for engineering purposes,
wavemakers have issues: they perform poorly in the generation of long waves and create evanescent
waves in their vicinity. In this article, we introduce a framework for wave generation through the
action of an underwater multipoint mechanism: the pedal-wavemaking method. Our multipoint
action makes each point of the bottom move with a prescribed pedalling-like motion. We analyse the
linear response of waves in a uniform channel in terms of the wavelength of the bottom action. The
framework naturally solves the problem of the performance for long waves and replaces evanescent
waves by a thin boundary layer at the bottom of the channel. We also show that proper synchroni-
sation of the orbital motion on the bottom can produce waves that mimic deep water waves. This
last feature has been proved to be useful to study fluid–structure interaction in simulations based on
smoothed particle hydrodynamics.

Keywords: gravity surface waves; wave-makers; water-wave generation; computational fluid dynamics

1. Introduction

The engineering of surface gravity waves in water channels is a challenging problem
in both numerical and experimental setups. The importance of the controlled and efficient
generation of waves with prescribed amplitude and phase lies not only in the fundamental
research on wave propagation and wave instabilities [1,2], but also in practical applications
in hydraulics. For instance, in the recreation of tsunami-wave dynamics in laboratory-scale
systems, the employed wave-generation technique plays an important role in the resulting
tsunami waveform and dynamics [3,4]. Thus, implementing an efficient source model
that is also a realistic representation of a natural wave source is a relevant issue. Another
example of the importance of realistic and efficient wave sources comes from the field of
fluid–structure interaction [4,5] in experimental and numerical tests of ships and structures
interacting with regular waves in the sea [6]. The characterisation of mechanical fatigue
in the hull of a ship subjected to multiple collisions with waves is fundamental to design
norms and to develop new technologies in shipbuilding [7,8].

Hybridised, mesh-free and finite methods are widely used as a numerical tool for
the prediction of the structural response of floating structures to waves [5–7]. Among
the Lagrangian mesh-free particle methods, smoothed particle hydrodynamics (SPH)
has gained great interest [6,7,9–13]. In such a method, the absence of a discretisation
mesh allows to perform otherwise complex and numerically expensive calculations that
naturally occur in systems with high deformations, such as shock waves [14–16], high
vorticity flows [17], jets [18], drops [19,20], bubbles [21], and spraying [22]. The fluid phase
is discretised into a distribution of small fluid particles, whose dynamics are influenced by
neighbouring particles that lie within a support domain. For a given particle, the effect of
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the surrounding fluid is determined by a weighted sum over all the remaining particles in
the system. Although the SPH method has some drawbacks and numerical issues, such as
the well-known tensile instability at low Reynolds numbers [19,23], the method can handle
splash and violent, free-surface events. For this reason, the SPH method has become widely
used in numerical studies of the interactions of ships and structures with sea waves.

To generate surface waves in water, the usual technique is the inclusion of a wavemaker—
an oscillating paddle attached to a wall at one of the boundaries of the fluid domain. Such
a technique is proven to be very efficient in generating short-wavelength surface waves
and is included in mesh-free particle methods to obtain realistic simulations of floating
objects interacting with a train of severe waves [6]. Wavemakers can also be used to cancel
incident waves, the so-called water-wave active absorbers [24,25], and have shown better
performance than passive methods, such as beaches or meta-materials [26]. However, the
use of wavemakers has side effects that may represent a drawback in some situations.
According to the fundamental theory of wavemakers [27], the oscillations of the wall
generates two kinds of waves: a short-range evanescent wave and a long-range radiative
wave. Therefore, to provide full control of the amplitude and phase of the generated
waves, the region of study must be placed far enough from the wavemaker to avoid non-
desired effects from the evanescent wave. Numerical simulations and experiments using
this strategy require a large fluid domain, which is costly in numerical operations and
experimental resources. Indeed, many previous experimental studies of tsunamis and
rogue waves required large water tanks with huge paddles and parts (see Refs. [28–31]
for some examples). A way to circumvent this issue in numerical setups is to solve the
hydrodynamic equations in regions with different resolutions: a low-resolution fluid
domain where waves are generated by the paddles and travel through a long distance, so
that evanescent waves decay; and a high-resolution domain, or zone of interest, where the
structure is placed in interactions with the incident waves. However, this strategy carries
another drawback, which is the energy dissipation intrinsic to the SPH method. A long
low-resolution domain also provides dissipation of the radiative wave, thus requiring high-
energy of oscillations at the wave paddle. Moreover, paddle wavemakers present another
drawback in some numerical and experimental situations, which is their poor performance
in the generation of long-wavelength waves: the paddle must oscillate with very high
amplitude to produce a long-wavelength wave with a relatively small amplitude [32].

In this article, we propose a new technique for the generation of surface waves in a
water channel: the pedal-wavemaking method. The method consists of moving the floor of
the channel in a pedalling-like elliptical motion prescribed by the Airy inviscid theory of
deep-water waves. Through this technique, we can design waves that emulate deep gravity
waves. We demonstrate numerically and theoretically that the technique can generate long-
wavelength surface-waves, which are elusive for systems with wavemakers. Moreover,
since the wave generation technique does not produce an evanescent surface wave, the
technique does not require a large fluid domain to produce controlled waves.

The article is organised as follows. Section 2 gives a summary of the wave-generation
techniques that are relevant in our study: those by paddle wavemakers and pedal wave-
makers. We also give the mathematical model to study wave generation phenomena in a
finite-depth tank with a pedalling-like moving bottom. Section 3 shows the results from
SPH simulations of regular wave generation. We provide a qualitative comparison between
both methods and the Airy theory of deep water waves. We also show in this section the
results from the theoretical model of pedal wavemakers. We discuss our results in Section 4.
Conclusions and final remarks are given in Section 5.

2. Methods
2.1. Wave Generation Using a Hinged-Paddle with SPH Simulations

The first method of wave generation considered in this article is the well-known
hinged-paddle technique. Figure 1 shows the tow-tank model, so-called as it is of the
form used to measure the response of a model ship being towed through the waves. The
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tow-tank has a typical configuration of a hinged-paddle wavemaker for generating waves,
and a beach for the dissipation of the waves [33,34]. A two-dimensional layer of inviscid
water is contained in a numerical tank of length L = 520 m and depth h = 40 m. A rigid
floor-hinged paddle wavemaker is placed at one end and a gently sloping beach is placed
at the other end to reduce reflections. We choose the wavemaker amplitude and frequency
to give a wave with wavelength λ = 60 m and amplitude η = 2 m close to the paddle.

We performed numerical simulations of the hydrodynamic equations, using the
smoothed particle hydrodynamics (SPH) method [10,12,13]. In the SPH method, the field
variables and gradients are obtained in a Lagrangian framework through an interpolating
kernel—the so-called kernel approximation—that gives a smooth estimate of the physical
properties of the fluid, such as the density, pressure, and velocity. The formal space
discretisation of hydrodynamic equations is obtained through a particle approximation that
estimates smoothed integrals as a sum on a set of fluid particles. We have used a cubic
spline smoothing function with a smoothing length of hw = 1.8D, with D the diameter of
the fluid particles. Finally, time integration is achieved, using standard time-integration
methods, such as Runge–Kutta schemes and predictor–corrector methods. We have used
N = 4785 fluid particles to simulate the system of Figure 1. The sea-bottom, the sloping
beach and the hinged paddle are shell elements with a prescribed velocity value: time-
dependent for the latter and fixed for the earliest. The shell elements and SPH particles
interact through industry-common contact-interface algorithms.

In Section 3.1, we show that paddles are inefficient in generating long waves and
creates evanescent waves on its vicinity. Moreover, although we are considering, in theory,
an inviscid fluid, simulations exhibit viscous decay due to numerical effects inherent to
the SPH method. To circumvent these issues, we have developed a new wave generation
technique described in Section 2.2.

Figure 1. Numerical setup for the tow-tank model. Waves are generated by a hinged-paddle
wavemaker placed at the left boundary of a two-dimensional fluid layer of depth h = 40 m and
length L = 520 m. A beach is placed at the right boundary to reduce reflections.

2.2. The Pedal-Wavemaking Technique

Waves in fluids are naturally generated by pressure perturbations applied either in
the free surface of the water or in the bottom layer. Although such techniques of wave
generation are not commonly used in experimental situations, the underlying mechanism
occurs naturally in the sea. For instance, waves in the sea are mainly a consequence of wind
and atmospheric forcing. Such forcing makes surface fluid particles describe periodic—
circular or elliptical—trajectories [35], such as those depicted in Figure 2a. The collective
motion of fluid particles at the surface is part of the generated travelling surface wave. For
deep-water waves, the response of fluid particles below the surface is given by the Airy
linear-wave theory [36]. Particles in the bulk follow the path of circular orbits whose radii
decrease exponentially as we go deeper into the fluid.

To develop a new alternative technique for wave generation, we considered the inverse
problem: can we generate gravity waves in the free surface, imposing small circular orbits
of fluid particles in the bulk? Instead of considering an infinitely deep water-wave system,
we considered a reduced subdomain—the wave tank—shown in Figure 2a. The floor of the
subdomain is considered to be a boundary with some prescribed motion. Using periodic
boundary conditions at the left and right boundaries of the wave tank, orbits in infinitely
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deep water channels can be recreated in this small sub-domain, using moving boundary
conditions at the bottom, namely, a pedal-wavemaking motion.

Figure 2. (a) Schematisation of the sub-domain (wave tank) in infinitely deep water. The boundary
motion at the bottom of the wave tank is prescribed by the Airy wave inviscid theory. (b) Illustration
of the pedal-wavemaking technique. The water bed motion is given by a pedalling-like motion, with
horizontal and vertical displacements prescribed by the Airy wave theory at depth y = −h. This
motion of the water bed gives rise to a travelling wave in the free surface.

Figure 2b illustrates our pedal-wavemaking technique in a wave tank of depth h. In
the SPH formulation, we divided the bottom boundary into small shell elements with
prescribed individual motions, according to the Airy wave conditions at the location of
each shell. This motion of the individual elements can be regarded as an underwater multi-
point mechanism that introduces energy to the fluid. The boundary conditions assigned to
these moving shell elements at y = −h are elliptical orbits, which can be decomposed into
horizontal and vertical displacements χ(x, t) and ζ(x, t), respectively. Thus, the elliptical
trajectories of the particles at the bottom of the wave tank are introduced by moving the
bottom itself with a given orbital trajectory, resembling a pedalling-like motion.

As we will see in Section 3.2, the pedalling wavemakers efficiently generate long-
waves. Notice that the generation of gravity waves by pedal wavemakers, i.e., through
the bed motion, is similar to tsunami generation in which long waves are generated by
the sudden uplift of the marine base during earthquakes [37]. Tsunamis lie in the long-
wavelength spectrum of oceanic waves [38]. The pedal-wavemaking technique is, thus, the
natural way to generate waves in the region of long wavelengths of the spectrum.

2.3. Theoretical Model

A full theoretical approach to the pedal-wavemaking technique, considering all the
features of a Newtonian fluid and the right boundary conditions, is required. As we will
see in Section 3.2, the fluid is effectively viscous in SPH simulations due to the artificial
viscosity inherent to the SPH method. Consequently, we regard the two-dimensional
system of Figure 2b as an infinitely long channel filled with an incompressible viscous
liquid up to a uniform depth h. The equations that describe the fluid are given by the
Navier–Stokes and incompressibility equation,

∂tu + (u · ∇)u = −1
ρ
∇P + ν∇2u− gŷ (1a)

∇ · u = 0, (1b)

where u = (u, v) is the velocity field, P is the pressure, g is the acceleration of gravity, ν is
the kinematic viscosity, and ρ is the density of the fluid.

We decompose the water-bed motion into a vertical and horizontal periodic displace-
ment ζ(x, t) and χ(x, t), respectively. A pedalling-like motion of points in the water bed
with angular frequency ω can be described by giving the following appropriate phase
difference:

(χ, ζ) = <
(

ixbei(kx−ωt), ybei(kx−ωt)
)

, (2)
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where xb and yb are complex amplitudes. The collective motion of points in the bottom
generates a travelling-wave-like motion of the water bed, i.e., a phase propagation in the
positive x-direction with wavenumber k. The output in the free-surface elevation is a
gravity-wave response with amplitude η.

3. Results
3.1. SPH Simulations of Regular Wave Generation by Hinged Paddles

Our SPH numerical simulations, using the well-known method of hinged-paddles for
wave generation (see Section 2.1), employed a tow-tank model as shown in Figure 1. Our
results show that the wave paddle generates a travelling surface wave with wavelength
λ ' 67 m, as depicted in Figure 3a. However, as the wave propagates towards the beach,
its amplitude is significantly reduced due to numerical viscosity. From Figure 3a, we notice
that near the hinged-paddle, the wave is approximately 2 m in amplitude, whereas near
the beach, it is below a half meter in amplitude. This observation is confirmed in Figure 3b,
where we show the normalised wave amplitude as a function of the distance from the
wavemaker. It is important to remark that the observed decay can be due not only to the
physical viscosity, but also to nonphysical energy losses at each of the many numerical
smoothing calculations performed as the wave propagates through the tank [39]. The latter
is our case in Figure 3, which have artificial viscosity in an otherwise inviscid fluid. Since
the object under study, in interaction with waves, must be placed away from the paddle
to avoid the disturbances from the evanescent waves, such decay in the wave amplitude
becomes a problem.

Figure 3. Results from SPH simulations of the tow-tank model. (a) Fluid particles in the SPH simula-
tions, showing that the wave amplitude from the full-size wave tank decreases with distance from
the wavemaker. (b) Normalised wave amplitude as a function of the distance from the wavemaker
for λ = 60 m and fluid particles with the indicated diameters. Waves generated with small-diameter
particles exhibit less energy dissipation. The simulation was run for 120 s, which corresponds to
approximately 20 periods of the wavelength.

McCue and co-workers [39] showed, in similar numerical setups, that smaller SPH
particles provide less energy dissipation. Following their ideas, we used fluid particles
with different diameters D. Figure 3b shows the normalised wave amplitude obtained for
three diameter values of SPH particles. Indeed, less energy dissipation is observed for the
smallest particles, agreeing with the findings of McCue and coworkers [39]. However, the
results are still unacceptable for some applications requiring uniform wave amplitudes,
such as in the study of ship motion in waves [7]. To limit wave-amplitude loss to around
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10% over 6 wavelengths would require D ∼ 0.1 m [7]. The use of such small particles
in a 260 m-length wave tank would dramatically increase the computational cost. Other
authors [40,41] suggested an improved time-stepping algorithm as a possible solution to
reducing the wave decay. De Padova and coworkers [42] also showed high dissipation in
their generated waves in a tank with a sloping floor, including both regular and irregular
waves. Such a configuration ultimately led to breaking on a shore, so even those waves
were not directly comparable to a constant-depth wave tank for ship-motion predictions.
De Padova and coworkers concluded that a small value of one of the empirical coefficients
of the SPH artificial viscosity was required for numerical stability, but the result was still
too dissipative for accurate wave reproduction.

Another well-known important drawback of the hinged-paddle wavemaker is its poor
performance in the generation of long-wavelength waves. Let us define the efficiency of
the wavemaker as follows:

ε :=
a(h/λ)

s
, (3)

with s as the displacement of the paddle and a as the amplitude of the radiative wave,
which is a function of the ratio h/λ. Here, h is the depth of the channel and λ is the
wavelength [32,33]. The following can be shown in the short-wavelength limit:

lim
h/λ→∞

ε = 1, (4)

which means that the amplitude of the wavemaker’s oscillations must be of the order of the
wave amplitude, i.e., s ∼ a. However, the efficiency decays as h/λ in the long-wavelength
limit h/λ → 0, which means that the wavemaker must oscillate at an amplitude of the
order of the wavelength, i.e., s ∼ aλ/h. Thus, the paddle must oscillate with a very
high amplitude to produce a long-wavelength wave with a relatively small amplitude.
Consequently, the generation of waves by replicating the wave tank physics, using paddle-
type wavemakers in the SPH formulation, is not a viable approach to predict the response
of structures to long waves.

3.2. Generation of Long Waves by Pedal Wavemakers

The pedal-wavemaking technique introduced in Section 2.2 does not show any wave
decay or evanescent waves near the source and is able to generate long-wavelength waves
as we will show in the following. Figure 4 depicts typical long waves generated with
the pedal-wavemaking method. In Figure 4a, we generate a wave with λ = Lwt, with
Lwt = 2.5 m the length of the wave-tank; in Figure 4b, we produce a wave with λ = 60 m.
In both cases, the waves are obtained with the pedal-wavemaking technique, using SPH
particles with diameter D = 2 [m].

Notice that there is no loss of wave amplitude and there are no evanescent surface
waves throughout the wave tank in Figure 4b. This is an intrinsic consequence of the forcing
method: the pedal-wavemakers at the bottom drive the fluid simultaneously throughout
the whole length of the water channel, thus sustaining an extended wave in the fluid
domain. However, it is important to remark that the pedal-wavemaking technique does
not overcome the losses inherent to the SPH formulation. The pedal wavemaking relies on
the interaction of a wave with the floor in shallow depths.

In the simulations of Figure 4, the wave is developed simultaneously everywhere
throughout the tank in response to the pedalling motion on the floor. Thus, fully devel-
oped waves rapidly fill the wave tank. Waves, due to the pedalling motion, are injected
throughout the seabed and not at one extreme of the tank, as is the case for a single hinged-
paddle. We observed that for some optimal values of the frequency and wavelength, a
small pedalling motion in the seabed can generate a relatively high-amplitude gravity wave.
Figure 4b shows a 2 m amplitude surface wave designed with λ = 60 m and frequency
f = 0.8 Hz. We used SPH particles with diameter D = 1m, and the floor of the wave
tank was divided into eight equal segments with a 0.88 m diameter pedalling-like motion.
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The amplitude of the generated wave was greater than the diameter of the pedalling by a
factor greater than two. This observation suggests that the system is near some resonance
condition at the given wavelength and frequency. Further studies characterising such
resonance will be published elsewhere.

0 0.5 1

0

0 100 200 300 400

30

35

40

0 0.25 0.5

0

0.5

1

(a) surface wave 

(b) (c)

Figure 4. SPH simulations of long-wavelength generation, using the pedal-wavemaking technique.
(a) A typical, fully developed long-wavelength wave. (b) Wave generated with λ = 60 m and
f = 0.8 Hz by pedal-wavemaking. A pedalling-like motion of diameter 0.88 m at the bottom generates
a 2 m amplitude surface wave. (c) Normalised profiles of surface waves obtained in wave-tanks of
different depths—see explanation in the text. The observed wave amplitude is 2% of the wavelength.
The roughness of the surface is due to the discretisation of the fluid into particles. Each profile has
been normalised by its actual wave amplitude η.

To characterise how the depth of the wave-tank affects the properties of waves gener-
ated through pedal-wavemaking, let us introduce the following dimensionless variables:

η̃ ≡ η

λ
, h̃ ≡ h

λ
, D̃ ≡ D

λ
. (5)

From the simulation shown in Figure 4b, one obtains η̃ ' 0.03, which is in accordance
with the long-wave regime. We performed SPH simulations, using different depths in the
range 0.025 ≤ h̃ ≤ 0.15. Normalised surface profiles at a fixed time are shown in Figure 4c
for the indicated values of the depth. For all the floor depths under study, we noticed that
the profile of the wave seems to be unchanged. This suggests that our wave-generation
technique, using pedal wavemakers, is robust to the depth of the wave-tank, and thus, it
emulates deep-water waves under controlled situations.

Pedal wavemakers can be used solely to generate and sustain travelling waves, as we
show in the three-dimensional numerical model of Figure 5. A ship model with appropriate
degrees of freedom can be placed in interaction with waves in a wave tank. In Figure 5, we
generate a 1.5m height travelling wave, using only four shell elements per wave for the
water bed. The nodes of such elements were prescribed with time-dependent boundary
conditions to enable pedal-wavemaking floor motions. As the ship moves forward, there
will be oblique and transverse, ship-induced waves with some wavelength λs. These waves
will propagate independent of the dominant pedal-motion generated waves, and may
dissipate due to interaction with the bottom under shallow-water conditions. Notice from
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Figure 5 that the maximum horizontal velocity is located in the bulk of the fluid, just below
the surface. We will come back to this point in Section 3.3.

Upstream beach for wave 
absorption

Downstream beach for 
wave absorption

Segmented lower fluid domain boundary
with pedal-wavemaking motions

Rigid Walls for lateral 
containment of SPH

Ship model with forward motion 
and 6 degrees of freedom

Figure 5. Visual representation of a three-dimensional numerical model of a floating rigid ship
interacting with waves. A 1.5m wave is generated and sustained, using only the pedal-wave making
floor motions.

3.3. Emulating Deep-Water Waves in a Wave Tank

Figure 6 shows the through-depth velocity profiles in the horizontal and vertical
directions for h̃ = 0.10. We have verified that numerical results are qualitatively similar
for any wave-tank depth. The horizontal and vertical velocity profiles, according to the
Airy inviscid deep-water-wave theory, are shown in Figure 6a,b, respectively, for the given
values of the parameters. According to the deep-water-wave theory, the amplitude of the
wave decreases exponentially with the depth as exp(ky), where y is the vertical coordinate
and k = 2π/λ. The horizontal and vertical components of the velocity can be easily
obtained knowing the frequency of the oscillations of the wave, namely ω = 2π f . Let u
and v be the horizontal and vertical components of the velocity of a fluid particle placed
at an average depth yp, respectively. Thus, according to the deep-water-wave theory,
trajectories of fluid particles in phase spaces {(u, y)} and {(v, y)} are as follows:

y = yp + ∆y|y=0

(
u

u|y=0

)
, (6a)

(
y− yp

∆y|y=0

)2

+

(
v

v|y=0

)2

= exp(2ky), (6b)

which corresponds to straight lines and ellipses for the vertical and horizontal components
of velocity, respectively, as depicted in Figure 6c. From Equation (6a), it follows that the
slope of y(u) is positive and increases in absolute value with the wavelength. Likewise,
from Equation (6b), it follows that the area enclosed by the elliptical trajectories decreases
with the depth.

Figure 6d,e shows the horizontal and vertical velocity profiles obtained from numer-
ical simulations in SPH, using the pedal-wavemaking technique. The similarities with
the corresponding profiles from the deep-water-wave theory are remarkable. However,
Figure 6d reveals that the maximum values of the horizontal velocity are located below
the surface, which is slightly different from the predictions of the inviscid Airy theory. On
the contrary, the vertical velocity field is in good agreement with the deep-water velocity
profile. Trajectories of SPH particles have also shown deep-water-wave-like behaviour,
as depicted in Figure 6f. Trajectories in the vertical component describe ellipses in good
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agreement with the deep-water theory. However, trajectories in the horizontal component
exhibit slight deviations from the Airy theory.

Figure 6. Comparison between the Airy theory for inviscid deep water waves (a–c), SPH numerical
simulations, using pedal wavemakers at a depth of 10% of the wavelength (d–f), and the theory of
pedal wavemakers with θ̄ = 10−1 and λ̄ = 10 (g–i). The diameter of the pedalling-like motion is 0.01
h. The upper row shows typical profiles of the horizontal velocity, whereas the central row shows
the corresponding vertical velocity profiles. The colour scale indicates the normalised value of the
speed. The normalised vertical and horizontal velocity profiles of fluid particles within the wave are
depicted in the lower row.

3.4. Linearised Hydrodynamic Equations in the Long-Wavelength Limit

From the numerical simulations of the previous section, we conclude that waves
generated by pedal wavemakers can emulate deep-water waves in a finite-depth tank.
However, we observed some deviations from the Airy theory in the horizontal components
of the velocity field. This mismatch is related to the effect of viscosity and the formation of
boundary layers at the bottom and below the surface, as will be shown.

To solve the linear version of the system (1), we used the Helmholtz decomposition
u = ∇φ +∇× (ψẑ), where φ is the velocity potential and ψ is the stream function, with
ẑ ≡ x̂× ŷ [36]. Thus, the linearised system (1) decouples φ, ψ and P in the bulk of the fluid
via the following three equations:

∇2φ = 0, (7a)

∂tψ− ν∇2ψ = 0, (7b)

∂tφ +
P
ρ
+ gy = 0. (7c)

The linearised boundary condition at the top interface yields the following:

∂tη − ∂yφ + ∂xψ
∣∣
y=η

= 0, (8a)

2ν
(
∂yyφ− ∂xyψ

)
− P

ρ

∣∣∣∣
y=η

= 0, (8b)

2∂xyφ− ∂xxψ + ∂yyψ
∣∣
y=η

= 0. (8c)
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Equation (8a) is the kinematic condition, whereas Equations (8b) and (8c) are the
conditions for the normal and tangential stresses, respectively. At the bottom of the wave
tank, we assume the following no-slip boundary conditions:

∂tχ− ∂xφ− ∂yψ
∣∣
y=−h = 0, (9a)

∂tζ − ∂yφ + ∂xψ
∣∣
y=−h = 0. (9b)

The system of Equation (7) together with the boundary conditions of Equations (8) and (9)
determines the linear response of the system. The general solutions of the bulk
Equations (7a) and (7b) are as follows:

φ(x, y, t) =
ω

k
<
[
(A cosh ky + B sinh ky)ei(kx−ωt)

]
, (10a)

ψ(x, y, t) =
ω

k
<
[
(C cosh my + D sinh my)ei(kx−ωt)

]
, (10b)

with m2 = k2 − iω/ν. The values of the complex constants (A, B, C, D) are deter-
mined by the boundary conditions. Herein, it is convenient to introduce the following
dimensionless quantities:

k̄ ≡ kh, m̄ ≡ mh, λ̄ ≡ λ

h
, ω̄ ≡ ω

ω∞
, (11)

where the characteristic frequency ω∞ is given by the dispersion relation for deep-water
waves, i.e., ω2

∞ = gk. Let θ̄ ≡ 2νk2/ω be the dimensionless viscosity and α ≡ m/k be the
ratio between the wave numbers m and k. Notice that θ̄ could also be interpreted as a
squared comparison between the extent of oscillatory Stokes boundary layers,

√
2ν/ω, and

the wavelength λ. Evaluating the bulk solutions (10) in the system (7) and normalizing the
spatial coordinates according to x̄ ≡ x/h and ȳ ≡ y/h, one obtains the following linear
system of equations:

ω̄2θ̄β i 1 −iω̄2θ̄α
0 i β 0

i cosh k̄ −i sinh k̄ −α sinh m̄ α cosh m̄
−i sinh k̄ i cosh k̄ cosh m̄ − sinh m̄




Ā
B̄
C̄
D̄

 =


0
0
x̄b
ȳb

, (12)

with β ≡ 1− i/θ̄, x̄b ≡ xb/h and ȳb ≡ yb/h. Solving Equation (12) for the dimensionless
vector (Ā, B̄, C̄, D̄)T ≡ (A, B, C, D)T/h, one obtains from Equation (10) the following
velocity potential and stream functions:

φ(x, y, t) =
ω

k
<


 iαθ̄

Γ(0)
B (θ̄ − i)

Fp +

(
αθ̄2ω̄2Γ(1)

B − Γ(0)
B − Γ(0)

S

)
P

α2θ̄2ω̄2(ΓS + θ̄ΓB)

 cosh(ky)

+
(1 + iθ̄)P

αθ̄(ΓS + θ̄ΓB)
sinh(ky)

]
ei(kx−ωt)

}
,

(13a)

ψ(x, y, t) =
ω

k
<
[

Pemy

α(ΓS + θ̄ΓB)
ei(kx−ωt)

]
. (13b)

The constants Fp and P in Equation (13), related to the pedal-wavemaking motion at
the bottom, are given by the following:

Fp ≡ xb sinh k̄ + yb cosh k̄, (14a)

P ≡ αθ̄Fp − (θ̄ − i)(xb sinh m̄ + αyb cosh m̄). (14b)
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The constants Γ(0)
S and ΓS are related to the angular frequency, depth, wavenumbers

and viscosity through the following:

Γ(0)
S ≡ (i− θ̄)αθ̄ω̄2, (15a)

ΓS ≡ (i− θ̄)
(

1 + αθ̄2ω̄2
)

. (15b)

Finally, the constants Γ(0)
B , Γ(1)

B , and ΓB are given by the following:

Γ(0)
B ≡ α sinh k̄ cosh m̄− cosh k̄ sinh m̄, (16a)

Γ(1)
B ≡ α sinh k̄ sinh m̄− cosh k̄ cosh m̄, (16b)

ΓB ≡ Γ(0)
B − Γ(1)

B + σ(α cosh k̄ cosh m̄− sinh k̄ sinh m̄), (16c)

with σ ≡ ω̄2(θ̄ − i)2.
The velocity fields shown in Figure 6g,h were obtained from Equation (13) and agree

well with SPH numerical simulations. Thus, the pedal-wavemaker theory predicts deep-
water-like behaviour in the vertical velocity field. Moreover, it also predicts maximum
horizontal velocity values below the free surface, due to a top boundary layer, showing
that the feature observed in SPH simulations is consistent with the effect of viscosity.

4. Discussion

The theoretical predictions for the horizontal and vertical components of the velocity
of a fluid particle as a function of ȳ for the parameters of the numerical simulation of
Section 3.3 are depicted in Figure 6i. Notice that the amplitude in the oscillations of ū and v̄
decays almost linearly with the depth, which is a characteristic behaviour of shallow-water
waves [2]. Indeed, we expect a shallow-water profile, given that the wavelength is large,
compared to the depth of the wave tank. However, the linear decay in the oscillations of ū
and v̄ can be regarded as an exponential decay in a large domain truncated to the first-order
in depth. Thus, Figure 6c,f,i can be regarded as the trajectories of fluid particles near the
surface of a deep-water wave truncated from below by the wave tank. We conclude that
the pedal-wavemaking technique emulates with good accuracy the upper fluid layers of
deep-water waves, using a shallow wave tank.

The form of the velocity potential and streaming functions of Equation (13) leads us
to conclude that the dynamics of fluid particles depends on the viscosity, depth, angular
frequency and the wavelength. For practical purposes, we introduce the dimensionless
number Θ̄ ≡ 2ν/

√
gh3 = θ̄ω̄/k̄3/2, which is independent of ω and k. Figure 7 summarises

the different type of behaviours obtained through the systematic span of the ¯(λ, Θ̄)-space
(we fixed ω̄ = 1 in all the cases). Figure 7a shows the case of small viscosity, namely,
Θ̄ = 10−2. For λ̄ = 2, a boundary layer becomes evident at the bottom and below the
surface, resulting in an hourglass-like shape in the collective orbits. In this hourglass-
like case, the amplitude of the surface wave is nearly the same as the amplitude of the
pedalling motion. The behaviour changes dramatically for λ̄ = 3, exhibiting an almost
deep-water-like behaviour with a significant gain and a thin boundary layer at the bottom.
As the wavelength further increases, the system progressively emulates the upper layers
of a truncated deep-water behaviour, which is qualitatively similar to the cases shown
in Figure 6.

Figure 7b shows the particle orbits for moderate viscosity, namely, Θ̄ = 10−1. For
λ̄ = 2, one obtains a configuration in the form of an Aryballos jar with a thick boundary
layer at the bottom of the wave tank. Due to viscosity, the amplitude of the surface wave
is smaller than the amplitude of the pedalling motion. The boundary layer at the bottom
decreases as the wavelength increases. For λ̄ = 4, the gain in the amplitude of the surface
wave is large, and the collective configuration of orbits shows a rotation of the elliptical
axes, exhibiting a tornado-like shape. This feature becomes evident around ȳ = −0.7,
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where the slope of the principal axis of the orbits reaches a maximum value and changes
its sign. For λ̄ = 10, the system emulates the upper layers of a truncated, deep-water
behaviour with a thin boundary layer at the bottom.

0 0.02

0

0.2

0 0.1 0 0.05 0 0.02

0 0.01

0

0.2

0 0.02 0 0.02 0 0.02

0 0.01

0

0.2

0 0.02 0 0.02 0 0.02

(a)

(b)

(c)

hourglass

aryballos tornado

cup

Figure 7. Oscillatory particle excursion ξ̄y, using the pedal-wavemaking technique with ω̄ = 1 and
x̄b = ȳb = 1/24 for (a) Θ̄ = 10−2, (b) Θ̄ = 10−1, and (c) Θ̄ = 1. The normalized wavelength of the
generated gravity wave is indicated for each case.

Finally, Figure 7c shows the particle orbits for large viscosity, namely, Θ̄ = 1. For
λ̄ = 2, the collective configuration of orbits exhibits a cup-like shape. The slope of the
principal axis of the closed orbits reaches a maximum value near the bottom. However,
contrary to the tornado-like configuration, there is no change in the orientation of the axes
of the ellipses. For λ̄ = 9, the system exhibits an almost deep-water-like behaviour with
gain smaller than unity due to viscosity. The system emulates deep-water behaviour for
larger values of the wavelength.

In summary, from our numerical and mathematical modelling of water waves, we
conclude that the pedal-wavemaking technique can emulate deep-water behaviour in a
shallow wave tank. Because of viscosity, thin boundary layers appear near the bottom
and below the surface, generating vorticity production in such layers and producing a
mismatch in the horizontal velocity with inviscid deep-water theory. Notwithstanding, the
vertical velocity field, using pedal-wavemakers, is almost identical to the corresponding
velocity field in inviscid deep-water waves.
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5. Conclusions

We introduced a new technique to recreate deep long gravity waves in finite-depth
water channels, using pedal wavemakers at the bottom. The technique consists of moving
small segments of the seabed with a periodic motion, resulting in a multi-point, pedal-like
action. The underlying mechanism is efficient in the generation of long wavelengths,
which has been elusive using conventional wavemakers [32]. The generated wave has
no longitudinal loss of wave amplitude, due to artificial dissipation in SPH simulations.
Studying the linear response of the water free-surface to the pedal-like motion in the
bottom, we obtained results in full agreement with the SPH simulations that emulate
deep-water behaviour, according to the linear Airy theory. We demonstrated that the
problem of evanescent waves appearing near hinged-paddle wavemakers is converted
into a thin boundary layer below the surface and at the bottom, using pedal-wavemaking.
No evanescent waves are present on the surface when the waves are generated by the
pedal-wavemakers.

Our wave-generation technique gives useful guidelines to recreate deep-wave phe-
nomena in both experimental and numerical setups with minimum resources. Although
the present study is focused on single frequency waves, applications may go beyond. Once
the linear water-wave generation problem is understood, it is possible to implement a
superposition of wave frequencies with different Fourier amplitudes to generate an arbi-
trary shape of the bottom motion and the surface wave. Moreover, localised, pedal-motion
floor excitation can be used to establish localised and directional wave propagation, which
may be relevant for the study of transient waves in some applications. More applications
may be also found in the study of floating structures interacting with regular waves under
realistic oceanic conditions.
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