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Abstract: Modelling of unidirectional and oscillatory flows around a cylinder near a wall using an
overlapping grid system is carried out. The circular grid system of the cylinder was overlapped with
the rectangular grid system of the wall. The use of such an overlapping grid system is intended to
reduce the CPU time compared to the cloud scheme in which vortex-to-vortex interaction is used,
i.e., especially in calculating the shedding vortex velocity, since calculating the vortices velocity takes
the longest CPU time. This method is not only time efficient, but also gives a better distribution of
surface vorticity as the scattered vortices around the body are now concentrated on a grid point.
Therefore, grid-to-grid interaction is used instead of vortex-to-vortex interaction. Velocity calculation
was also carried out using this overlapping grid in which the new incremental shift position was
summed up to obtain the total new vortices position. The engineering applications of this topic are
to simulate the loading of submarine pipeline placed close to the seabed or to simulate the flow as a
result of the scouring process below the cylinder since there is space for the fluid to flow beneath
it. The in-line and transverse force coefficients are found by integrating the pressure around the
cylinder surface. The flow patterns are then obtained and presented. The comparison of the results
with experimental evidence is presented and the range of good results is discussed.

Keywords: cylinder; wall; discrete vortex; overlapping grid

1. Introduction

Various studies involving cylinders in close proximity to an impermeable surface
have been conducted using computers and laboratories in the last five decades. Using
the discrete vortex method, it is indicated that the best agreements are at G/D = 0.2 and
G/D = 0.5, where G is the gap and D is the diameter of the cylinder [1]. The results show
that the interaction between the lee-side recirculating flow and the gap flow, which inhibits
large-scale vortex roll-up, is developed behind the cylinder. Furthermore, the results at
G/D = 1.0 indicate cancellation of opposite signed vorticity in the near-wall region.

A boundary shear flow in proximity of a circular cylinder is numerically investigated
using a finite element method [2]. It has a strong effect on the flow behind the cylinder and
also the force acting on the cylinder. The variation of the Reynolds number and gap ratio
also have a significant role. In this investigation, with a fixed Reynolds number, the drag
force increases as the gap spacing decreases. The lift force decreases at a fixed gap ratio,
and the drag force varies with a change in Reynolds number. The lift force decreases as the
Reynolds number increases.

The flows around two cylinders in close proximity under the influence of the initial
conditions using a finite element-based program at low Reynolds numbers, have also been
investigated [3].

Another research at low to moderate Reynolds numbers using a numerical model
based on 3D RANS simulation was carried out [4]. The drag coefficient increases as the
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cylinder approaches the wall until G/D = 1. However, as soon as the cylinder became
closer than G/D = 1, the flow was submerged into the wall’s boundary layer, and the mean
drag coefficient decreased as the base pressure also decreased.

An investigation employing a high Reynolds number and moderate to large gap ratio
has also been carried out [5]. This investigation utilized large eddy simulation (LES) using
Re = 13,100. At a moderate gap ratio, it yields a long and nearly stationary separation
bubble. While the development of gap ratio yields an asymmetric wake with a long shear
layer, the bigger gap ratio allows a symmetric flow near the wake to occur.

The vibration of a cylinder near a wall using a partition iterative scheme was studied
based on the Petrov–Galerkin formulation [6]. This was carried out to simulate flow
past a freely vibrating circular cylinder placed in proximity to a stationary plane wall.
The wall proximity effect on vortex-induced vibration (VIV) of an elastically mounted
circular cylinder with 2D were systematically studied in two-dimension laminar flow at
low Reynolds number. Hydrodynamic forces, vibration characteristics phase relation and
response frequencies were also studied.

Another variation is by using an oscillatory flow [7]. This condition was investigated
by exposing a cylinder, placed near a wall, to an oscillatory flow and then the span-wise
correlation was calculated based on the cylinder surface. This investigation indicated that
the effect of wall proximity is insignificant, especially when the fluctuations in surface
pressure are taken into consideration.

In this study, further developing the image method by [8], a simple overlapping polar
grid system was used for the cylinder to give a good definition of the flow close to the
cylinder surface. The grid node on the cylinder surface located at the center of the surface
element provides the control points at which the Martensen equation is solved to give zero
tangential velocity and satisfy the Dirichlet boundary condition [9].

A potential flow scheme has been used to model this kind of configuration for a low
range of Reynolds numbers [10]. In this model, there is no separation model, and the flow
resembles a stream-line flow. The force coefficients can then be calculated through the
use of the Blasius equation by directly substituting and integrating the complex potential
around the cylinder.

2. Basic Formulation

In this study, with only a wall below and near the cylinder, the complex potential
equation can then be approximated as follows:

ω(z) = u∞e−i∝∞ +
i

2π

Ne

∑
e = 1

γedSe ln(z− ze) +
1

2π

N1
w

∑
w = 1

σ1
wdS1

ω ln
(

z− z1
ω

)
+

i
2π

Nν

∑
υ = 1

Γν ln(z− zν) (1)

The strength of a vortex γn around the cylinder and a source σ1
w at element w of the

wall g in this equation can be calculated by satisfying the Dirichlet boundary condition
of zero tangential velocity on the cylinder surface and the Neumann boundary condition
of zero normal velocity along the wall. Mw shows the number of walls, in this case equal
to 1 since the wall is only placed below the cylinder, in which N1

w shows the number of
elements of the bottom wall.

As there are two different boundary conditions imposed on the circumference of the
cylinders and on the walls, the Martensen equation can be written into two expressions to
take into account the influence of the wall:
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in which k′υn, k′υw, and kmw are the kernels of the integral. σw is the strength of the wall

source at point w,
⇀
d Sm is the tangential direction vector of the cylinder element m, while

⇀
d Sn

υ is the normal direction vector of the wall element v.
The velocity of a vortex can then be calculated through the use of the polar and the

rectangular grid nodes. The contribution from the wall sources is implemented using
the rectangular grid nodes. This implies that a bilinear interpolation and re-interpolation
in polar and rectangular coordinates are needed to distribute and redistribute the vortex
strength and velocity onto two grid nodes. The force coefficients can then be calculated
by integrating the pressure distribution from the point of stagnation to the vicinity of the
cylinder surface.

Due to the nature of the kernel functions above, which are asymptotically equal to
zero as the distance approaches infinity, the integration reduces to the integrals around
the cylinder surface and the wall. It can be seen from Equations (2) and (3) that the
Martensen equation cannot be solved independently since each equation contains two
unknowns, γn and σw. Therefore, the Dirichlet boundary condition of zero tangential
velocity on the circumference of the cylinders implied in Equation (2) and the Neumann
boundary condition of zero normal velocity along the walls implied in Equation (3) must
be solved simultaneously.

3. Methodology
3.1. Surface Velocity Calculation

As the source strength far away from the cylinders are relatively small, their contri-
bution is neglected beyond a cut-off at a certain finite distance from the cylinders, which
produces a finite number of wall elements Nw, as follows:

Ne

∑
n = 1

kmnγndSn +
Nw

∑
w = 1

k1
mwσ1

wdS1
w +<

(
u∞e−i(∝∞−βm)

)
+

Nv

∑
v = 1

lmvΓv = 0 (4)

to satisfy the Dirichlet boundary condition at element m of the cylinder circumference and

Ne
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n = 1

k′1vnγndSn +
Nw

∑
w = 1

k1
mwσ1

wdS1
w +<

(
u∞e−i(∝∞−β

g
v)
)
+

Nv

∑
v = 1

l′gvvΓv = 0 (5)

to satisfy the Neumann boundary condition at element v of the wall g. To find the unknown
value of the vortex strength γn and the source strength σw, these equations can now be
expressed in the matrix form as follows:(

Kmn K′1mv
K′1vn K′11

v1v2

)(
γn
σ1

v

)
=

(
RHS
RHS1

)
(6)

where the components inside the matrix are all submatrices with 1, signifying the bot-
tom wall.

3.2. Segmentation of the Domain

It can be seen from Equation (1) that after shedding vortices, the order of Nw operations
must be carried out when performing the velocity calculation for a vortex due to the
contribution of only a wall source and the number of operations will be this velocity
calculation for a vortex added by Nv + 1, the number of vortices in the flow, if mutual
vortex interaction is used. The final total number of operations will be this number
multiplied by the number of shed vortices Nv.

Using rectangular grid nodes as shown in Figure 1 below, this number could be
reduced by replacing the factor Nv + 1 with ∑

j,k
Nj,k + 1, which is obviously a smaller

number. About the same amount of CPU saving can also be found during the source
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strength calculation in the component of Equation (6) from the contribution of the shed
vortices, which also use the rectangular grid elements.
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Figure 1. The overlapping grid system.

It is shown in Figure 1 that the size of the rectangular grid segment is arranged in order
of the length of the wall source element. This means that the rectangular wall elements
are uniform throughout the whole fluid domain. The first row of the rectangular grid
nodes next to the wall are arranged in such a way as to give the best visualization of the
flow pattern.

The polar grid coordinate is extended up to 65 segments. The lower part of the polar
grid coordinate below the bottom wall is removed. The active polar grid coordinate is
dependent on whether there is vortex or not in the grid; in this case, the grid node is
designated as ‘on’. Otherwise, if there is no vortex in the grid, in which case, the grid
node is designated as ‘off’. In this calculation process, we cannot exactly calculate the
number of grids as the grid can be either on or off. The same reason is also applied to the
rectangular grid.

The time step chosen was t̂ = Ut/D = 0.15. The effect of spatial time and time step is
optimal when the number of elements of the cylinder is 64. If the number of elements of
the cylinder is smaller, it seems that the picture of the flow produced is too coarse. On
the other hand, if the number of elements of the cylinder is greater than 64, the amount
of vortex shedding is too large. The length of the rectangular grid node segment is made
similar to the length of the elements of the cylinder. If the time step is less than 0.15, then
the number of vortex shedding is also too large. On the other hand, if the time step is
greater than 0.15, then the flow pattern is too coarse.

3.3. Introduction of Vortices into the Flow

The discrete vortices are introduced into the flow so that the position of separation
and the trajectory of the separated shear layer are consistent with the experimental results.
In fact, these are determined by complex fluid motions in the boundary layer involving a
delicate balance between convection and diffusion with the additional important influence
of the local surface static pressure gradient.

The presence of the walls in close proximity to the cylinder obviously changes the wake
behaviour behind the cylinder. This is partly due to the effective increase in local velocity
and partly due to interference from the reflected periodic wake. In this present simple
model, only the ’blockage’ effect is considered and all the effects of the boundary layer
interaction between the cylinder and the wall are ignored. The effects of Reynolds number
are implicit in the choice of various model parameters such as the element lengths and grid
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dimensions. These have been largely specified on the basis of previous works [8,11], as
well as the sensitivity studies.

3.4. Distribution of Circulation on to the Grid

The strength of a vortex is distributed in its own surrounding polar grid nodes and
rectangular grid nodes. A vortex shed from the cylinders is distributed in the same manner
and stored in a different array. The polar grid nodes are used to evaluate the interaction
among vortices shed from the cylinder while the rectangular grid nodes are used to evaluate
the influence of wall to the vortices.

It can be seen from Figure 1 that the use of polar grid elements close to the wall could
create a situation where an active polar grid node is situated outside the fluid domain
between the walls, even though the vortex it represents is still inside. This active node is
then treated as usual, bearing in mind that the active nodes only represent a redistribution
of vortices in the flow and also that there is no direct interaction between the polar grid
nodes and the wall elements.

3.5. Random Walk Method

The random walk method has been widely used to model the viscous diffusion of
high Reynolds number flow using the discrete vortex method [12,13]. The basis of this
scheme is to give a random displacement to each vortex to produce a scatter equivalent to
the diffusion of vorticity in the continuum.

In two dimensions, the solution of the diffusion equation is the vorticity decay of a
line vortex as follows:

ω(r, t) =
Γ

4πvt
exp
(
− r2

4vt

)
(7)

Equation (7) is a function of radius r and time t. Hence, the vorticity decays as the
distance from its center increases and it also decays as the time increases. In this equation,
Γ is assumed to consist of a large number of small vorticity elements, all initially located at
the origin, but are free to diffuse outwards independently of one another over a period of
time. This equation is regarded as a vorticity density probability distribution curve to be
matched by the random displacements to which we will subject the small elements during
the numerical diffusion simulation process [14,15].

Due to the r2 factor, it can be seen that the vorticity decay equation is an even function
relative to its center. If Equation (7) is integrated in terms of the area of a circle whose
center is at the vorticity center, it will result in:

P(r, t) = 1− exp
(
− r2

4vt

)
(8)

in which P states the probability that a given element will lie somewhere within a circle
radius r and this equation also represents the Gaussian normal distribution of zero mean
and a standard deviation of

√
4vt. It follows from this that given two random numbers P1

and P2, within the interval (0,1), the values

r =

√
4v∆ ln

1
1− P1

(9)

and
θ = 2πP2 (10)

δzrω
v = reiθ (11)

will give representative displacements for a group of vortices in radial and angular direction
under this distribution of probability. Hence, the influence of the Reynolds number is
represented in the form of a diffusion process.
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3.6. Calculation of Velocity

The complex velocity at a point z = x + iy in the flow field is simply the derivative
of Equation (1) as follows:

dw(z)
dz

= u− iv = u∞e−ia∞ +
i

2π

Ne

∑
n = 1

γndSn

z− zn
+

1
2π

Mw

∑
h = 1

Nh
w

∑
w = 1

σh
wdSh

w
z− zh

w
+

i
2π

Nv

∑
v = 1

Γv

z− zn
(12)

in which u and v are the velocity components in x and y directions, respectively. As
explained previously, there is no direct vortex-to-vortex interaction in calculating the
velocity in the field domain, only a grid-node-to-grid-node interaction. This process
is carried out to reduce the great number of vortex-to-vortex interactions. This can be
reduced by the grid-node-to-grid-node scheme system which has a much smaller number
of interactions. Thus, the grid-node-to-grid-node scheme must have a lesser CPU time
since the interaction involved is smaller. As the calculation of vortex velocity is carried out
after the introduction of vortices into the flow, this equation has to be modified slightly
by eliminating the second term of Equation (12) as the surface vorticity has already been
released and absorbed in the shed vortices Nv as follows:

dw(z)
dz

= u− iv = u∞e−ia∞ +
1

2π

Mw

∑
h = 1

Nh
w

∑
w = 1

σh
wdSh

w
z− zh

w
+

i
2π ∑

j,k

Γj,jk

z− zj,k
(13)

in which zj,k shows the coordinate of the active grid nodes either in relation to the polar or
the rectangular grid system. The source contribution in the second term of the equation is
carried out through the use of the overlapping rectangular grid system. The velocity of the
active rectangular grid nodes due to the source distribution of the walls is then

uw(z) =
1

2π

Mw

∑
h = 1

Nh
w

∑
w = 1

σh
wdSh

w
z− zh

w
(14)

where Nh
w is the total number of elements at wall h.

The velocity of a vortex v shed from the cylinder due to the wall is then found through
the use of the following bilinear interpolation:

u(zv) = uv(zv) + upw(zv) + urw(zv) (15)

where uv(zv) is the vortex velocity due to other vortices shed from the cylinder, upw(zv) is
the vortex velocity due to the influence of the walls and urw(zv) is the vortex velocity due
to the diffusion of the random walk above.

3.7. Time Integration

A first order accurate Euler scheme is used to find the new locations of the vortices,
as follows:

z(t+∆t)
v = zv(t) + δzrw

v + δtu(t)
v (zv) (16)

where zv(t) is the initial position, δzrw
v is the increment due to the random walk scheme

above [9] and δtu(t)
v (zv) is the increment due to the convection scheme.

Since an overlapped grid system is used in the scheme, the new position of each vortex
is then referenced to both the polar and rectangular grid systems. In other words, each
vortex has two base nodes from which its relative position at every time step is measured
and renewed.
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3.8. Force and Pressure Calculation

The force calculation can be carried out after the convection and diffusion processes
by solving the following equation:

∂u
∂t

= −1
ρ
∇p (17)

and hence,

p = ps −
∫ S

S1

ρ
∂γ(S)

∂t
dS (18)

which is derived from the Navier–Stokes equation on the basis that at any point Sn in
the cylinder surface, the velocity parallel to the surface is given by

→
u t = γn. From that

equation, a numerical expression for the change in surface pressure over the element n
during the discrete time step ∆t can then be obtained as:

∆pn = −ρ
γn∆Sn

∆t
= −ρ

Γn

∆t
(19)

The difference of pressure ∆pn is measured from the stagnation pressure ps = 1
2 ρu2

∞
at the stagnation point Ss. Hence, the pressure at element m will be

pn = ps −
ρ

∆t

m

∑
n = 1

Γn (20)

The other force that contributes to drag and lift forces is the one due to the skin friction
(viscous drag) on the surface of the cylinder, as follows:

τn = µωn = µ
γndSn

dAn
(21)

where µ is the dynamic viscosity.
The form drag, lift and skin friction coefficients can be calculated as follows:

CD =
D

1
2 ρu2

∞d
=

2
ρu2

∞d

m

∑
n = 1

(pn sin βn∆Sn + τn cos βn∆Sn) (22)

CL =
L

1
2 ρu2

∞d
= − 2

ρu2
∞d

m

∑
n = 1

(pn cos βn∆Sn − τn sin βn∆Sn) (23)

where d is the diameter of the cylinder and β is the tangent angle of the element. The basic
procedure is based on the integration of the elemental pressure around a cylinder. The
pressure around the cylinder then can be integrated numerically to obtain the value of the
force coefficients.

3.9. Method of Enhancement

Theoretically, the source wall distribution should extend from −∞ to ∞ as expressed
in the continuous form of the Equations (2) and (3) above. However, lim

x→∓∞
σw(x) = 0 or in

other words, the blockage effect experienced by the cylinder due to the presence of the wall
is small at distant points. The wall is modelled by source extending along the wall until a
point when the mutual interaction between the distant wall elements and the cylinder or
shed vortices is relatively small.

The influence of the number of sources modelling the wall on the fluid velocity just
outside the cylinder surface element closest to the wall are shown in Figure 2. It can be seen
that the rate of change of the cylinder surface vorticity strength γk to the wall extension
∂γk
∂xw

= 0 is less than 0.01, when the distance of the end wall elements to the cylinder center
is greater than 3D. This value is then used to determine the wall length after shedding
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vortices. The wall end points can be determined by measuring this distance from the
extreme position of a vortex.
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4. Results and Discussion
4.1. Uni-Directional Flow

Experiments in a wind tunnel were conducted under a Reynolds number of 4.5 × 104

for the flow around a circular cylinder placed at various heights above a plane bound-
ary [16]. It was revealed that regular vortex shedding persisted at the Strouhal number
St = Uf/D for all gaps down to G/D = 0.3. For all values of G/D < 0.3, strong regular vortex
shedding began to be suppressed, and when the cylinder touched the wall, there was no
regular shedding of vortices.

As the cylinder was moved away from the wall, the pressure distribution around
the cylinder became more symmetric near the stagnation point and at G/D = 0.4 it was
perfectly symmetric. At small gaps, the separation point on the side nearest to the wall
moved down stream to the narrowest point of the gap. The flow around a cylinder close to
a wall can be considered to be analogous to the flow around two cylinders in a side-by-side
arrangement. For G/D > 0.5 the two flows were similar. However, the flow around two
cylinders becomes bi-stable for G/D < 0.5, whereas a cylinder near a wall shows no such
in-stability.

The flow pattern of a cylinder near a wall at various gaps of 0, 0.2, and 0.4 diameters
were reproduced from the experiment results [12]. It is shown in Figure 3, copyright by [12],
that suggested this reduction is mainly caused by the interference of the wall with the
vortex shedding and the immersion of the cylinder in the lower energy wall-boundary
layer flow.
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However, their data appears to reveal an upward trend in the recorded values of
the Strouhal number of approximately 5% at a gap of 0.75 diameters. It is argued that
this effect is caused by a reduction of the scale of the vortex formation region due to the
proximity of the wall, and that when the shear layers are brought closer together, their
interaction is facilitated, and the shedding period is shortened [17]. Variation of vortex
shed-ding frequency as a function of wall distance from the cylinder are plotted in Figure 4,
which shows that the shedding frequency gradually increased as the gap decreased. A 10%
increase of shedding frequency is expected when the gap is very small.
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Figure 4. Vortex shedding frequency vs. wall distances.

It is shown that when the gap ratio G/D is greater than 2, the cylinder behaves similar
to an isolated cylinder due to the influence of the wall being relatively low. Based on these
experimental studies, the model was tested at a high Reynolds number of 100,000 and at
several gap ratio values of 2.0, 1.5, 1.0, 0.5, 0.25, 0.1. At the first gap ratio G/D = 2 and at
the non-dimensional times of 1 and 5, the flow behind the cylinder is shown in Figure 5.
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In this study, the separation point close to the wall is shifted downstream to about
125 degrees, while the one on the top side of the cylinder surface is shifted upstream to
about 135 degrees, measured from the positive X-axis. The shear layer emanating from
the lower half of the cylinder seems to stretch longer than the upper one, even though no
forced asymmetry was implemented. The formation region also seems to be slightly longer
than that of an isolated cylinder by about 5 to 7%. This is due to the fact that the close
presence of the wall creates an asymmetric velocity field around the circumference of the
cylinder in which the velocity of the fluid particles close to the wall are relatively higher
than the rest. The asymmetric velocity field around the cylinder also promotes the roll-up
of the vortices earlier than that of the isolated cylinder.

As the flow further develops, a regular vortex shedding is clearly established, and
this is also reflected in the graph of the force coefficients. The drag coefficient is slightly
less than 1.14, which is the value for an isolated cylinder, and the lift coefficient oscillates
around a mean value of about 0.15 with the Strouhal number relatively unchanged from
0.2. The steady flow implies that a repulsive force exists in the direction which tend to
displace the cylinder away from the wall. The obvious difference between this flow pattern
and that of an isolated cylinder is that the vortices close to the wall tend to approach it
tangentially, follow it and then leave it tangentially as well, while those on the other side
are freely convected, similar to an isolated cylinder. Numerically, this is obviously due to
the source distribution along the wall. It tends to reflect the vortices close to it back to the
fluid domain.

This is also shown in the calculation in that generally, when the vortices are close
enough to the wall, the strength of the sources in that region are positive (sources), while
those in the region sparsely populated by vortices show negative values (sinks).
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The CPU time taken at each section is shown in Table 1. It is shown that the percentage
of time taken to calculate the vortex velocity is the greatest, up to 73.97%. The second
biggest CPU time is the calculation of the cylinder surface velocity, as much as 16.03%.

Table 1. The CPU time percentage of the algorithm.

Section Number Purpose of Section CPU Time

1 Input/Output 1.59
2 Define Grid 0
3 Calculate Nodal Velocity 73.97
4 Calculate Vortex Velocity 2.38
5 Vortex Displacement 1.6
6 Distribute Circulation 1.1
7 Calculate Surface Velocity 16.03
8 Calculate Forces 0.01

The influence of the wall on the hydrodynamic characteristics of the cylinder increases
as the gap ratio is reduced to 1.5, 1, 0.75, 0.5 and 0.25, as shown in Figures 6–11. The drag
coefficient decreases to 1.13 and the mean value of the lift coefficient is around zero, in
which these values are those of the isolated cylinder.
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The cylinder can be seen to be increasingly deflected in a tangential direction as the
gap between the cylinder and the wall is decreased. It is also shown in these figures that as
the velocity in the gap region increases, vortices with high strengths are created, which in
turn produces a strong mutual interaction. This results in a higher velocity in the region
along the wall behind the cylinder, which then causes the vortex street to be deflected as
the vortices close to the wall move further away from those located further into the flow.

An asymmetric effect further occurs when the gap ratio G/D is reduced to 0.25 and
the influence of the wall as described above is further pronounced. The vortex street
becomes more skew-symmetric due to the greater influence of the wall, which is reflected
in the higher velocity in the gap region, as shown in Figure 11. It can also be seen that
the repulsive force, shown as the average lift coefficient, is higher and reaches 0.75 with
a Strouhal number equal to 0.17 and the drag coefficient slightly increases to 1.45. Exper-
imental evidence shows that when the gap ratio G/D < 0.15, regular vortex shedding is
suppressed due to the complicated behavior of the turbulent boundary layer interaction in
the gap region.

Flow visualization, hot film and PIV experiments have been conducted to investigate
the flow around a circular cylinder with a close proximity to a wall for Reynolds numbers
in the range of 1200 ≤ Re ≤ 4960 [18]. The results revealed that four distinct regions may
be identified for describing the flow within the observed flow dynamics. For very small
gap ratios, G/D ≤ 0.125, the gap flow is either suppressed or extremely weak, and no
regular vortex shedding occurs downstream of the cylinder. This condition is not tested in
this present study. The flow field for small gap ratios, 0.254 ≤ G/D ≤ 0.375, is very similar
to that for very small gap ratios, except that there is now a pairing between the inner
shear-layer shed from the cylinder and the separated wall boundary layer. Intermediate
gap ratios—0.54≤ G/D≤ 0.75—are characterized by the onset of vortex shedding from the
cylinder. In addition, there is a significant decrease in the size of the upstream separation
region. For the final region, characterized by the largest gap ratio considered, G/D ≥
1.0, there is no separation of the wall boundary layer, either upstream or downstream of
the cylinder. In addition, the flow around the cylinder is now essentially the same as the
flow around an isolated circular cylinder. The variations of the Strouhal numbers with
respect to the gap ratio is very dependent on the Reynolds number. For low Reynolds
number flows, Re = 2600, the Strouhal number for G/D ≤ 2.0 is significantly greater than
that of an isolated circular cylinder. However, for higher Reynolds numbers (Re = 4000) St
seems to be insensitive to G/D. In contrast to other studies, there does not seem to be a
minimum value of G/D below which periodicities are not detected in the wake. However,
for G/D ≤ 0.25, the wake Strouhal number is more properly associated with periodicities
in the outer shear-layer from the cylinder, as opposed to classical vortex shedding.

This affects the formation region which is lengthened to about eight times the cylinder
diameter. Although there is no turbulence model applied in this study, numerically, the
regular vortex shedding was still suppressed by the cancellation of the vortices shed from
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the lower part of the cylinder as they move closer than 0.05D from the wall, the minimum
distance in which a vortex is still considered ‘alive’. The result for a gap ratio of 0.1D
is presented in Figure 12. The loss of circulation due to the vortex cancellation is then
compensated in the next calculation of the surface vorticity for the next time step. At
this gap ratio, the mean value of the lift and drag coefficients are increased unrealistically,
even though the suppressed oscillating flow pattern is achieved. This unrealistic result is
attributed to the strong interaction between the closest elements of the cylinder and the
wall, and the resultant interaction could not model the interaction between the wall and
the cylinder boundary layer correctly.
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The effects of the Reynolds number at a fixed gap ratio value of G/D = 1 are also
investigated in this study and the results are presented in Figures 12–15. At Reynolds
number 100, the resolution of the flow pattern is not as high as anticipated due to the
dominant influence of the Random Walk diffusion scheme. The drag coefficient is found to
be around 2.3 and the mean value of the lift coefficient is around 0.4.
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Figure 15. The flow pattern and force coefficients for G/D = 1 and Re = 10,000.

The value of the Strouhal number is difficult to ascertain due to the numerical noise.
This shows that the presence of the wall causes the drag coefficient to increase by about
10% and this can be attributed to the higher velocity in the gap region, which in turn creates
stronger vortices that have a greater influence on the drag characteristics of the cylinder
when they accumulate and interact in the formation region. At a higher Reynolds number
of 500, a better picture of the flow pattern is observed; this is also reflected in the increased
definition of the lift coefficient, as shown in Figure 12.

The drag coefficient is reduced to around 1.9, which is slightly higher than the value
of the isolated cylinder, while the mean value of the lift coefficient is around 0.3. The mean
maximum value of the lift coefficient is around 0.8 with the Strouhal number value around
0.17. The drag coefficient continuously decreases at higher Reynolds numbers, greater than
1000, with values of around 1.6, 1.2 and 1.15, as shown in Figures 13–15, respectively. The
mean maximum lift coefficient increases to around 0.9 with the Strouhal number reaching
0.2, which are both around the value obtained for the isolated cylinder. A summary of the
results for the force coefficients of a cylinder placed at various distances from the wall with
a Reynolds number of 100,000 is shown in Table 2 below. The effect of the variation of the
Reynolds number, in the range of 100 to 50,000, on the force coefficients at a gap ratio value
of G/D = 1 is shown in Table 3.
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Table 2. Results for Reynolds number 100.

Gap Ratio Drag Coefficient Lift Coefficient

G/D CD CL

0.1 unrealistic unrealistic
0.25 0.75 1.45
0.5 0.41 1.2

0.75 0.31 1.17
1 0.25 1.15

1.5 0.22 1.13
2 0.15 1.13

Table 3. Results for G/D = 1.

Reynolds Number Lift Coefficient Drag Coefficient

Re Cd CL

100 0.4 2.3
500 0.3 1.9

1000 0.3 1.6
10,000 0.25 1.2

100,000 0.15 1.15

In a constant flow regime, the upper separation point moves upwards by decreasing
G/D, indicating that the separation angle, θ, decreases too. This can be described by the
growing stream-wise pressure gradient induced by the gap flow [4].

4.2. Oscillatory Flow

The range of validity of the present model and the parameters defining it were
discussed. The object of this section of the study is to examine the influence of the proximity
of a cylinder to a plane surface bounding an oscillatory flow in the context of the limitations
of the model used.

It was concluded that the present model could only produce results in reasonable

agreement with the experimental results when the β value
(

Kc
Re

)1/2
lies in a range in which

the ‘boundary layer thickness’ is around half to twice the length of the local element. The
Keulegan–Carpenter number Kc is a parameter which shows the scale of the motion of the
water particles relative to the cylinder diameter. It is necessary to investigate the behavior
of the present model upon the variation of the diameter of the first ring with respect to the
cylinder diameter and also of the time step.

Using the cylinder parameters (the number of elements Ne is 64, the time step ∆t
is 0.15, and vortices are released from the first ring out) the hydrodynamic behavior of
the cylinder and its flow pattern at the Keulegan–Carpenter number Kc = UT

D of 40,
with gap ratios G/D of 2, 1, 0.5, 0.2, 0.1, and values of Reynolds number Re of 25,000,
50,000, 75,000, 100,000, are investigated. u∞ is the maximum velocity and the equation is
u = u∞ cos

( 2πt
T
)
.

At the first gap ratio of G/D = 2, the flow pattern and the force coefficient are displayed
in Figure 16. At t̂ = 22.5, the pseudo-Karman vortex type of flow is produced behind the
cylinder. The influence of the wall that is expressed in the suppression of the vortex street
is not apparent in the region close to the cylinder. This is mainly due to the relatively wide
gap between the cylinder and the wall. When the flow is reversed, more vortices will
move closer again to the cylinder, compared to that of the isolated cylinder, as they are
unable to spread in a downward direction due to the presence of the wall. It is seen that
the vortices approach the wall tangentially. However, any vortices crossing the wall have
been removed.
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The in-line force coefficient is only slightly less than the experiment results by about
5% [19,20]. The values for the drag and inertia coefficients of the experimental results are
1.43 and 1.17, while those obtained from the present study are 1.56 and 1.89, respectively.

At the lower gap ratio of G/D = 1, the pseudo-Karman vortex street type flow also
appeared behind the cylinder. The stronger influence of the wall is reflected in a more
curved shape of the vortex street when it approaches the wall. This can also be seen in
the higher amplitude of the drag coefficient which increases by about 5% compared to
the previous case. As also displayed in Figure 17, the amplitude of the drag coefficient
is higher than the experimental results by about 4% [20], whereas the phase is in quite
good agreement.
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As the gap ratio is reduced to G/D = 0.5, the difference in the amplitude of the drag
coefficient compared to that of the experimental results is narrowed to about 3% and the
phase of the flows are again in good agreement, as shown in Figure 18. The flow pattern
still has similarities with the unbounded oscillatory flow, but the trend of a deflected wake
on the wall side of the cylinder is increasingly pronounced.
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The flow becomes even more distorted when the cylinder is placed closer with
G/D = 0.2. A drag coefficient with amplitude around 1.9 is produced, which is within 2% of
the experimental results, as shown in Figure 19. As reported by a number of studies [21,22],
when the gap ratio is close to the wall, the turbulent boundary layers created on the wall
and cylinder surface and their interaction causes the drag coefficient of the cylinder to drop
to about 1.3.
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As has been discussed already, the present study model cannot reproduce the effects,
and although the results are surprisingly close to experimental results for the larger gap
ratios, for G/D less than 0.2, they become increasingly unrealistic, as shown in Figure 20.
The effect of the wall proximity on the lift coefficient of a circular cylinder is shown in
Figure 21. CLA and CLT are the mean peak of the lift coefficients in directions against and
towards the wall, respectively.
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Fluids 2021, 6, x FOR PEER REVIEW 18 of 20 
 

 
Figure 19. The flow pattern at t = 120, and the force coefficients for G/D = 0.2, Kc = 40 and Re = 25,000. 

As has been discussed already, the present study model cannot reproduce the effects, 
and although the results are surprisingly close to experimental results for the larger gap 
ratios, for G/D less than 0.2, they become increasingly unrealistic, as shown in Figure 20. 
The effect of the wall proximity on the lift coefficient of a circular cylinder is shown in 
Figure 21. CLA and CLT are the mean peak of the lift coefficients in directions against and 
towards the wall, respectively. 

The effect of wall proximity becomes insignificant, however, when the turbulence 
either in the form of organized motion (namely, vortex shedding in the case of a wall-free 
cylinder) or in the form of disorganized wake flow in the case of a wall-mounted cylinder, 
is considered [7]. 

 
Figure 20. The flow pattern at t = 120, and the force coefficients for G/D = 0.1, Kc = 40 and Re = 
25,000. 

 
Figure 21. The mean peak of the lift coefficient vs. Reynolds numbers. Figure 21. The mean peak of the lift coefficient vs. Reynolds numbers.

The effect of wall proximity becomes insignificant, however, when the turbulence
either in the form of organized motion (namely, vortex shedding in the case of a wall-free
cylinder) or in the form of disorganized wake flow in the case of a wall-mounted cylinder,
is considered [7].

5. Conclusions

Another use of the discrete vortex model for investigating the flow around a single
cylinder placed near a plane wall in unidirectional and oscillatory flow has been presented.
In this model, the size of the wall source element is equal to the size of the rectangular
grid segment. Two different kinds of boundary conditions are solved simultaneously on
the cylinder, with zero tangential velocity, and on the wall, with zero normal velocity.
The influence of the vortices on the cylinder is computed using the polar grid node while
that of the wall is computed using the rectangular grid. In other words, there is no direct
calculation of the interaction between the wall and the active polar grid nodes. This grid
strategy was chosen in an attempt to achieve a satisfactory interaction between the cylinder,
shed vortices and the wall sources. In oscillatory flows, an increase in the mean peak drag
coefficient compared to that of an isolated cylinder was also detected. In the case of a
cylinder placed near a plane wall in unidirectional flows, the positive mean lift coefficient
is generally predicted well. However, when the gap is less than 0.1 D the algorithm fails
to produce realistic results for the force coefficient since there is no exact boundary layer
program in the model.
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