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Abstract: We construct three finite difference methods to solve a linearized Korteweg–de-Vries (KdV)
equation with advective and dispersive terms and specified initial and boundary conditions. Two
numerical experiments are considered; case 1 is when the coefficient of advection is greater than the
coefficient of dispersion, while case 2 is when the coefficient of dispersion is greater than the coefficient
of advection. The three finite difference methods constructed include classical, multisymplectic and a
modified explicit scheme. We obtain the stability region and study the consistency and dispersion
properties of the various finite difference methods for the two cases. This is one of the rare papers
that analyse dispersive properties of methods for dispersive partial differential equations. The
performance of the schemes are gauged over short and long propagation times. Absolute and relative
errors are computed at a given time at the spatial nodes used.

Keywords: Korteweg–de-Vries equation; classical; multisymplectic; dispersion analysis; finite differ-
ence methods

1. Introduction

In this paper, we solve a linearised Korteweg-de-Vries equation with specified initial
and boundary conditions. The three methods include classical, multisymplectic and a
modified explicit scheme adapted from Wang et al. [1]. In 1895 [2], two Dutchmen, namely
Korteweg and de Vries, derived a nonlinear partial differential equation of the form

ut + uux + δ2uxxx = 0, (1)

which describes the long time asymptotic behaviour of a small but finite amplitude of
one-dimensional shallow water waves. In the equation above, u = u(x, t) measures the
elevation (height of water above equilibrium level) at time t and position x while δ2 is
referred to as the dispersion coefficient. There are two different mechanisms that are
present, namely;

1. Nonlinearity (uux), which tends to steepen those parts having negative slope.
2. Dispersion, which makes dispersive wave components of different wave frequencies

propagate at different velocities.

The delicate balance between these two effects leads to travelling waves of permanent
form, the so-called solitary wave. It is usual to refer to the solitary wave as the single soliton
solution, but when more than one of them appears in a solution, they are then termed
as solitons. If one of these two competing effects is lost, solitons become unstable and
eventually cease to exist. In this respect, solitons are completely different from linear waves.

The KdV equation has also been found to describe a number of important physical
phenomena such as magnetohydrodynamic waves in a warm plasma [3], elastic waves
in an anharmonic crystal [4], ion-acoustic waves in a plasma [5], the long-lived giant red
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spot in the highly turbulent Jovian atmosphere and the propagation of short laser pulses in
optical fibres [6].

The existence of unique solutions for some classes of initial data has been established
in Lax [7]. There exist many integral invariants of the KdV equation, three of these serve as
benchmarks to test the efficiency of numerical solvers. If u(x, t) is the solution of the KdV
equation given by Equation (1) above, the three invariants are

F1 =
∫ L

0
u dx, (2)

F2 =
1
2

∫ L

0
u2 dx, (3)

F3 =
∫ L

0

(
1
2

δ2(ux)
2 − 1

6
u3
)

dx, (4)

which represent mass, momentum and energy conservation, respectively.
Li and vu-Quoc [8] stated that in some areas, the ability to preserve the invariant

properties of the original differential equations is a criterion to judge the success of a
numerical simulation. The discrete forms of the three conservation laws are

Fh
1 (v̄) =

n

∑
i=1

vi∆x, (5)

Fh
2 (v̄) =

1
2

n

∑
i=1

(
vi + vi−1

2

)2
∆x, (6)

Fh
3 (v̄) =

n

∑
i=1

(
1
2

δ2|∆+vi|2 −
1
6
(vi)

3
)

∆x. (7)

There are several good reasons to work with KdV equation as a prototype. The reasons
are detailed below:

1. It is a model of a nonlinear hyperbolic equation with smooth solutions for all times.
2. It is non-dissipative and therefore is a natural testbed for comparing conservative vs.

dissipative discretization.
3. It is notorious. It is well known that unexpected, nonlinear instabilities occasionally

arise from reasonable-looking finite difference method. For instance, Zhao and Qin [9]
solved ut + ηuux + δ2uxxx = 0 with u(t = 0, x) = u0(x) = cos(πx) for x ∈ [0, 2],
η = 1, δ = 0.022 using periodic boundary conditions and employing the Zabusky–
Kruskal scheme. They tried various ∆x, ∆t combinations satisfying the linear stability

bound, yet they always obtained blow-up phenomena for t >
21
π

. Setting ∆x =

0.01, ∆t = 0.0001, the solution, using an explicit scheme, is qualitatively correct for a
while. Around t = 5, i.e., after 50,000 time steps, error accumulates in the solution
so that the linear stability bound is violated. After a few more steps, the solution
blows up.

The design and development of symplectic methods for Hamiltonian ODEs has
yielded very powerful numerical schemes with beautiful geometric properties. Symplectic
and other symmetric methods have been noted for their superior performance, especially
for long time integration [10–12]. The Korteweg–de-Vries equation has been extensively
studied in numerous studies using symplectic and multisymplectic methods [13]. Be-
cause of nonlinear instability, all those methods that can remove the phenomenon of
unphysical oscillations are entirely implicit or semi-explicit except for the 6-point scheme
that was proposed very recently in [14] based on the concept of multisymplectic schemes.
However, due to stability constraint on the time step, the 6-point scheme is somewhat
slow. Wang et al. [1] attempted to construct a scheme that not only removes oscillation
phenomenon for long time propagation but is also faster than the 6-point scheme.
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Very recently, the authors in [15] used two existing schemes proposed by Zabusky
and Kruskal [4] and Wang et al. [1] to solve ut + 6uux + βuxxx = 0 with initial conditions
u(x, t = 0) = 2µ2sech2(µx) with µ > 0 [16]. Appadu et al. [15] also constructed two
novel methods obtained by modifying the scheme proposed by Zabusky and Kruskal.
The performance of the four methods is compared in regard to dispersion and dissipation
errors and ability to conserve mass, momentum and energy by using two numerical
experiments that involve solitons. It is worthy to note that sine-cosine and canonical
transformation methods proposed and employed in [17,18] have proven useful in obtaining
exact soliton solutions and solutions of the Navier–Stokes equation, respectively. We next
discuss dispersive characteristics of numerical methods.

The term with the lowest even order spatial derivative in the truncation error produces
amplitude error in the numerical solution, and this is responsible for numerical dissipation.
The leading odd spatial derivative in the truncation error produces small-scale waves
as different Fourier components propagate at different phase speeds, and this causes
numerical dispersion [19]. The relative phase error (RPE) is a measure of the dispersive
character of a scheme. This quantity is a ratio and measures the velocity of the computed
waves to that of the physical waves [20,21]. The relative phase error is obtained using the
relation [22]

RPE =
arg(ξnum)

arg(ξexact)
(8)

where ξnum is the amplification factor of the numerical scheme and ξexact is the exact
amplification factor. The relative phase error of numerical schemes discretizing 1D linear
advection equation (ut + βux = 0) and 1D advection-diffusion equation (ut + βux = αuxx)
is calculated as [21,23–25]

RPE =
1

cw
arctan

[
Im(ξnum)

Re(ξnum)

]
. (9)

Plots of relative phase error vs. w at some values of ∆x, ∆t for a few schemes dis-
cretizing 1D linear advection and 1D advection-diffusion equation were obtained in [21]
and [24], respectively. Plots of RPE vs. wx vs. wy were obtained in [23,25] for numerical
schemes discretizing 2D advection-diffusion and 3D advection-diffusion equations. Ascher
and McLachlan [26] obtained the dispersion relation of the partial differential equation

ut = 2εuux + ρux + νuxxx (10)

On considering the linearized version of the PDE

ut = ρux + νuxxx. (11)

Appadu et al. [15] considered the linearized form ut + βuxxx = 0 of the PDE ut +
γuux + βuxxx = 0 to study dispersion analysis of the KdV equation. Some work on
computing the optimal temporal step size by minimizing the integrated error at a given
∆x was done by Appadu et al. [27]. The integrated error was obtained as the square of
dispersion error.

The paper is organized as follows. The two numerical experiments considered are
described in Section 2. Section 3 is devoted to Scheme 1 applied to numerical experiment
1 and details the following: derivation, stability, consistency, presentation of numerical
results and dispersion analysis. Sections 4 and 5 give information on work done on Schemes
2 and 3 when used to solve numerical experiment 1. Sections 6–8 concerns the derivation,
stability, consistency, presentation of numerical results and dispersion analysis of Schemes
1, 2, 3 when solving numerical experiment 2. We highlight salient features of the paper in
Section 9.
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2. Numerical Experiment

This paper is dedicated to the analysis of three numerical methods for the approxima-
tion of two different forms of linear KdV equations.

2.1. Case 1 (Numerical Experiment 1)

We consider the linear dispersive KdV equation [28]

ut + 2ux + uxxx = 0 (12)

with x ∈ [0, 2π] and t ∈ [0, 4.0].
The initial condition is u(x, 0) = sin(x), boundary conditions are

u(0, t) = sin(−t) (13)

and
u(2π, t) = sin(2π − t). (14)

The exact solution is u(x, t) = sin(x− t). This problem was solved using the Adomian
decomposition method [28], Laplace–Adomian decomposition method [29], Homotopy per-
turbation method [29], Bernstein–Laplace–Adomian method [29] and Reduced Differential
Transform method [29].

2.2. Case 2 (Numerical Experiment 2)

We considered a new case when the coefficient of dispersion was greater than that of
advection. We solve

ut + 2ux + 5uxxx = 0 (15)

with x ∈ [0, 2π] and t ∈ [0, 4]. The initial condition is u(x, 0) = sin(x), and the boundary
conditions are

u(0, t) = sin(3t) (16)

and
u(2π, t) = sin(2π + 3t). (17)

The exact solution is u(x, t) = sin(x + 3t).

3. Scheme 1 for Numerical Experiment 1

A classical finite difference scheme given by

vn+1
i = vn−1

i − k
3h

(vn
i−1 + vn

i + vn
i+1)(v

n
i+1 − vn

i−1)− η2 k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2)

was proposed in [4] for the solution of the nonlinear equation ut + uux + δ2uxxx = 0.
The scheme is adapted to solve ut + 2ux + uxxx = 0 as given in Equation (12). Therefore,
Scheme 1 is given by

vn+1
i = vn−1

i − 2k
h
(vn

i+1 − vn
i−1)−

k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2), (18)

for i = 2, 3, 4, · · · , NP− 2 and n = 2, 3, · · · , itmax− 1.

3.1. Stability of Scheme 1 for Numerical Experiment 1

In this section, the stability region of Scheme 1 is obtained. We substitute vn
i by ξneIθih

in Equation (18). This gives

ξ = ξ−1 − 2k
h
(eIθh − e−Iθh)− k

h3 (e
2Iθh − 2eIθh + 2e−Iθh − e2Iθh).
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After some rearrangements, we get

ξ2 + AIξ − 1 = 0, (19)

where

A = 4 sin(w)

[
k
h
+

k
h3 (cos(w)− 1)

]
. (20)

Therefore,

ξ =
1
2
(−IA±

√
−A2 + 4). (21)

We denote the amplification factor of the physical and the computational modes by ξ1
and ξ2, respectively.

ξ1 =
1
2
(−IA +

√
4− A2),

and
ξ2 = −IA−

√
4− A2.

If we seek amplification factor ξ that is not purely imaginary, we require 4− A2 ≥ 0,
which implies that |A| ≤ 2. This implies that we need k such that∣∣∣4k

h
sin w +

2k
h3 (sin 2w− 2 sin w)

∣∣∣ ≤ 2.

Note that the inequality is dominated by
2k
h3 (sin(2w) − 2 sin(w)) as h → 0. The

maximum is when cos(w) = −1
2

. We obtain the stability region as

k ≤ 1∣∣∣√3
[

1
h −

3
2

1
h3

]∣∣∣ . (22)

If we choose h = π/10, (22) gives k ≤ 0.012775. We can also obtain the stability region
by use of 2D plots, as shown in Figures 1 and 2. The stability region when h = π/10 is
0 < k ≤ 0.012, as illustrated in Figures 1b and 2b.

The procedure used in this section is the von Neumann approach. This procedure will
be employed to determine the expression for the amplification factor of the schemes in the
later sections. The region is obtained by imposing |ξ ≤ 1|.

(a) Wider range of k, k ∈ [0, 0.10] (b) Stable region, where k ∈ [0, 0.012]

Figure 1. Plot of |ξ1| vs. k vs. w ∈ [−π, π] of Scheme 1 for Numerical Experiment 1. The spatial step
size is h = π/10.
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(a) Wider range of k, k ∈ [0, 0.10] (b) Stable region, where k ∈ [0, 0.012]

Figure 2. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 1 for Numerical Experiment 1. The spatial step
size is h = π/10.

3.2. Consistency of Scheme 1 for Numerical Experiment 1

The scheme in Equation (18) is given by

vn+1
i = vn−1

i − 2k
h
(vn

i+1 − vn
i−1)−

k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2).

We use the Taylor series about the point (n, i) in order to determine the order of
accuracy of the scheme. By the Taylor’s expansion,

vn+1
i = v + kvt +

k2

2
vtt +

k3

6
vttt +

k4

24
vtttt + . . .

vn−1
i = v− kvt +

k2

2
vtt −

k3

6
vttt +

k4

24
vtttt + . . .

so that

vn+1
i − vn−1

i = 2kvt +
2k3

6
vttt + . . .

Furthermore

vn
i+1 = v + hvx +

h2

2
vxx +

h3

6
vxxx +

h4

24
vxxxx + . . .

and

vn
i−1 = v− hvx +

h2

2
vxx −

h3

6
vxxx +

h4

24
vxxxx + . . .

so that

vn
i+1 − vn

i−1 = 2hvx +
2h3

6
vxxx + . . .

In addition

vn
i+2 = v + 2hvx +

(2h)2

2
vxx +

(2h)3

6
vxxx +

(2h)4

24
vxxxx + . . .

and

vn
i−2 = v− 2hvx +

(2h)2

2
vxx −

(2h)3

6
vxxx +

(2h)4

24
vxxxx + . . .
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so that

vn
i+2 − vn

i−2 = 4hvx +
2(2h)3

6
vxxx + . . .

We obtain

vt + 2vx + vxxx = − k2

6
vttt −

1
3

h2vxxx + . . .

The accuracy of the scheme is quadratic both in space and in time.
The detailed consistency analysis is discussed above. The same procedure will be

followed throughout the entire paper. We may not discuss it in detail for other methods.

3.3. Numerical Results

In this section, the approximation of the linear dispersive Equation (12) using Scheme 1
given in Equation (18) is presented. Within the stability region, the spatial and the temporal
step sizes employed are h = π/10 and k = 0.001, respectively. The solution profiles are
shown in Figure 3. These are compared with the exact solution u(x, t) = sin(x− t). The
profile of absolute errors vs. x is also presented at T = 2.0 and T = 4.0. Figure 4 displays
the absolute error profiles for the scheme. Table 1 displays L1 and L∞ errors at some values
of k when h = π/10.

(a) T = 2.0 (b) T = 4.0

Figure 3. Plot of exact and numerical profiles (using Scheme 1), vs. x at times 2.0 and 4.0 using
h = π/10 and k = 0.001 (Numerical Experiment 1).

(a) T = 2.0 (b) T = 4.0

Figure 4. Plot of the absolute error vs. x using Scheme 1 for Numerical Experiment 1. The spatial
and temporal step sizes are h = π/10 and k = 0.001, respectively



Fluids 2021, 6, 214 8 of 29

Table 1. L1 and L∞ errors for various k when h = π/10 when Scheme 1 is employed to approximate
Numerical Experiment 1 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−1) L∞ (×10−2) L1 (×10−1) L∞ (×10−2)

0.001 1.3933 1.7015 1.7752 2.1496

0.002 1.3933 1.7016 1.7751 2.1493

0.003 1.3936 1.7021 1.7753 2.1477

0.004 1.3934 1.7019 1.7747 2.1478

0.005 1.3934 1.7012 1.7746 2.1464

0.006 1.3918 1.6964 1.7736 2.1510

0.007 1.3943 1.6997 1.7752 2.1442

0.008 1.3936 1.6998 1.7738 2.1418

0.009 1.3934 1.7011 1.7752 2.1362

0.01 1.3944 1.7012 1.7725 2.1368

3.4. Dispersion Analysis

A perturbation for u(x, t) is
eαt+Iθx, (23)

where α is the dispersion relation. We consider ut + 2ux + uxxx = 0. Then,
ut = αu(x, t), ux = Iθu(x, t), uxxx = −Iθ3u(x, t). Substituting these values in Equa-
tion (12), we obtain

α + 2Iθ − Iθ3 = 0,

leading to
α = Iθ(θ2 − 2).

This implies that the perturbation for u(x, t) can be written as a function of θ alone as
eIθ[(θ2−2)t+x]. The amplification factor is determined from the relation

ξexact =
u(x, tn+1)

u(x, tn)
= eIθ(θ2−2)k.

Relative phase error (RPE) is defined [27] as

RPE =
arg(ξnumerical)

arg(ξexact)
.

We obtain plots of the arguments of ξexact, ξ1, ξ2 vs. w ∈ [0, π] in Figure 5. For values
of w ∈ [0, 1], the graphs of the arguments of both ξexact and ξ1 are very close to each other,
as illustrated in Figure 5a. For values of w ∈ [0, 0.5], the graphs for the arguments of ξexact
and ξ2 are very close to each other, as depicted in Figure 5b, and we note that arg(ξ2) and
arg(ξexact) are of opposite signs for 0.5 < w < π.
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(a) ξ1 (b) ξ2

Figure 5. Plot of the arguments of the exact and numerical amplification factors of Scheme 1
for Numerical Experiment 1 with the spatial and temporal step sizes h = π/10 and k = 0.001,
respectively.

4. Scheme 2 for Numerical Experiment 1

In 2007, Wang et al. [14] constructed the following scheme to solve

ut + ηuux + δ2uxxx = 0 : (24)

vn+1
i − vn

i + vn
i+1 − vn−1

i+1
2k

+
η

2h
(vn

i+1 + vn
i )(v

n
i+1− vn

i ) +
µ2

h3 (v
n
i+2− 3vn

i+1 + 3vn
i − vn

i−1) = 0.

where η is the coefficient of the nonlinear term uux. The scheme is multisymplectic and
can remove the dispersive oscillations and preserves approximately several conservation
laws of the KdV equation [14].

To discretize ut + 2ux + uxxx = 0, we propose

1
2k

(vn+1
i − vn

i + vn
i+1 − vn−1

i+1 ) +
2
h
(vn

i+1 − vn
i ) +

1
h3 (v

n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1) = 0.

This gives

vn+1
i − vn

i + vn
i+1 − vn−1

i+1 = −4k
h
(vn

i+1 − vn
i )−

2k
h3 (v

n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1),

which can be rewritten as

vn+1
i = vn

i − vn
i+1 + vn−1

i+1 −
4k
h
(vn

i+1 − vn
i )−

2k
h3 (v

n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1), (25)

for i = 2, 3, · · · , NP− 2 and n = 2, 3, · · · , itmax− 1.

4.1. Stability of Scheme 2 for Numerical Experiment 1

Substituting vn
i by ξneIθih and simplifying gives

ξ = 1− eIw + ξ−1eIw − 4k
h
(eIw − 1)− 2k

h3 (e
2Iw − 3eIw + 3− e−Iw).

After some rearrangements, we get where

A = −(1− cos(w)− I sin(w)) +
4k
h
(cos(w)− 1 + I sin(w))
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+
2k
h3 (cos(2w) + I sin(2w)− 3(cos(w) + I sin(w)) + 3− (cos(w)− I sin(w)))

B = −(cos(w) + I sin(w))

and therefore, we get

ξ1,2 =
1
2
(−A±

√
A2 − 4B),

with ξ1 =
1
2
(−A +

√
A2 − 4B) and ξ2 =

1
2
(−A −

√
A2 − 4B). The range of values of

the temporal step size k for which |ξ| ≤ 1 is shown in the profiles of the amplification

factor ξ (see Figures 6 and 7) given that w = θh ∈ [−π, π] and h =
π

10
. It is observed that

0 < k < 0.01.

(a) Wider range of k, k ∈ [0, 1.0] (b) Stable region where k ∈ [0, 0.68]

Figure 6. Plot of |ξ1| vs. k vs. w ∈ [−π, π] of Scheme 2 for Numerical Experiment 1. The spatial step
size h = π/10.

(a) Wider range of k, k ∈ [0, 1.2] (b) Stable region where k ∈ [0, 0.01]

Figure 7. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 2 for Numerical Experiment 1. The spatial step
size h = π/10.

4.2. Consistency of Scheme 2 for Numerical Experiment 1

We recall that the scheme is given by

vn+1
i = vn

i − vn
i+1 + vn−1

i+1 −−
4k
h
(vn

i+1 − vn
i )−

2k
h3 (v

n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1).
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Taylor series expansion about (n, i) after simplification gives

2kvt +
1
3

k3vttt + khvtx −
1
2

k2hvttx +
1
2

kh2vtxx + 4kvx + 2khvxx +
2
3

kh2vxxx + 2kvxxx + . . . = 0.

We obtain

vt + 2vx + vxxx = −1
6

k2vttt −
h
2

vtx +
kh
4

vttx −
h2

4
vtxx − hvxx + · · ·

Since vtx + 2vxx + vxxxx ≈ 0, hence

vt + 2vx + vxxx = −1
6

k2vttt +
kh
4

vttx −
h2

4
vtxx −

1
3

h2vxxx + · · · .

The last equation shows that the scheme is second order accurate both spatially
and temporally.

4.3. Numerical Results

In this section, the approximation of the linear dispersive Equation (12) by Scheme
2 given in (25) is presented. Within the stability region, the spatial and the temporal step
size employed are h = π/10 and k = 0.0001, respectively. The solution profiles are shown
in Figure 8. These are compared with exact solution u(x, t) = sin(x − t). The profile of
absolute errors vs. x is also presented at T = 2.0 and T = 4.0. Figure 9 displays the absolute
error profiles for the multisymplectic scheme. We display L1 and L∞ errors in Table 2.

(a) T = 2.0 (b) T = 4.0

Figure 8. Plot of exact and numerical profiles (using Scheme 2), vs. x at times 2.0 and 4.0 using
h = π/10 and k = 0.001.

(a) T = 2.0 (b) T = 4.0

Figure 9. Plot of the absolute error vs. x using Scheme 2 for Numerical Experiment 1. The spatial
and temporal step sizes are h = π/10 and k = 0.001, respectively.
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Table 2. L1 and L∞ errors for various k when h = π/10 when Scheme 2 is employed to approximate
Numerical Experiment 1 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−1) L∞ (×10−2) L1 (×10−1) L∞ (×10−2)

0.001 2.9200 2.9327 4.6733 4.7894

0.002 2.9335 2.9464 4.6955 4.8124

0.003 2.9486 2.9628 4.7174 4.8344

0.004 2.9607 2.9739 4.7402 4.8587

0.005 2.9743 2.9877 4.7627 4.8819

0.006 2.9849 2.9961 4.7860 4.9074

0.007 3.0047 3.0219 4.8069 4.9244

0.008 3.0122 3.0345 4.8314 4.9580

4.4. Dispersion Analysis

Arguments of numerical amplification factors ξ1,2 derived in Section 4.1 are compared
with the exact amplification factor within the stability region. The comparison is shown
in Figure 10. We obtain plots of the arguments of ξexact, ξ1, ξ2 vs. w ∈ [0, π] in Figure 10.
For values of w ∈ [0, 1], the graphs for the arguments of both ξexact and ξ1 are very close to
each other, as illustrated in Figure 10a. Figure 10b shows that the arguments of ξexact and
ξ1 are not close for even small values of w.

(a) ξ1 (b) ξ2

Figure 10. Plot of the arguments of amplification factors of Scheme 2 for Numerical Experiment 1
with spatial and temporal step sizes h = π/10 and k = 0.001, respectively

5. Scheme 3 for Numerical Experiment 1

In 2008, Wang et al. [1] proposed the following scheme to discretize
ut + ηuux + δ2uxxx = 0, namely:

1
2k

(vn+1
i−1 − vn

i−1 + vn
i+1 − vn−1

i+1 ) + η

(vn
i−1 + vn

i + vn
i+1

3

)(vn
i+1 − vn

i−1
2h

)

+
µ2

2h3 (v
n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2) = 0.
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In order to discretize ut + 2ux + uxxx = 0, we propose

1
2k

(vn+1
i−1 − vn

i−1 + vn
i+1 − vn−1

i+1 ) +
1
h
(vn

i+1 − vn
i−1) +

1
2h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2) = 0.

This gives

vn+1
i−1 − vn

i−1 + vn
i+1 − vn−1

i+1 = −2k
h
(vn

i+1 − vn
i−1)−

k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2) = 0,

which can be written explicitly as

vn+1
i = vn

i − vn
i+2 + vn−1

i+2 −
2k
h
(vn

i+2 − vn
i )−

k
h3 (v

n
i+3 − 2vn

i+2 + 2vn
i − vn

i−1), (26)

where i = 2, 3, . . . , NP− 3 and n = 2, 3, . . . , itmax− 1.

5.1. Stability of Scheme 3 for Numerical Experiment 1

Substituting vn
i by ξneIθih and simplifying gives

ξ = 1− e2Iθh + ξ−1e2Iθh − 2k
h
(e2Iθh − 1)− k

h3 (e
3Iθh − 2e2Iθh + 2− e−Iθh),

After some rearrangements, we get

ξ2 + Aξ + B = 0, (27)

where
A =

2k
h
(cos(2w)− 1 + I sin(2w))+

k
h3 (cos(3w)− 2 cos(2w) + 2− cos(w) + I[sin(3w)− 2 sin(2w) + sin(w)])

−(1− cos(2w)− I sin(2w))

and
B = −(cos(2w) + I sin(2w)).

Therefore,

ξ1,2 =
1
2
(−A±

√
A2 − 4B). (28)

We employ the condition |ξ| ≤ 1 to determine the appropriate range for the temporal

step size when the spatial step size is
π

10
with w ∈ [−π, π]. The temporal step size is based

on the behaviour of both ξ1 =
1
2
(−A +

√
A2 − 4B) and ξ2 =

1
2
(−A−

√
A2 − 4B). The

region of stability, as shown in Figures 11 and 12, implies that the scheme is stable for all
0 < k ≤ 0.001.
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(a) Wider range of k, k ∈ [0, 1.0] (b) Stable region where k ∈ [0, 0.68]

Figure 11. Plot of |ξ1| vs. k vs. w ∈ [−π, π] of Scheme 3 for Numerical Experiment 1. The spatial
step size h = π/10.

(a) Wider range of k, k ∈ [0, 1.0] (b) Stable region where k ∈ [0, 0.001]

Figure 12. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 3 for Numerical Experiment 1. The spatial
step size h = π/10.

5.2. Consistency of Scheme 3 for Numerical Experiment 1

In this section, the pointwise accuracy of Scheme (26) will be discussed. The scheme
is written as

vn+1
i = vn

i − vn
i+2 + vn−1

i+2 −
2k
h
(vn

i+2 − vn
i )−

k
h3 (v

n
i+3 − 2vn

i+2 + 2vn
i − vn

i−1).

Using Taylor’s series expansion about (n, i) gives

v+ kvt +
k2

2
vtt +

k3

6
vttt + . . . = v− (v+ 2hvx +

(2h)2

2
vxx +

(2h)3

6
vxxx + . . .)+ v− kvt + 2hvx

+
1
2
[k2vtt − 4khvtx + 4h2vxx]

+
1
6
[−k3vttt + 6k2hvttx − 12kh2vtxx + 8h3vxxx]−

2k
h
[v + 2hvx +

(2h)2

2
vxx +

(2h)3

6
− v]−

k
h3 [v + 3hvx +

(3h)2

2
vxx +

(3h)3

6
vxxx]
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− k
h3 [−2(v + 2hvx +

(2h)2

2
vxx +

(2h)3

6
vxxx) + 2v− (v− hvx +

h2

2
vxx −

h3

6
vxxx)].

After some simplifications, we get,

vt + 2vx + vxxx = −1
6

k2vttt + hvxxxx −
kh
2

vttx − h2vtxx −
4
3

h2vxxx + . . . .

We conclude here that the scheme is second order accurate both in space and time.

5.3. Numerical Results

In this section, the approximation of the linear dispersive Equation (12) using Scheme
3 is presented. Within the stability region, the spatial and the temporal step size employed
are h = π/10 and k = 0.001, respectively. The solution profiles are shown in Figure 13.
These are compared with exact solution u(x, t) = sin(x− t). The profile of absolute errors
is also presented at T = 2.0 and T = 4.0. Figure 14 displays the absolute error profiles for
the multisymplectic scheme. We compare L1 and L∞ errors in Table 3.

(a) T = 2.0 (b) T = 4.0

Figure 13. Plot of the solution profile of Numerical Experiment 1 by Scheme 3. The spatial and
temporal step sizes are h = π/10 and k = 0.001, respectively.

(a) T = 2.0 (b) T = 4.0

Figure 14. Plot of the absolute error vs. x using Scheme 3 for Numerical Experiment 1. The spatial
and temporal step sizes are h = π/10 and k = 0.001, respectively.
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Table 3. L1 and L∞ errors for various k when h = π/10 when Scheme 3 is employed to approximate
Numerical Experiment 1 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−1) L∞ (×10−2) L1 L∞ (×10−1)

0.001 7.2243 7.8696 1.1062 1.2406

0.002 7.2513 7.8993 1.1105 1.2455

0.003 7.2807 7.9356 1.1148 1.2497

0.004 7.3052 7.9589 1.1190 1.2553

0.005 7.3322 7.9887 1.1234 1.2602

0.006 7.3542 8.0054 1.1277 1.2665

0.007 7.3916 8.0616 1.1321 1.2679

0.008 7.4137 8.0783 1.1364 1.2750

0.009 7.4357 8.0950 1.1408 1.2770

0.01 7.4682 8.1382 1.1451 1.2848

5.4. Dispersion Analysis

The arguments of the numerical amplification factors ξ1,2 derived in Section 7.1 are
compared with the exact amplification factor within the stability region. The profiles of the
arguments of the amplification factors are shown in Figure 15.

(a) ξ1 (b) ξ2

Figure 15. Plot of the arguments of amplification factors of Scheme 3 for Numerical Experiment 1
with the spatial and temporal step sizes h = π/10 and k = 0.001, respectively.

6. Scheme 1 for Numerical Experiment 2

A classical finite difference scheme given by

vn+1
i = vn−1

i − k
3h

(vn
i−1 + vn

i + vn
i+1)(v

n
i+1 − vn

i−1) + η2 k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2)

was proposed by Zabusky and Kruskal [4] for the solution of the nonlinear equation
ut + uux + δ2uxxx = 0. The scheme will be adapted to solve ut + 2ux + 5uxxx = 0 and will
be referred to as Scheme 1. Scheme 1 is given by
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vn+1
i = vn−1

i − 2k
h
(vn

i+1 − vn
i−1) +

5k
h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2), (29)

where i = 1, 2, 3, . . . , NP− 3 and n = 2, 3, . . . , itmax− 1.

6.1. Stability of Scheme 1 for Numerical Experiment 2

The amplification factor of this scheme satisfies the equation

ξ2 + AIξ − 1 = 0,

where

A = 4 sin(w)

[
k
h
+

5k
h3 (cos(w)− 1)

]
.

Therefore,

ξ1,2 =
1
2
(−AI ±

√
−A2 + 4).

If we seek the amplification factor that is not purely imaginary, we require 4− A2 ≥ 0
which implies that |A| ≤ 2. This implies that we need k such that∣∣∣4 sin(w)

[
k
h
+

5k
h3 (cos(w)− 1)

]∣∣∣ ≤ 2.

Note that the inequality is dominated by
10k
h3 (sin(2w) − 2 sin(w)) as h → 0. The

maximum of this is at the point cos(w) = −1
2

. The stability region is

k ≤ 1∣∣∣√3
[

1
h −

3
2

5
h3

]∣∣∣ .
If we choose h = π/10, we obtain k ≤ 0.00241869. The range of values of the temporal

step size k for which |ξ| ≤ 1 is also shown in the profile of the amplification factors ξ shown

in Figures 16 and 17 given that w = θh ∈ [−π, π] and h =
π

10
. The profile is shown both

for ξ1 =
1
2
(−IA +

√
−A2 + 4) as well as ξ1 =

1
2
(−IA−

√
−A2 + 4). It can be deduced

from the two profiles in Figures 16 and 17 that 0 < k ≤ 0.0025.

(a) Wider range of k, k ∈ [0, 0.003] (b) Stable region where k ∈ [0, 0.0025]

Figure 16. Plot of |ξ1| vs. k vs. w ∈ [−π, π] of Scheme 1 for Numerical Experiment 2. The spatial
step size h = π/10.
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(a) Wider range of k, k ∈ [0, 0.03] (b) Stable region where k ∈ [0, 0.0025]

Figure 17. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 1 for Numerical Experiment 2. The spatial
step size h = π/10.

6.2. Consistency of Scheme 1 for Numerical Experiment 2

We use Taylor’s series expansion about (n, i) in order to determine its order of accuracy.
We obtain

vt + 2vx + 5vxxx = − k2

6
vttt −

1
6

h2vxxx + . . .

and we conclude that the accuracy of the scheme is quadratic both in space and in time.

6.3. Numerical Results

In this section, the approximation of the linear dispersive Equation (15) by Scheme
1 (29) is presented. Within the stability region, the spatial and the temporal step sizes
employed are h = π/10 and k = 0.001, respectively. The solution profiles are shown in
Figure 18. These are compared with exact solution u(x, t) = sin(x + 3t). The profile of
absolute errors is also presented at T = 2.0 and T = 4.0. Figure 19 displays the absolute
error profiles of Scheme 1 for Numerical Experiment 2. We compare L1 and L∞ errors in
Table 4.

(a) T = 2.0 (b) T = 4.0

Figure 18. Plot of exact and numerical profiles (using Scheme 1) vs. x at times 2.0 and 4.0 using h = π/10 and k = 0.001
(Numerical Experiment 2).
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(a) T = 2.0 (b) T = 4.0

Figure 19. Plot of the absolute error vs. x using Scheme 1 for Numerical Experiment 2. The spatial and temporal step sizes
are h = π/10 and k = 0.001, respectively.

Table 4. L1 and L∞ errors for various k when h = π/10 when Scheme 1 is employed to approximate
Numerical Experiment 2 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−1) L∞ (×10−2) L1 L∞ (×10−1)

0.001 1.2362 1.6724 2.0847 3.0605

0.002 1.2322 1.6849 2.0852 3.0651

6.4. Dispersion Analysis

We consider ut + 2ux + 5uxxx = 0. We use same techniques as in Section 3.4 The
amplification factor is determined from the relation

ξexact =
u(x, tn+1)

u(x, tn)
= eIθ(5θ2−2)k.

The relative phase error (RPE) is defined [27]

RPE =
arg(ξnumerical)

arg(ξexact)
=

arg(ξnumerical)

θ(5θ2 − 2)k
.

We obtain plots of the arguments of ξexact, ξ1, ξ2 vs. w ∈ [0, π] in Figure 20. For values
of w ∈ [0, 1] the graphs of the arguments of both ξexact and ξ1 are very close to each other,
as illustrated in Figure 20a.
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(a) ξ1 (b) ξ2

Figure 20. Plot of the arguments of amplification factors of Scheme 1 for Numerical Experiment 2
with the spatial and temporal step sizes h = π/10 and k = 0.001, respectively.

7. Scheme 2 for Numerical Experiment 2

Wang et al. [14] proposed
1
2k

(vn+1
i − vn

i + vn
i+1 − vn−1

i+1 ) +
η

2h
(vn

i+1 + vn
i )(v

n
i+1 − vn

i ) +
µ2

h3 (v
n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1) = 0. (30)

For the approximation of the nonlinear KdV equation ut + ηuux + δ2uxxx = 0, we
adapt the method in Equation (30) to approximate Equation (15). The proposed method is

1
2k

(vn+1
i − vn

i + vn
i+1 − vn−1

i+1 ) +
2
h
(vn

i+1 − vn
i ) +

5
h3 (v

n
i+2 − 3vn

i+1 + 3vn
i − vn

i−1) = 0. (31)

Analysis the stability, consistency and the dispersion properties of the Scheme given
by ((31)) are discussed below.

7.1. Stability of Scheme 2 for Numerical Experiment 2

Scheme (31) can be rewritten explicitly as

vn+1
i = vn

i − vn
i+1 + vn−1

i+1 −
4k
h
(vn

i+1 − vn
i )−

10k
h3 (vn

i+2 − 3vn
i+1 + 3vn

i − vn
i−1) (32)

for all i = 2, 3, 4, . . . , NP− 2 and n = 2, 3, . . . , itmax− 1. The amplification factor satisfies

ξ2 + Aξ + B = 0,

where
A =

4k
h
(eIθh − 1) +

10k
h3 (e2Iθh − 3eIθh + 3− e−Iθh)− (1− eIθh)

and
B = −eIθh.

The roots of this equation are

ξ1,2 =
1
2
(−A±

√
A2 + 4B).

We fix h = π/10 and obtain plots of |ξ1| and |ξ2|, vs. w ∈ [−π, π] vs. k in Figures 21
and 22, respectively, and we deduce that the stability region is 0 < k < 0.001.
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(a) Wider range of k (b) Stable region

Figure 21. Plot of |ξ1| vs. k vs. w ∈ [−π, π] of Scheme 2 for Numerical Experiment 2. The spatial
step size h = π/10.

(a) Wider range of k, k ∈ [0, 0.01] (b) Stable region where k ∈ [0, 0.001]

Figure 22. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 2 for Numerical Experiment 2. The spatial
step size h = π/10.

7.2. Consistency of Scheme 2 for Numerical Experiment 2

In this section, the consistency of the numerical scheme (31) is discussed. We consider
Equation (31) and use Taylor’s series expansion about (n, i) to get

vt + 2vx + 5vxxx = − k3

6
vttt −

h
2

vtx +
kh
4

vtxx −
h2

12
vtxx − hvxx −

h2

3
vxxx −

h3

12
vxxxx −

5h
2

vxxxx + . . .

We note that
vtx + 2vxx + 5vxxxx ≈ 0

and we therefore obtain

vt + 2vx + 5vxxx = − k3

6
vttt −

h2

3
vxxx +

kh
4

vtxx −
h2

12
vtxx −

h3

12
vxxxx + . . .

We deduce that the scheme is of second order accuracy in both time and space.
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7.3. Numerical Result

In this section, the approximation of the linear dispersive Equation (15) by Scheme 2,
given in Equation (31), is presented. Within the stability region, the spatial and the temporal
step sizes employed are h = π/10 and k = 0.001, respectively. The solution profiles are
shown in Figure 23. These are compared with exact solution u(x, t) = sin(x + 3t). The
profile of absolute errors are presented at T = 2.0 and T = 4.0. Figure 24 displays the
absolute error profiles. We display L1 and L∞ errors in Table 5.

(a) T = 2.0 (b) T = 4.0

Figure 23. Plot of exact and numerical profiles (using Scheme 2) vs. x at times 2.0 and 4.0 using
h = π/10 and k = 0.001 (Numerical Experiment 2).

(a) T = 2.0 (b) T = 4.0

Figure 24. Plot of the absolute error vs. x using Scheme 2 for Numerical Experiment 2. The spatial
and temporal step sizes are h = π/10 and k = 0.001, respectively.
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Table 5. L1 and L∞ errors for various k when h = π/10 when Scheme 2 is employed to approximate
Numerical Experiment 2 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−2) L∞ (×10−3) L1 (×10−2) L∞ (×10−3)

0.0001 2.6768 3.2056 3.3807 4.5001

0.0002 2.6885 3.2190 3.3954 4.5195

0.0003 2.6997 3.2306 3.4106 4.5405

0.0004 2.7119 3.2460 3.4245 4.5582

0.0005 2.7236 3.2595 3.4391 4.5776

0.0006 2.7362 3.2769 3.4523 4.5935

0.0007 2.7473 3.2883 3.4695 4.6195

0.0008 2.7584 3.2998 3.4827 4.6354

0.0009 2.7710 3.3172 3.4998 4.6614

0.001 2.7816 3.3266 3.5116 4.6739

7.4. Dispersion Analysis

We plot the arguments of the numerical amplification factors as derived in Section
with the exact amplification factor in Figure 25. The argument of ξ1 and the argument of
exact amplification factor are quite close to each other for w ∈ [0, 1].

(a) ξ1 (b) ξ2

Figure 25. Plot of the arguments of amplification factors of Scheme 2 for Numerical Experiment 2
with the spatial and temporal step sizes h = π/10 and k = 0.001, respectively.

8. Scheme 3 for Numerical Experiment 2

Wang et al. [1] proposed the scheme

1
2k

(vn+1
i−1 − vn

i−1 + vn
i+1 − vn−1

i+1 ) + η
vn

i−1 + vn
i + vn

i+1
3

vn
i+1 − vn

i−1
2h

+
µ2

2h3 (v
n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2) = 0 (33)
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for the numerical approximation of the nonlinear equation. We adapt this scheme to solve
the linear dispersive equation ut + 2ux + 5uxxx = 0. The scheme for Equation (15) is

1
2k

(vn+1
i−1 − vn

i−1 + vn
i+1 − vn−1

i+1 ) + 2
(vn

i+1 − vn
i−1

2h

)
+

5
2h3 (v

n
i+2 − 2vn

i+1 + 2vn
i−1 − vn

i−2) = 0. (34)

In explicit form, after some index shift, this equation is written as

vn+1
i = vn

i − vn
i+2 + vn−1

i+2 −
2k
h
(vn

i+2 − vn
i )−

5k
h3 (v

n
i+3 − 2vn

i+2 + 2vn
i − vn

i−1). (35)

8.1. Stability of Scheme 3 for Numerical Experiment 2

We substitute vn
i by ξneIθih, and after simplification we get

ξ = 1− e2Iθh + ξ−1e2Iθh − 2k
h
(e2Iθh − 1)− 5k

h3 (e
3Iθh − 2e2Iθh + 2− e−Iθh) + e2Iθh.

This is a quadratic equation in ξ, written as ξ2 + Aξ + B = 0 where

A =
2k
h
(e2Iθh − 1) +

5k
h3 (e

3Iθh − 2e2Iθh + 2− e−Iθh)− (1− e2Iθh)

and
B = −e2Iθh.

The amplification factors ξ1,2 are, therefore, obtained as ξ1 =
1
2
(−A +

√
A2 + 4B)

and ξ2 =
1
2
(−A−

√
A2 + 4B). The stability constraint for the scheme is computed from

each of these amplification factors using h =
π

10
for θh = w ∈ [−π, π]. The stability region

is deduced from Figures 26 and 27 as 0 < k ≤ 0.001.

(a) Wider range of k, k ∈ [0, 100] (b) Stable region

Figure 26. Plot of |ξ1| vs. k vs. w of Scheme 3 for Numerical Experiment 2. The spatial step size h = π/10.
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(a) Wider range of k, k ∈ [0, 0.05] (b) Stable region where k ∈ [0, 0.001]

Figure 27. Plot of |ξ2| vs. k vs. w ∈ [−π, π] of Scheme 3 for Numerical Experiment 2. The spatial
step size h = π/10.

8.2. Consistency of Scheme 3 for Numerical Experiment 2

To discuss the consistency of the scheme in Equation (35), consider the Taylor expan-
sion about (n, i). After simplification, we get

1
2k

(2kvt + 2hkvtx +
2k3

6
vttt + 2h2kvtxx − hk2vttx)

+
1
h
(2hvx +

4h2

2
vxx +

8h3

6
vxxx +

(2h)4

24
vxxxx . . .) +

5
2h3 (2h3vxxx + 2h4vxxxx + . . .) = 0.

We obtain

vt + 2vx + 5vxxx = − k2

6
vttt − h2vtxx +

hk
2

vttx −
4
3

h2vxxx −
2
3

h3vxxxx + . . . ,

hence, the scheme is spatially and temporally accurate of order 2.

8.3. Numerical Results

In this section, the approximate solution of the linear dispersive Equation (15) by
Scheme 3, given in Equation (35), is presented. Within the stability region, the spatial and
the temporal step sizes employed are h = π/10 and k = 0.001, respectively. The solution
profiles are shown in Figure 28. These are compared with exact solution u(x, t) = sin(x+ 3t).
The profile of absolute errors is also presented at T = 2.0 and T = 4.0. Figure 29 displays
the absolute error profiles for the multisymplectic scheme. We display L1 and L∞ errors
in Table 6.
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(a) T = 2.0 (b) T = 4.0

Figure 28. Plot of exact and numerical profiles (using Scheme 3) vs. x at times 2.0 and 4.0 using
h = π/10 and k = 0.001 (Numerical experiment 2).

(a) T = 2.0 (b) T = 4.0

Figure 29. Plot of the absolute error vs. x using Scheme 3 for Numerical Experiment 2. The spatial
and temporal step sizes are h = π/10 and k = 0.001, respectively.

Table 6. L1 and L∞ errors for various k when h = π/10 when Scheme 3 is employed to approximate
Numerical Experiment 2 at T = 2 and T = 4.

Error

Step Sizes k T = 2 T = 4

L1 (×10−2) L∞ (×10−3) L1 (×10−2) L∞ (×10−3)

0.0001 7.8870 9.9051 8.1634 8.24321

0.0002 7.8720 9.8882 8.1440 8.2225

0.0003 7.8554 9.8643 8.1247 8.2082

0.0004 7.8422 9.8545 8.1254 8.1810

0.0005 7.8273 9.8377 8.0860 8.1602

0.0006 7.8107 9.8140 8.0669 8.1652

0.0007 7.7966 9.8007 8.0475 8.1316

0.0008 7.7826 9.7873 8.0282 8.0981

0.0009 7.7661 9.7638 8.0091 8.1029

0.001 7.7529 9.7538 7.9897 8.0567

0.002 7.6051 9.5873 7.7978 7.8503

0.003 7.4446 9.3599 7.6076 7.7051

0.004 8.0514 12.2661 7.6774 18.6819
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8.4. Dispersion Analysis

The arguments of the numerical amplification factors ξ1,2 are compared with the
argument of the exact solution of the linear dispersive Equation (15). The amplification
factors are derived in Section 8.1. The comparisons are shown in Figure 30.

(a) ξ1 (b) ξ2

Figure 30. Plot of the arguments of amplification factors of Scheme 3 for Numerical Experiment 2
with the spatial and temporal step sizes are h = π/10 and k = 0.001, respectively.

9. Conclusions

This paper considers, proposes and analyzes three finite difference schemes for two
linear dispersive KdV equations. One of the cases is such that the advective term dominates
the dispersive term, while in the second case, the dispersive term dominates the advective
term. Stability regions were derived for the schemes, their accuracies were discussed and
their dispersion analyses were conducted and presented.

It is observed that for Numerical Experiment 1, the stability region for Scheme 3,
0 < k ≤ 0.001, is narrower compared to the stability region 0 < k ≤ 0.01 for Scheme 1 and
Scheme 2. The maximum absolute error of Scheme 1 is relatively less than the maximum
absolute error for Scheme 2 and Scheme 3 both for short time and long time integration.
In addition, the stability restraint is relaxed when Scheme 1 is employed to approximate
Numerical Experiment 2 than Scheme 2 and Scheme 3. In this case, the maximum absolute
error, when Scheme 2 is employed to solve Numerical Experiment 2 is less compared to
Scheme 1 and Scheme 3. In fact, the highest error is recorded for Scheme 1.

A comparison of results of classical finite difference methods with Laplace Adomian
Decomposition Method for Numerical Experiment 1 was done in [30], and it was observed
that at a low propagation time of 0.1 s, LADM is better than the classical scheme but that
at long time propagation (say when time = 4.0), the performance of LADM deteriorates
significantly.

We intend to use the knowledge acquired in this paper to construct methods for
linearized KdV equations in both 1−D and 2−D with more challenging initial conditions
and check which of the three schemes is the best performing. Moreover, we can also
construct similar methods for PDEs quite related to the KdV equations, especially those
with uux and uxxx terms present and these examples of PDEs are fractional KdV, modified
KdV, KdV–Burgers–Kuramoto, KdV-Burgers and stochastic KdV equations.
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